Bitopological spaces via Double topological spaces

A. KANDIL \perp O. TANTAWY ${ }^{*}$ S.A.El-Sheikh ${ }^{* *}$ M. WAFAIE ${ }^{* * *}$
\perp^{\perp} Mathematics Department, Faculty of science, Helwan University, P.O.Box 11795, Cairo, Egypt.
*Mathematics Department, Faculty of science, Zagazig University, Egypt.
** Mathematics Department, Faculty of Education, Ain Shams University, Egypt.
${ }^{* * *}$ Modern Academy, For Engineering \&Technology In Maadi, Egypt.
dr.ali_kandil@yahoo.com

Abstract: In this paper we shall study some bitopological properties via double topological spaces. We characterize the notions of pairwise continuous (resp. pairwise open, pairwise closed) (P .continuous, P - open, P closed, for short) by a double continuous (resp. double open, double closed) mappings between double topological spaces. Also, we characterize the notions of P^{*} - continuous (resp. P^{*}-open, P^{*} - closed) by a supra double continuous (resp. open, closed) mappings between supra double topological spaces. Finally, we investigate the relationships between these types of mappings and give some counter examples.
[A. KANDIL O. TANTAWY S.A.El-Sheikh M. WAFAIE. Bitopological spaces via Double topological spaces. Journal of American Science 2011;7(1):791-798]. (ISSN: 1545-1003). http://www.americanscience.org.

K eywords: bitopological spaces, pairwise continuous mappings, supra- topological spaces, pairwise open mappings, pairwise closed mappings.

1. Introduction

The notion of a bitopological space (X, τ_{1}, τ_{2}), that is a set X equipped with two topologies τ_{1} and τ_{2} was formulated by J. C. Kelly in [12].

There are several hundred works indicated to the investigation of bitopological spaces. The book [1] is a versatile introduction to the theory of bitopological spaces and its applications.

Flou set stems from some linguistic considerations of Yves Gentilhomme about the vocabulary of a natural language [6]. E. E. Kerre [13] introduced the mathematical definition of flou sets and binary operations on it.

In this paper we follow the suggestion of J. G. Garcia and S. E. Rodabaugh [5] that "double fuzzy set" is a more appropriate name than "intuitionistic fuzzy set", and therefore adopt the term "double-set" for the flou set, and "double-topology" for the flou topology.

There are several hundred works indicated to the investigation of double topology (eg [9, 10, 11, 15])

In this paper, making use the relation between bitopological spaces (BTS`s for short) and double topological spaces (DTS, for short), we characterize the notions of P - continuous (resp. P -open, P closed) mappings by a double continuous (resp. open, closed) mappings.

Also, we introduce the notion of supra double topological space (SDTS, for short) and characterize the notion of P^{*} - continuous (resp, P^{*}-open, P^{*} -
closed) mappings by supra double continuous (resp, open, closed) mappings.

Finally, we investigate the relationship between these types of mappings and give same counter examples.

Note that for the concepts and results that are used but not stated here we refer to [[2], [8], [14]].

1. Preliminaries:

In this section we shall present the fundamental definitions and concepts which will be needed in the sequel.
Definition 2.1.[9] i) A double set A (D- set for short) is an ordered pair
$\left(A_{1}, A_{2}\right) \in P(X) \times P(X)$ such that $A_{1} \subseteq A_{2}$.
ii) The family of all double sets on X , will be denoted by $D(X)$, i.e.

$$
D(X)=\left\{\left(A_{1}, A_{2}\right) \in P(X) \times P(X): A_{1} \subseteq A_{2}\right\}
$$

iii) The double set $X=(X, X)$ is called the universal double set, and $\varphi=(\varphi, \varphi)$ is called the empty double set.
Definition 2.2. [9] Let $A=\left(A_{1}\right.$, $\left.A_{2}\right), B=\left(B_{1}, B_{2}\right) \in D(X)$. Then:

1) $A \subseteq B \Leftrightarrow A_{i} \subseteq B_{i}, i=1,2$
2) $A=B \Leftrightarrow A_{i}=B_{i}, i=1,2$
3) $A Y B=\left(A_{1} Y B_{1}, A_{2} Y B_{2}\right)$
4) $\mathrm{A} I \mathrm{~B}=\left(\mathrm{A}_{1} \mathrm{I} \mathrm{B}_{1}, \mathrm{~A}_{2} \mathrm{I} \mathrm{B}_{2}\right)$
5) $A^{C}=\left(A_{2}{ }^{C}, A_{1}{ }^{C}\right)$ where A^{C} is the complement of A.
6) Let $\eta_{1}, \eta_{2} \subseteq \mathrm{P}(\mathrm{X})$. The double product of η_{1} and η_{2} is denoted by $\eta_{1} \times \eta_{2}$ and is defined by $\eta_{1} \hat{\times} \eta_{2}=\left\{\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \in \eta_{1} \times\right.$ $\left.\eta_{2}: A_{1} \subseteq A_{2}\right\}$.
Definition 2.3.[9] Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a mapping, and let $A \in D(X)$ and $B \in D(X)$.
The image of A, defined by $f(A)=\left(f\left(A_{1}\right), f\left(A_{2}\right)\right)$ and the preimage $f^{-1}(B)$ is defined by $f^{-1}(B)=\left(f^{-1}\right.$

Definition 2.4 [9] Let X be a non- empty set. Then a

called a double topology on X iff it satisfies the following axioms:

2) If $\mathrm{A}, \mathrm{B} \in \eta$, then A I $B \in \eta$.
3) If $\left\{A_{s}: s \in S\right\} \subseteq \eta$, then ${\underset{s}{ } \in S} A_{s} \in \eta$.

If η satisfies the axioms $(1,3)$, then it is called a supra double topology.

The pair (X, η) is called a double topological space. Each member of η is called an open double set in X . The complement of an open double set is called a closed double set. For any $A \in D(X)$, the double closure of A is denoted by \vec{A} and is defined by $\vec{A}=I \quad\left\{B \mid B \in \eta^{C}\right.$ and $A \subseteq B\}$.

Definition 2.5 [9] A mapping $f:(\mathrm{X}, \boldsymbol{\eta}) \rightarrow(\mathrm{Y}, \boldsymbol{\theta})$ is called:
i) doubl continuous (D continuous for short) iff $\mathrm{f}^{-1}(\mathrm{~B}) \in \eta$ whenever $\mathrm{B} \in \theta$.
ii) doubl open (D open for short) iff $f(A) \in \theta$ whenever $A \in \eta$.
iii) doubl closed (D closed for short) iff f (A) $\in \theta^{C}$ whenever $A \in \eta^{C}$.

Remark: [11] Every DTS (X, η) define a BTS which is $\left(X, \pi_{1}, \pi_{2}\right)$ where $\pi_{1}=\left\{\mathrm{V}_{1} \subseteq \mathrm{X}: \exists \mathrm{V}_{2} \subseteq \mathrm{X}\right.$ s.t $\left.\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right) \in \eta\right\}$ and $\pi_{2}=\left\{\mathrm{V}_{2} \subseteq \mathrm{X}: \exists \mathrm{V}_{1} \subseteq \mathrm{X}\right.$ S.T $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ $\in \eta\}$.
Conversely, every BTS ($\mathrm{X}, \tau_{1}, \tau_{2}$) define a DT
$\tau_{1} \hat{\times} \tau_{2}=\left\{\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \in \mathrm{D}(\mathrm{X}): \mathrm{A}_{1} \in \tau_{1}, \mathrm{~A}_{2} \in \tau_{2}\right\}$ on X associated with τ_{1}, τ_{2}.
Theorem 2.6.[9] If $\mathrm{f}:(\mathrm{X}, \eta) \rightarrow\left(\mathrm{Y}, \eta^{*}\right)$ is a Dcontinuous function, then $\mathrm{f}:\left(\mathrm{X}, \boldsymbol{\pi}_{\mathrm{i}}\right) \rightarrow\left(\mathrm{Y}, \pi_{\mathrm{i}}{ }_{\mathrm{i}}\right) \mathrm{i}$ $=1,2$ are continuous functions.

Theorem 2.7.[9] Let ($\mathrm{X}, \tau_{1} \times \tau_{2}$) be a DTS and (Y , η) be any DTS. Then
$\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow(\mathrm{Y}, \eta)$ is a D - continuous function iff
$\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{i}}\right) \rightarrow\left(\mathrm{Y}, \pi_{\mathrm{i}}\right) \mathrm{i}=1,2$ are continuous functions.
Definition 2.8.[3] A mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow(\mathrm{Y}$, $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) is called P-continuous (resp, P -open, P -
closed) if f is $\tau_{\mathrm{i}}-\theta_{\mathrm{i}}$ continuous(resp, open, closed), $\mathrm{i}=1,2$.
Definition 2.9. [4] A mapping $\mid: P(X) \rightarrow P(X)$ is called supra- interior operator iff it satisfies the following axioms :

1) $\mid(X)=X$.
2) $l(A) \subseteq A$.
3) $|(A \mid B) \subseteq I(A) I|(B)$.
4) $|(\mid(A))=|(A)$.

Proposition 2.10. [4] Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ be a BTS. Then
i) $\tau^{*}=\tau_{1} \bigsqcup \tau_{2}=\left\{U_{1} Y U_{2}: U_{i} \in \tau_{\mathrm{i}}\right\}$ is a supra topology on X and $\left(X, \tau^{*}\right)$ is the STS-associated to (X, τ_{1}, τ_{2})
ii) The operator $I: P(X) \rightarrow P(X)$, defined by $I(A)=$ $\mathrm{A}^{01} \mathrm{YA}^{02}, \mathrm{~A}^{0 i}$ is the τ_{i} - interior of $\mathrm{A},(\mathrm{i}=1,2)$, is a supra operator in which $\tau^{*}=\{A \subseteq X: A=I(A)\}$. Proposition 2.11. [4] Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a BTS and $\left(X, \tau^{*}\right)$ its associated STS. Then $C: P(X) \rightarrow P(X)$ defined by $C(A)=\vec{A} I \vec{A}^{2}$.
is a supra- closure operator which induces the supra topology τ^{*}.
Remark 2.12 in [1], the author used the notion of pairwise open in a BTS, which means that: A is $p-$ open $\Leftrightarrow \mathrm{A}=\mathrm{U}_{1} \mathrm{Y} \mathrm{U}_{2}, \mathrm{U}_{\mathrm{i}} \in \tau_{\mathrm{i}}(\mathrm{i}=1,2)$. In [4, 7], we used the same notion under the name of P^{*} open or supra open in $\left(X, \tau^{*}\right)$, where τ^{*} is a supra topology generated by τ_{1} and τ_{2}. We say that $A \subseteq X$ is P^{*} - open (supra open) $\Leftrightarrow A \in \tau^{*}$.
Definition 2.13.[4]A mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow$ (Y, $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) is called
i) P^{*}-continuous iff $f^{-1}(\mathrm{U}) \in \tau^{*}$ whenever $\mathrm{U} \in \theta^{*}$.
ii) P^{*}-open iff $\mathrm{f}(\mathrm{V}) \in \theta^{*}$ whenever $V \in \tau^{*}$.
iii) P^{*}-closed iff $f(V) \in \theta^{* C}$ whenever $\mathrm{V} \in \tau^{*} \mathrm{C}$.
3. Operation on DTS and SDTS:

Definition 3.1. A mapping $C: D(X) \rightarrow D(X)$ is a called double closure operator iff it satisfies the following axioms :

3) $C(A Y B)=C(A) Y C(B)$.
4) $C(C \quad(A))=C\left(A_{)}\right)$.

If C satisfies the axioms $(1,2,4)$ and the following axiom, it is called a supra double closure operator:

$\left.3^{*}\right) \mathrm{C}(\mathrm{A} Y \mathrm{~B}) \supseteq \mathrm{C}(\mathrm{A}) \mathrm{YC}$ (B).

Theorem 3.2. Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ be a BTS. The operator $I_{12}: D(X) \rightarrow D(X)$, defined by I_{12} $\left(A_{)}\right)=\left(\left[\begin{array}{ll}A_{1} & \left.\left.A_{2}{ }^{02}\right]^{01}, A_{2}{ }^{02}\right) \forall A \in D(X) \text {, is a }\end{array}\right.\right.$ double interior operator which generates the double topology $\tau_{1} \hat{X} \tau_{2}$ on X .
Proof: As a sample, we prove the duality of the property ((3), definition 3.1) above, i.e. we prove that I_{12} (A B) $=I_{12}$ (A)I I I_{12} (B). The proof of the other parts are similar.
" I_{12} " is a well defined map since $A_{1} \subseteq A_{2} \Rightarrow\left[A_{1} I \quad A_{2}^{02}\right]^{01} \subseteq A_{2}^{02}$
3) $I_{12}\left[A_{I}\right.$ B $]=I_{12}\left(A_{1} I B_{1}, A_{2} I B_{2}\right)=$ ([[$\left.\left.A_{1} I B_{1}\right] I\left[\begin{array}{ll}A_{2} I & B_{2}\end{array}\right]^{02}\right]^{01}$,
$\left.\left[A_{2} \mathrm{I} \quad \mathrm{B}_{2}\right]^{02}\right)=\left(\mathrm{A}_{1}{ }^{01} \mathrm{I} \mathrm{B}_{1}{ }^{01} \mathrm{I}\left(\mathrm{A}_{2}{ }^{02}\right)^{01} \mathrm{I}\left(\mathrm{B}_{2}{ }^{02}\right.\right.$ $)^{01}, A_{2}^{02} \mathrm{I} \quad \mathrm{B}_{2}{ }^{02}$)
$=\left(\left[A_{1}^{01} I\left(A_{2}{ }^{02}\right)^{01}\right] I\left[B_{1}^{01} I\left(B_{2}{ }^{02}\right)^{01}\right], A_{2}{ }^{02}\right.$ I $B_{2}{ }^{02}$)
$=\left(\left[\begin{array}{ll}A_{1} I & A_{2}{ }^{02}\end{array}\right]^{01}, A_{2}^{02}\right) I\left(\left[\begin{array}{lll}B_{1} I & B_{2}{ }^{02}\end{array}\right]^{01}, B_{2}^{02}\right)$ $=I_{12}$ (A) I I_{12} (B)
Then I_{12} is a double interior operator and hence it generates a double topology $\boldsymbol{\eta}$ on X where

$$
\begin{aligned}
& \eta=\left\{A \mid I_{12}(A)=A\right\}=\{A \mid \\
& \left.\left(\left[A_{1} I A_{2}^{02}\right]^{01}, A_{2}^{02}\right)=A\right\} \\
& \left.=\left\{A_{1} \mid\left(A_{1}{ }^{01} I A_{2}^{02}\right)^{01}, A_{2}^{02}\right)=\left(A_{1}, A_{2}\right)\right\}= \\
& \left\{A \mid A_{1}{ }^{01}=A_{1} \wedge A_{2}^{02}=A_{2}\right\} \\
& =\left\{A_{1} \mid A_{1} \in \tau_{1} \wedge A_{2} \in \tau_{2}\right\}=\tau_{1} \times \tau_{2} .
\end{aligned}
$$

Corollary 3.3. Let (X, τ_{1}, τ_{2}) be any BTS. Then the operator
$C_{12}: D(X) \rightarrow D(X)$ defined by: $C_{12}(A)=\left(\vec{A}_{1}^{2}\right.$,
\left.${\overrightarrow{A_{1}}}^{2} Y A_{2}\right) \forall A \in D(X)$ is a double closure
operator generates the double topology $\tau_{1} \widehat{\chi} \tau_{2}$ on X.

Theorem 3.4. Let (X, τ_{1}, τ_{2}) be a BTS and let (X, $\left.\tau^{*}\right)$ its associated supra topological space. Then the operator $I^{*}: \mathrm{D}(\mathrm{X}) \rightarrow \mathrm{D}(\mathrm{X})$ defined by
$I^{*}(A)=\left(\mid\left(A_{1}\right), l\left(A_{2}\right)\right)$, where $\mid\left(A_{i}\right)=$ $A_{i}^{01} \mathrm{Y} A_{i}^{02}(i=1,2)$, is a supra double interior operator such that $\tau_{1^{*}}=\tau^{*} \hat{X} \tau^{*}$.

Proof: The proof that I^{*} is a supra-interior operator, follows from the definition of $\left.\right|^{*}$ and the fact that I is a supra -interior operator (prop. 2.9). For the proof of
$\tau_{1^{*}}=\tau^{*} \hat{\times} \tau^{*}$, let $A=\left(A_{1}, A_{2}\right) \in \tau^{*} \times \tau^{*}$.
Then $A_{i} \in \tau^{*},(i=1,2)$ and $\mid\left(A_{i}\right)=A_{i} . S O, I^{*}$
$(A)=\left(I\left(A_{1}\right), I\left(A_{2}\right)\right)=A \Rightarrow A \in \tau_{1^{*}} \Rightarrow \tau^{*} \hat{X}$ $\tau^{*} \subseteq \tau_{1^{*}}$.
Conversely, Let $A \in \tau_{1^{*}}$. Then $I^{*}(A)$ $=A \Rightarrow\left(1 \quad\left(A_{1}\right), l\left(A_{2}\right)\right)=\left(A_{1}, A_{2}\right)$. Hence $A_{i} \in \tau^{*} \quad(i=1,2)$ and therefore $A=$ $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \in \tau^{*} \hat{\mathrm{X}} \tau^{*}$. So $\tau_{1^{*}} \subseteq \tau^{*} \hat{\times} \tau^{*}$ and consequently $\tau_{1^{*}}=\tau^{*} \hat{\times} \tau^{*}$.
Corollary 3.5. Let (X, $\left.\tau_{1}, \tau_{2}\right)$ be a BTS. Then the operator
$C^{*}: D(X) \rightarrow D(X)$ such that $C^{*}(A)=\left(C\left(A_{1}\right)\right.$, $\left.C\left(A_{2}\right)\right)$, where $C\left(A_{i}\right)=\vec{A}_{i}$ I $\vec{A}_{i}^{2}(i=1,2)$ is a supra double closure operator such that $\tau_{\mathrm{C}^{*}}=\tau^{*} \times \tau^{*}$.
Theorem 3.6. Every double closure operator $\mathrm{C}: \mathrm{D}$ $(\mathrm{X}) \rightarrow \mathrm{D}(\mathrm{X})$ generates a $\operatorname{BTS}\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$, where $\tau_{i}=\left\{A_{i} \subseteq X: C\left(\left(A_{1}, A_{2}\right)^{C}\right)=\left(A_{1}, A_{2}\right)^{C},\left(A_{1}\right.\right.$, $\left.\left.A_{2}\right) \in \mathrm{D}(\mathrm{X})\right\}, \mathrm{i}=1,2$.
Proof: Straightforward.
4. The relations between P. continuous (resp P. open, P. closed) mappings and Duble
continuous (resp duble open, double closed) mappings:
In this section, we characterize the notion of P continuous (resp $\mathrm{P}^{\text {-open, }} \mathrm{P}$-closed) by a D continuous (resp D-open, D-closed) mappings.
Theorem 4.1. A mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow(\mathrm{Y}$, $\left.\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is pairwise continuous iff
$\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right)$ is double continuous.
Proof: Let f : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ be P continuous and
$B=\left(B_{1}, B_{2}\right) \in \theta_{1} \hat{\times} \theta_{2}$. Then $\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right) \in \tau_{1}$ and $\mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right) \in \mathrm{t}_{2}$. So ,
$f^{-1}(\underline{B})=\left(f^{-1}\left(B_{1}\right), f^{-1}\left(B_{2}\right)\right) \in \tau_{1} \hat{\times} \tau_{2}$.
Hence $\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \theta_{1} \hat{\times} \theta_{2}\right)$ is double continuous.

Conversely: Let $\mathrm{f} \quad:\left(\mathrm{X}, \quad \tau_{1} \times \tau_{2}\right)$ $\rightarrow\left(\mathrm{Y}, \theta_{1} \times \theta_{2}\right)$ be D-continuous and let $\mathrm{G}_{1} \in \theta_{1}$. Then $\left(G_{1}, Y\right) \in \boldsymbol{\theta}_{1} \times \boldsymbol{\theta}_{2}$. So, $\mathrm{f}^{-1}\left(\mathrm{G}_{1}, \mathrm{Y}\right)=$ $\left(\mathrm{f}^{-1}\left(\mathrm{G}_{1}\right), \mathrm{X}\right) \in \tau_{1} \times \tau_{2}$. Hence $\mathrm{f}^{-1} \mathrm{G}_{1} \in \tau_{1}$ and $\mathrm{f}:\left(\mathrm{X}, \tau_{1}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}\right)$ is continuous function. Also, let $G_{2} \in \theta_{2}$. Then $\left(\varphi, G_{2}\right) \in \theta_{1} \times \theta_{2}$. So $f^{-1}\left(\varphi, G_{2}\right)=\left(\varphi, f^{-1} G_{2}\right) \in \tau_{1} \hat{\times} \tau_{2}$. Hence $\mathrm{f}^{-1} \mathrm{G}_{2} \in \tau_{2}$ and $\mathrm{f}:\left(\mathrm{X}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{2}\right)$ is continuous function. Therefore $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is P - continuous.
Theorem 4.2. Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ be a mapping. Then the following conditions are equivalent:

1) $f:\left(X, \tau_{1} \times \tau_{2}\right) \rightarrow\left(Y, \boldsymbol{\theta}_{1} \times \boldsymbol{\theta}_{2}\right)$ is double continuous.
2) $\mathrm{f}^{-1}(\underline{\mathrm{~B}}) \in\left(\tau_{1} \hat{\times} \tau_{2}\right)^{\mathrm{c}} \quad \forall \mathrm{B} \in\left(\hat{\theta_{1}} \hat{\times} \theta_{2}\right)^{\mathrm{C}}$
3) $\mathrm{f}\left(\mathrm{C}_{12}(\mathbf{A})\right) \subseteq \mathrm{C}_{12}(\mathrm{f}(\mathrm{A})) \forall \mathrm{A} \in \mathrm{D}(\mathrm{X})$
4) $\quad C_{12}\left(f^{-1}(\underline{B}) \subseteq f^{-1}\left(C_{12}(\underline{B})\right)\right.$
$\forall B \in D(Y)$
5) $f^{-1}\left(l_{12} B\right) \subseteq l_{12} f^{-1}(\underline{B}) \forall B \in D(Y)$

Proof: $(1) \rightarrow(2):$ Let $B=\left(B_{1}, B_{2}\right) \in\left(\theta_{1} \times \theta_{2}\right)^{C}$.
Then $\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)^{\mathrm{C}} \in \hat{\theta_{1}} \hat{\times} \theta_{2} \Rightarrow$
$\left(\mathrm{B}_{2}{ }^{\mathrm{C}}, \mathrm{B}_{1}{ }^{\mathrm{C}}\right) \in \theta_{1} \hat{\times} \theta_{2} \Rightarrow \mathrm{f}^{-1}\left(\mathrm{~B}_{2}{ }^{\mathrm{C}}, \mathrm{B}_{1}{ }^{\mathrm{C}}\right) \in$
$\tau_{1} \times \tau_{2} \Rightarrow$
$\left(\mathrm{f}^{-1}\left(\mathrm{~B}_{2}{ }^{\mathrm{C}}\right), \mathrm{f}^{-1}\left(\mathrm{~B}_{1}{ }^{\mathrm{C}}\right)\right) \in \tau_{1} \hat{\times} \tau_{2} \Rightarrow\left(\mathrm{f} \mathrm{f}^{-1}(\right.$ $\left.\left.\left.\mathrm{B}_{2}\right)\right]^{\mathrm{c}},\left[\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right)\right]^{\mathrm{c}}\right) \in \hat{\tau_{1}} \hat{\times} \tau_{2} \Rightarrow\left(\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right)\right.$, $\left.\mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)\right)^{\mathrm{c}} \in \tau_{1} \hat{\times} \tau_{2} \Rightarrow\left(\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right)\right.$, $\left.\mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)\right) \in\left(\tau_{1} \hat{\times} \tau_{2}\right)^{c} \Rightarrow$ $\mathrm{f}^{-1}(\underline{B}) \in\left(\tau_{1} \times \tau_{2}\right)^{c}$.
(2) \rightarrow (3): Let $A \in D(X)$. Since $f(A)$ $\begin{array}{lll}\subseteq C_{12}(f) & (A)) \text { Then } f^{-1} f(A) \subseteq \\ f^{-1} & C_{12} & \\ & f\end{array}$ $(A))] A \subseteq f^{-1}\left[C_{12}(f(A))\right] \Rightarrow C_{12}(\underline{A})$ $\left.\left.\subseteq \mathrm{f}^{-1}{ }_{\left[\mathrm{C}_{12}(\mathrm{f}\right.}(\mathrm{A})\right)\right] \Rightarrow$
$\mathrm{f}\left(\mathrm{C}_{12}(\mathrm{~A})\right) \subseteq \mathrm{C}_{12}(\mathrm{f}(\mathrm{A})$)(by (2))
(3) \rightarrow (4): Let $\underline{B} \in D(Y)$. Take $\underline{A}=f^{-1}(\underline{B})$ ${ }^{\text {using }}\left[C_{12}\left(f^{-1}\left(B^{-1}\right)\right)\right] \subseteq C_{12}\left(f^{\text {he }} f^{-1}\right.$
$(\underline{B}) \subseteq C_{12}(\underline{B}) \Rightarrow$
$C_{12}\left(f^{-1}(\underline{B}) \subseteq f^{-1}\left(C_{12}(\underline{B})\right)\right.$
(4) \rightarrow (1): Let $G_{1} \in \theta_{1}$. Then $\left(G_{1}, Y\right) \in \theta_{1} \hat{\times}$ θ_{2}. Also, $\left(\varphi, \mathrm{G}_{1}{ }^{\mathrm{C}}\right) \in$
$\left(\theta_{1} \hat{\times} \theta_{2}\right)^{c}$, using (4) we have:
$\mathrm{C}_{12}\left(\mathrm{f}^{-1}\left(\varphi, \mathrm{G}_{1}{ }^{\mathrm{C}}\right)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{C}_{12}\left(\varphi, \mathrm{G}_{1}{ }^{\mathrm{C}}\right)\right)$
$=f^{-1}\left(\varphi, G_{1}{ }^{c}\right)=\left(\varphi, f^{-1}\left(G_{1}{ }^{c}\right)\right) \subseteq$
$\mathrm{C}_{12}\left(\varphi, \mathrm{f}^{-1}\left(\mathrm{G}_{1}{ }^{\mathrm{C}}\right)\right)$. So $\mathrm{f}^{-1}\left(\varphi, \mathrm{G}_{1}{ }^{\mathrm{C}}\right) \in\left(\tau_{1} \hat{\mathrm{x}}\right.$ $\left.\tau_{2}\right)^{c}$. Hence $\left(\mathrm{f}^{-1}\left(\mathrm{G}_{1}\right), \mathrm{X}\right) \in \tau_{1} \hat{\times} \tau_{2}$.
Therefore $\mathrm{f}^{-1}\left(\mathrm{G}_{1}\right) \in \tau_{1}$ and the mapping $f:\left(X, \tau_{1}\right) \rightarrow\left(Y, \theta_{1}\right)$ is continuous. Similarly, we can show that $\mathrm{f}:\left(\mathrm{X}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{2}\right)$ is continuous. So
$\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is P - continuous. According to theorem 4.1, f is double continuous.
(1) \rightarrow (5): Let f be double continuous. So,
$\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \theta_{2}\right)$ is P . continuous.
 $\left(f^{-1}\left(B_{1} I B_{2}{ }^{02}\right)^{01}, f^{-1} B_{2}{ }^{02}\right) \subseteq\left(\left(f^{-1}\left(B_{1} I\right.\right.\right.$ $\left.\left.\left.B_{2}^{02}\right)\right)^{01}\left(f^{-1} B_{2}\right)^{02}\right)=$ ([$\left.\left.f^{-1}\left(B_{1}\right) I f^{-1}\left(B_{2}\right)^{02}\right]^{01},\left(f^{-1} B_{2}\right)^{02}\right)=$ $I_{12} f^{-1}(B)$.
(5) \rightarrow (1): Let $\left(\mathrm{B}_{1}, \mathrm{Y}\right) \in \theta_{1} \hat{\times} \theta_{2}$ $\Rightarrow f^{-1}\left(I_{12}\left(B_{1}, Y\right)\right) \subseteq I_{12} f^{-1}\left(\left(B_{1}, Y\right)\right) \Rightarrow$ $f^{-1}\left(B_{1}, Y\right) \subseteq 1_{12} f^{-1}\left(\left(B_{1}, Y\right)\right)$ $\subseteq f^{-1}\left(B_{1}, Y\right)$. Then $f^{-1}\left(B_{1}, Y\right)=$ $I_{12} f^{-1}\left(\left(B_{1}, Y\right)\right)$ and therefore $f^{-1}\left(B_{1}, Y\right) \in$ $\tau_{1} \hat{\times} \tau_{2}$. Hence $\mathrm{f}^{-1} \mathrm{~B}_{1} \in \tau_{1}$ and the mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1}\right) \rightarrow\left(\mathrm{Y}, \theta_{1}\right)$ is continuous. Similarly if $\mathrm{B}_{2} \in \theta_{2}$, then $\left(\varphi, \mathrm{B}_{2}\right) \in$
$\theta_{1} \hat{\times} \theta_{2}$ and apply the condition, we have f^{-1} $\left(\varphi, \mathrm{B}_{2}\right) \in \tau_{1} \hat{\times} \tau_{2}$ Hence $\mathrm{f}^{-1} \mathrm{~B}_{2} \in \tau_{2}$ and the mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{2}\right)$ is continuous.
So, $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \theta_{1}, \theta_{2}\right)$ is P. continuous. So, according to theorem 4.1, f is double continuous. By a similar way as in theorems 4.1, 4.2 we have the following theorems

Theorem 4.3. i) A mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow(\mathrm{Y}$, θ_{1}, θ_{2}) is P- open iff
$\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \theta_{2}\right)$ is D open.
ii) A mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1} \times \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right)$ is D - open iff

$$
f\left[I_{12}(H)\right] \subseteq I_{12}[f(H)], \forall H \in D(X) .
$$

Theorem 4.4. A surjection mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times}\right.$ $\left.\tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \times \theta_{2}\right)$ is D - open and D-continuous iff $f\left[I_{12}\left(H_{3}\right)\right]=I_{12}[f(H)], \forall H \in D(X)$
Theorem 4.5. i) A mapping $f:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow(\mathrm{Y}$, θ_{1}, θ_{2}) is P- closed iff
$\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right)$ is D-closed.
ii) A mapping $f:\left(X, \tau_{1} \times \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \theta_{2}\right)$ is D - closed iff

$$
C_{12}\left[f\left(H_{0}\right)\right] \subseteq f\left[\mathrm{C}_{12}\left(\mathrm{H}_{0}\right)\right], \forall \mathrm{H} \in \mathrm{D}(\mathrm{X}) .
$$

Theorem 4.6. A mapping $\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right)$ $\rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right)$ is a D- closed and
D-continuous iff $\left.\mathrm{C}_{12} \quad[\quad \mathrm{f} \quad \mathrm{H} \quad)\right]$ $=f\left[C_{12}(H)\right], \forall H \in D(X)$.
Corollary 4.7. Let ($\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}$) and ($\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}$)
be double topological spaces. Then $\mathrm{f}:\left(\mathrm{X}, \tau_{1} \times\right.$ $\left.\tau_{2}\right) \rightarrow\left(\mathrm{Y}, \theta_{1} \hat{\times} \theta_{2}\right)$ is a double homeomorphism iff
$\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is $\mathrm{P}-$ homeomorphism.
5. The relations between P^{*}-continuous (resp P^{*} open, P^{*}-closed)mappings and supra double continuous (rep supra double open, supra double closed) mappings:
In this section, we shall study the relation between P^{*}-continuous (resp P^{*}-open , P^{*} - closed) mappings and supra- double topological spaces. The proofs of the following results are similar to the proof of the results in section 4. So, we prove theorem 5.2
as an example, and we shall omitte the proof of the others.
Theorem 5.1. Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) and ($\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces. Also, let (X, τ^{*}) and $\left(\mathrm{Y}, \boldsymbol{\theta}^{*}\right)$ be their associated supra-topological spaces. The following equivalent:

1) $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is $\mathrm{P}^{*}-$ continuous.
2) $\mathrm{f}:\left(\mathrm{X}, \tau^{*} \times \hat{\times} \tau^{*}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}^{*} \hat{\times} \theta^{*}\right)$ is SD continuous.
3) $\mathrm{f}^{-1}(\mathrm{~B}) \in\left(\tau^{*} \hat{\times} \tau^{*}\right)^{\mathrm{c}}$ $\forall \mathrm{B} \in\left(\theta^{*} \times \theta^{*}\right)^{\mathrm{C}}$
4) $f\left(C^{*}(A) \subseteq C^{*}(f(A))\right.$ $\forall A \in D(X)$
5) $C^{*}\left[f^{-1}(B)\right] \subseteq f^{-1}\left(C^{*}(B)\right)$ $\forall \mathrm{B} \in \mathrm{D}(\mathrm{Y})$
6) $\quad \mathrm{f}^{-1}(\mathrm{I} *(\mathrm{~B})) \subseteq 1 *\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ $\forall \mathrm{B} \in \mathrm{D}(\mathrm{Y})$
Theorem 5.2. Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) and ($\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces. Then the following are equivalent:
7) $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is P^{*} open.
8) $\mathrm{f}:\left(\mathrm{X}, \tau^{*} \hat{\times} \tau^{*}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}^{*} \hat{\times} \theta^{*}\right)$ is a SDopen.
9) $f\left[1 * H_{]} \subseteq 1 *[f(H)], \forall H \in D(X)\right.$.

Proof: $1 \rightarrow 2$ Let $A=\left(A_{1}, A_{2}\right) \in \tau^{*} \times \tau^{*}$. Then $f\left(A_{i}\right) \in \theta^{*}(i=1,2)$. So,
$f(A)=\left(f\left(A_{1}\right), f\left(A_{2}\right)\right) \in \theta^{*} \hat{\times} \theta^{*}$. Hence $\mathrm{f}:\left(\mathrm{X}, \tau^{*} \times \tau^{*}\right) \rightarrow\left(\mathrm{Y}, \theta^{*} \hat{\times} \theta^{*}\right)$ is a SD-open function.
$2 \rightarrow 3$ Since, $I * H \subseteq H \quad \forall H \in D(X)$. Then
$\mathrm{f}\left[1 * H_{]} \subseteq \mathrm{f}\left(\mathrm{H}_{\mathrm{H}}\right) \Rightarrow I^{*} \mathrm{f}\left[\mathrm{I} * \mathrm{H}_{3}\right]=\right.$
$f\left[1 * H_{]} \subseteq 1 * f\left(H_{0}\right)\right.$. Hence $f\left[1 * H_{]}\right]$
$\subseteq 1 *[f(H)], \forall H \in D(X)$.
$3 \rightarrow 1$ Straightforward.

Theorem 5.3. Let $\left(\mathrm{X}, \boldsymbol{\tau}_{1}, \tau_{2}\right)$ and $\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ be bitopological spaces. A mapping $f:\left(X, \tau^{*} \times \tau^{*}\right)$ $\rightarrow\left(\mathrm{Y}, \theta^{*} \widehat{\times} \theta^{*}\right)$ is SD - open and SD-continuous iff

$$
\mathrm{f}\left[1 * \mathrm{H}^{2}\right]=\mathrm{I} *[\mathrm{f}(\mathrm{H})] \forall \mathrm{H} \in \mathrm{D}(\mathrm{X})
$$

Theorem 5.4 Let (X, τ_{1}, τ_{2}) and (Y, $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces. Then the following are equivalent:
i) $f:\left(X, \tau^{*} \times \tau^{*}\right) \rightarrow\left(Y, \theta^{*} \hat{\times} \theta^{*}\right)$ is a $S D$ closed.
ii) $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is P^{*} closed.
iii) $C^{*}(f(H)) \subseteq f\left[C^{*}(H)\right], \forall H \in D(X)$

Theorem 5.5. Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) and ($\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces. A mapping
$f:\left(X, \tau^{*} \hat{\times} \tau^{*}\right) \rightarrow\left(Y, \theta^{*} \hat{\times} \theta^{*}\right)$ is SD- closed and SD- continuous iff

$$
C^{*}(f(H))=f\left[C^{*}(H)\right], \forall H \in D(X)
$$

Corollary 5.6. Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) and (Y, $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces. Then
$\mathrm{f}:\left(\mathrm{X}, \tau^{*} \hat{\times} \tau^{*}\right) \rightarrow\left(\mathrm{Y}, \theta^{*} \hat{\times} \theta^{*}\right)$ is a SD homeomorphism iff
$\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ is P^{*} homeomorphism function
6. Relation between D continuous (open, closed) mappings and SD continuous (open, closed) mappings:
Theorem 6.1. Let (X, τ_{1}, τ_{2}) and (Y, $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces and let,
$\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ be P - continuous (resp P - open). Then

$$
\mathrm{f}:\left(\mathrm{X}, \tau^{*} \hat{\times} \tau^{*}\right) \rightarrow\left(\mathrm{Y}, \theta^{*} \hat{\times} \theta^{*}\right) \text { is } \mathrm{SD}-
$$

continuous (resp SD-open).
Proof: It follows from the definition of P continuous (resp P- open) and SD-continuous (resp SD-open).
Theorem 6.2. Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) and (Y, $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$) be bitopological spaces and let
$\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ be P - closed and injection. Then
$\mathrm{f}:\left(\mathrm{X}, \tau^{*} \times \tau^{*}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}^{*} \hat{\times} \theta^{*}\right)$ is SD-closed. Proof: Let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ be a
P- closed and injection. Let $H \in \tau^{*} \stackrel{\wedge}{\times} \tau^{* C}$.
Then $H=\left(\begin{array}{llll}K_{1} & K_{2} & G_{1} I \quad & G_{2}\end{array}\right)$ such that
$\mathrm{K}_{\mathrm{i}}, \mathrm{G}_{\mathrm{i}} \in \tau_{\mathrm{i}}^{\mathrm{C}}(\mathrm{i}=1,2)$. Then
$f\left(H^{\prime}\right)=f \quad\left(K_{1} I \quad K_{2}, G_{1} I \quad G_{2}\right)=(f$
$\left.\left(\begin{array}{lll}K_{1} & K_{2}\end{array}\right), f \quad\left(G_{1} I \quad G_{2}\right)\right) \subseteq$
$\left(f\left(K_{1}\right) I f\left(K_{2}\right), f\left(G_{1}\right) I f\left(G_{2}\right)\right) . f$
$\left(K_{i}\right), f \quad\left(G_{i}\right) \in \theta_{i}{ }^{C} \Rightarrow$
$f(H) \in \theta^{*} \stackrel{\wedge}{\times} \theta^{* C}$. Hence $f:\left(X, \tau^{*} \times \tau^{*}\right)$
$\rightarrow\left(\mathrm{Y}, \theta^{*} \times \boldsymbol{\theta}^{*}\right)$ is SD-closed.
Note that the mapping may be SD-continuous (SD-open and SD-closed) but not double continuous (double open and double closed) mapping as shown in the following example:
Example 6.3. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} . \tau_{1}=\{\varphi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}$, $\mathrm{c}\}\}, \tau_{2}=\{\varphi, X,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}\}$. Also, let $\mathrm{Y}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$ $\theta_{1}=\{\varphi, Y,\{r\},\{p, q\}\}, \theta_{2}=\{\varphi, Y,\{p\},\{q, r\}\}$.
Then
$\tau_{1} \hat{\times} \tau_{2}=\{\varphi, X,(\varphi,\{c\}),(\varphi,\{a, b\}),(\varphi, X)$,
$(\{a\},\{a, b\}),(\{a\}, X),(\{b, c\}, X)\}$
$\theta_{1} \hat{\times} \theta_{2}=\{\varphi, Y,(\varphi,\{p\}),(\varphi,\{q, r\}),(\varphi, Y)$, $(\{r\},\{q, r\}),(\{r\}, Y),(\{p, q\}, Y)\}$
let $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ such that f (a) $=p, f(b)=q, f(c)=r$. Then f is not D-open since $(\varphi,\{\mathrm{c}\}) \in \tau_{1} \quad \hat{\times} \tau_{2} \Rightarrow \mathrm{f} \quad(\varphi,\{\mathrm{c}\})=$ $(\varphi,\{\mathrm{r}\}) \notin \theta_{1} \hat{\times} \theta_{2}$
let $\tau^{*}=\{\varphi, X,\{a\},\{b, c\},\{c\},\{a, b\},\{a, c\}\}$. Then τ^{*} is not a topology since $\{b, c\} I\{a, b\}=$ $\{\mathrm{b}\} \notin \tau^{*}$. Also,
$\theta^{*}=\{\varphi, Y,\{r\},\{p, q\},\{p\},\{q, r\},\{r, p\}\} \theta^{*}$ is not a topology since $\{p, q\} I \quad\{q, r\}=\{q\} \notin \theta^{*}$. Then
$\tau^{*} \hat{\times} \tau^{*}=\{\varphi,(\varphi,\{a\}),(\varphi,\{b, c\}),(\varphi,\{c\}),(\varphi$,
$\{a, b\}),(\varphi,\{a, c\}),(\varphi, X),(\{a\},\{a\}),(\{a\},\{a, b\})$,
$(\{a\},\{a, c\}),(\{a\}, X),(\{c\},\{c\}),(\{c\},\{b, c\}),(\{c\}$, $\{a, c\}),(\{c\}, X),(\{b, c\},\{b, c\}),(\{b, c\}, X),(\{a, b\}$, $\{a, b\}),(\{a, b\}, X),(\{a, c\},\{a, c\}),(\{a, c\}, X), X\}$ and
$\theta^{*} \hat{\times} \theta^{*}=\{\varphi,(\varphi,\{r\}),(\varphi,\{p\}),(\varphi,\{p, q\}),(\varphi$, $\{q, r\}),(\varphi,\{r, p\}),(\varphi, Y)$,
$(\{r\},\{r\}),(\{r\},\{r, q\}),(\{r\},\{r, p\}),(\{r\}, Y),(\{p\}$, $\{p\}),(\{p\},\{p, q\}),(\{p\},\{r, p\}),(\{p\}, Y),(\{p, q\},\{p$, $q\}),(\{p, q\}, Y),(\{q, r\},\{q, r\}),(\{q, r\}, Y),(\{r, p\},\{r$, $\mathrm{p}\}),(\{\mathrm{r}, \mathrm{p}\}, \mathrm{Y}), \mathrm{Y}\}$.
Let $f:\left(X, \tau^{*} \times \tau^{*}\right) \rightarrow\left(Y, \theta^{*} \hat{\times} \theta^{*}\right)$. Then f is SD-continuous but

$$
\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right) \text { is not } \mathrm{D} \text { - }
$$ continuous, since

$$
\begin{aligned}
& (\varphi,\{\mathrm{p}\}) \in \theta_{1} \hat{\times} \theta_{2} \text { but } \mathrm{f}^{-1}(\varphi,\{\mathrm{p}\})= \\
& (\varphi,\{\mathrm{a}\}) \notin \tau_{1} \hat{\times} \tau_{2}
\end{aligned}
$$

Let $f:\left(X, \tau^{*} \times \tau^{*}\right) \rightarrow\left(Y, \theta^{*} \times \theta^{*}\right)$. Then f is SD-open but

$$
\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right) \text { is not } \mathrm{D} \text { - open }
$$ since

$$
(\varphi,\{\mathrm{c}\}) \in \tau_{1} \quad \hat{\times} \tau_{2} \text { but } \mathrm{f} \quad(\varphi,\{\mathrm{c}\})=
$$

$$
(\varphi,\{\mathrm{r}\}) \notin \theta_{1} \hat{\times} \theta_{2} . \text { Finally }
$$

Let $f:\left(X, \tau^{*} \times \tau^{*}\right) \rightarrow\left(Y, \theta^{*} \hat{\times} \theta^{*}\right)$. Then f is SD-closed but

$$
\mathrm{f}:\left(\mathrm{X}, \tau_{1} \hat{\times} \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \boldsymbol{\theta}_{1} \hat{\times} \boldsymbol{\theta}_{2}\right) \text { is not D-closed }
$$ since

$$
(\{\mathrm{a}, \mathrm{~b}\}, \mathrm{X}) \in\left(\tau_{1} \widehat{\times} \tau_{2}\right)^{\mathrm{c}} \text { but } \mathrm{f} \quad(\{\mathrm{a}, \mathrm{~b}\}, \mathrm{X})=(\{\mathrm{p}
$$

$$
\mathrm{q}\}, \mathrm{Y}) \notin\left(\boldsymbol{\theta}_{1} \hat{\times} \theta_{2}\right)^{\mathrm{c}}
$$

R efernces

1. Dvalishvili,B.P. Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Application, Mathematics studies, 2005.
2. Datta, M. C.: Projective bitopological space I. J. Australian Math. Soc. 13, 1972, 327-334.
3. Datta, M.C.: Projective bitopological space II. J. Australian Math. Soc. 14, 1972, 119-128.
4. El-Sheikh, S.A. Anew approach to fuzzy bitopological space, Information Science, 137(2001)283-301.
5. Garica, J.G. and Rodabaugh, S.E. Ordertheoretic, topological, Categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued " intuitionistic" sets, intuitionistic" fuzzy sets and topologies`, Fuzzy sets and Systems 156 (3), 445-484, 2005.
6. Gentilhomme, Y., 1968. Les ensembles flous en linguistique. Cahiers Linguistique Theoretique Appliqee, 5, pp. 47-63.
7. Kandil,A., H.Fawaz and S. A. El-Sheikh On bitopological spaces, Proc. Of Assiut First Intern-conf.Part VIII, 1990, 115-132.
8. Kandil, A.Nouch and S.A.El-Sheikh, On fuzzy bitopological spaces, Fuzzy sets and systems, 74(1995), 353-363.
9. Kandil, A. and Tantawy, O. and Wafaie, M., On flou (INTUITIOISTIC) topological spaces, J.Fuzzy mathematics, Vol.15, No 2, 2007.
10. Kandil, A. Tantawy, O. and Wafaie, M., On Flou (INTUITIOISTIC) Compact Space J. of Fuzzy Mathematics Vol.17, No. 2, 2009, 275-294.
11. Kandil, A. Tantawy, O. and Wafaie, M., Flou separation axioms, J. The Mathematical And Physical Society Of Egypt, submitted.
12. Kelly, J.C. : bitopological space. Pro London. Math.Soc.13,1963,71-89.
13. Kerre, E.E. Fuzzy sets and approximate reasoning, Lectures notes, University of Gent Belgium (1988),33p.
14. Qiangyuan Yua,b, Dayou Liua,b and Jianzhong Chenc A fuzzy spatial region model based on flou set, Advances in Spatio- Temporal Analysis Volume 5(2008), pp 51-58.
15. Sadik Bayhan and Doğan Çoker, Pairwise separation axioms In intuitionistic topological spaces, Hacettepe Journal of mathematics and Statistics, vol 34S (2005), 101-114.

1/1/2011

