
Journal of American Science                                                                                                                 2010;6(12)   

  

http://www.americanscience.org            editor@americanscience.org 310 

The Numerical Solution of Linear Fourth Order Boundary Value 

Problems using Nonpolynomial Spline Technique 
 

F.A. Abd El-Salam and Z.A. ZAki
*

 
 

Department of Engineering Mathematics and Physics, Faculty of Engineering, Benha University, Shoubra, Cairo, 

Egypt. 

Zahmed_2@yahoo.com
* 

 

Abstract: In this paper we develop a class of accurate methods based on quartic nonpolynomial spline function at 

midknots for the numerical solution of  a fourth order two point boundary value problems associated with plate 
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1. Introduction: 

 It is well known that the elastic beam is one 

of the most used elements in structures of aircrafts, 

buildings, ships and bridges. Beam deflection under 

certain load can be modeled by a fourth order two 

point Boundary value problems. We consider the 

problem of bending a rectangular simply supported 

beam of length L resting on an elastic foundation the 

vertical deflection U of the beam satisfies the system: 

           ( )  (  ⁄ )      ( )                      (1.1) 

 ( )   ( )   ( )( )   ( )( )               (1.2) 

Where     is the flexural rigidity of the beam,     is 

the spring constant of the elastic foundation, and the 

load  ( ) acts vertically downwards per unit length 

of the beam. The details of the mechanical 

interpretation are given in [1]. Mathematically the 

system (1.1) and (1.2) belongs to a general class of 

boundary value problems of the form 

 ( )   ( )    ( )                [   ]                (1.3) 

Subject to the boundary conditions 

 ( )        ( )       
( )( )       

( )( )                   

(1.4) 

Where  ( ) and  ( ) are continuous on [   ] and 

        (     ) are finite real arbitrary constants. The 

analytical solution of (1.3) subject to (1.4) cannot be 

obtained for arbitrary choices of  ( ) and  ( ). The 

numerical analysis literature contains other methods 

developed to find an approximate solution of this 

problem using spline functions and finite difference. 

 

Usmani [2], Usmani and Warsi [3] solved 

linear fourth order two point boundary value 

problems using quartic, quinitic and sextic 

polynomial spline functions. Al-Said et al. [4,5] 

solved fourth order obstacle problems using cubic 

and quartic spline functions, respectively. Usmani [6] 

solved this problem with the boundary conditions 

involving first derivatives using quintic and sextic 

polynomial spline functions. Also, Rashidinia and 

Golbabaee [7] and Siddiqi and Ghazala [8] solved the 

preceding problem using quintic spline functions. 

VanDaele et al. [9] solved the above boundary value 

problem with the boundary conditions involving first 

derivatives using nonpolynomial spline function. Zhu 

[10] introduced optimal quartic spline collocation 

methods for the numerical solution of this problem 

based on perturbation technique which gives rise to 

two optimal quartic spline one step and three step 

collocation methods. 

Al-Said et al. [11] developed a fourth order 

finite difference method for the system (1.3) and 

(1.4). Ramadan et al. [12, 13] solved this problem 

using quintic nonpolynomial spline function. The aim 

of this paper is to construct a new spline method 

based on a nonpolynomial spline function that has a 

polynomial part and a trigonometric part to develop 

numerical methods for obtaining smooth 

approximations for the solution of the system (1.3) 

and (1.4); the paper is organized as follows: in 

section 2, we present the derivation of our method. 

The method is formulated in a matrix form in section 

3. Convergence analysis for second, fourth and six 

order methods is established in section 4. Numerical 

results are presented to illustrate the applicability and 

accuracy in section 5. Finally, in section 6, the results 

of the proposed methods are concluded to illustrate 

their practical usefulness and accuracy. 
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2. Derivation of the method: 

 We introduce a finite set of grid points xi by 

dividing the interval [   ] into n  equal parts. 

                      

                    
   

 
                       (2.1) 

Let  ( ) be the exact solution of the system 

(1.3) and (1.4) and si be an approximation to 

    (  ) obtained by the spline function   ( ) 
passing through the points (xi, si) and (xi+1, si+1). 

Each nonpolynomial spline segment   ( ) 
has the form: 

  ( )         (    )         (    )   

   (    )
     (    )                                                        

(2.2) 

                  ,where    ,   ,     , and    

are constants and   is the frequency of the 

trigonometric functions which will be used to raise 

the accuracy of the method and Eq. (2.2) reduces to 

quartic polynomial spline function in [   ] when 

    choosing the spline function in this form will 

enable us to generalize other existing methods by 

arbitrary choices of the parameters   ,
 
 and   which 

will be defined later in the end of this section. Thus, 

our quartic nonpolynomial spline is now defined by 

the relations: 

( )  ( )    ( )      [       ]             
(  )  ( )     [   ]                      (2.3) 

            First, we develop expressions for the  

five coefficients of (2.2) in terms of 

      ⁄
         ⁄

             ⁄
, where  

( )   (     ⁄
)       ⁄

   
( )(  )      

(  )   
( ) (     ⁄

)       ⁄
                     (2.4) 

(   )   
( )(  )             

( ) (     ⁄
)       ⁄

  

We obtain via a straight forward calculation the 

following expressions: 

   
   

  
            

  

  
     (  ⁄ )  

 

      (   ⁄  )
      ⁄

  

   
 

 
      ⁄

  
 

   
      ⁄

            
  

  
     (2.5)            

         ⁄
 
 

 
   

  

 
     ⁄

 
 

   
   

 *
 

  
 

  

   
+     ⁄

  

 

Where                          Now 

using the continuity (ii) in (2.3) that is the continuity 

of quartic nonpolynomial spline  ( ) and its 

derivatives up to order three are involved at the point 

(xi,si) where the two quartics     ( ) and   ( ) join. 

Thus,     
( )(  )    

( )(  ),               which 

on using Eqs. (2.4) and (2.5) yield the following 

consistency relations: 

 

 
[       ]   

(     ⁄
      ⁄

)  
  

 
*     ⁄

         ⁄
+  

[
      ⁄

  
 

 

   
] [          ]     [

 

      (  ⁄ )
 

 

  
 

      
  

   
]     ⁄

     [
 

   
–

   ( )

     (  ⁄ )
 
   

   
]     ⁄

 

                                       

(2.6) 

 

 
[       ]  

  

 
     ⁄

 [
  

   
 
    (  ⁄ )

  
]     ⁄

           

(2.7) 

   (  ⁄ )

 
 [       ]  *     ⁄

      ⁄
+  

              [
      (  ⁄ ) 

     (  ⁄ )
]     ⁄

 [
        (  ⁄ )

     (  ⁄ )
]     ⁄

 

            

                                                                (2.8) 

 

   (  ⁄ )

 
 [       ]  

     (  ⁄ )

     (  ⁄ )
     ⁄

              (2.9) 

Adding Eqs. (2.6) and (2.7) then use equation (2.8), it 

follows that 

    (     ⁄
      ⁄

)  [
 

  
 

 

     (  ⁄ )
 

             
  

 
] (     ⁄

      ⁄
)  [

  

   
 

 

      (  ⁄ )
 

          
 

      (  ⁄ )
] (     ⁄

      ⁄
)                                

                                                                            (2.10)    

                                                  

Adding  Eqs. (2.8) and (2.9), it follows that 

   
 

    (  ⁄ )
(     ⁄

      ⁄
)  (

 

        ⁄
 

                                    
 

        ⁄
) (     ⁄

      ⁄
)  

                                                                            (2.11)   

                                                                                                                                                                

Eliminating     from Eqs. (2.9) and (2.11), it follows 

that: 

(
 

        ⁄
 

 

        ⁄
) (     ⁄

      ⁄
)  

(
 

       ⁄
 

 

       ⁄
 
      ⁄

 
)     ⁄

     

          (
 

      ⁄
) (      ⁄

       ⁄
      ⁄

)  

                      (2.12) 

 

Eliminating     from Eqs. (2.7) and (2.10) then use 

equation (2.12) it follows that: 
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       ⁄
 (     ⁄

       ⁄
      ⁄

)  

(
 

       ⁄
 

  

        ⁄
 

 

  
) (     ⁄

      ⁄
)  

 

  (
        ⁄     

 
 ⁄

  
 

  

        ⁄
 
       ⁄     

 
 ⁄

   
 

  
 

       ⁄
 
  

  
)     ⁄

                                  (2.13) 

Eliminating     from the Eqs. (2.12) and (2.13), it 

follows that: 

     ⁄
       ⁄

       ⁄
       ⁄

      ⁄

   * (     ⁄
      ⁄

)

  (     ⁄
      ⁄

)

       ⁄
   +                  

                                                                           (2.14) 

 

Where           with    (  )and     (  ),  
      

  
        ⁄         ⁄         ⁄

          ⁄
 

  
                ⁄  (    )     

          ⁄
 

  
             (  ⁄ )  (      

 )     

          ⁄
 

 If      hat is     (     )  (
 

   
  

  

   
   

   

   
) 

So that the relation (2.14) reduce to quartic 

polynomial spline relation [2]. 

 

Eq. (2.14) gives (n-4) linear algebraic equations in 

the (n) unknowns      ⁄
                 so 

we need four more equations, two at each end of the 

range of integration for direct computation of      ⁄
 . 

These four equations are deduced by Taylor series 

along with the method of undetermined coefficients. 

    
 ⁄
     

 ⁄
   

 ⁄
      

 

 
     

( )  

  *    
( )  ∑      (  ⁄ )

( ) 
   +               

                                     (2.15) 

    
 ⁄
     

 ⁄
    

 ⁄
   

 ⁄
       

  

 
   
( )  

  *∑      (  ⁄ )
( ) 

   +                       

                                    (2.16) 
 

 

     ⁄
        ⁄

       ⁄
       ⁄

 

           
  

 
   
( )  

  *∑          (   ⁄ )
( ) 

   +               

                                    (2.17) 

     ⁄
        ⁄

        ⁄
        

 

 
     

( )  

  *    
( )    ∑           (   ⁄ )

( ) 
   +             

                                      

(2.18)  
                                                          
            The local truncation errors               

associated with the scheme (2.14 – 2.18) can be 

obtained as follows: first we rewrite the scheme (2.14 

– 2.18) in the form: 

    
 ⁄
     

 ⁄
   

 ⁄
      

 

 
     

( )  

               *    
( )  ∑      (  ⁄ )

( ) 
   +                

      (2.19) 

    
 ⁄
     

 ⁄
    

 ⁄
   

 ⁄
       

              
  

 
   
( )    *∑      (  ⁄ )

( ) 
   +              

                      (2.20) 

     ⁄
       ⁄

       ⁄
       ⁄

      ⁄

 [ ( 
    ⁄

( )
  

    ⁄

( )
)

  ( 
    ⁄

( )
      

    ⁄

( )
)           

    
    ⁄

( )
]      

                                                                       
     

                                

(2.21) 

     ⁄
        ⁄

       ⁄
       ⁄

 

                  
  

 
   
( )  

            *∑           (   ⁄ )
( ) 

   +                

                                                                                                    

                                                                        (2.22) 

     ⁄
        ⁄

        ⁄
  

                                
 

 
     

( )    [          
( )  

                          ∑            (   ⁄ )
( ) 

      ]            

                          

(2.23) 

 

                   The terms      ⁄
      

    ⁄

( )
     in 

Eq. (2.21) are expanded around the point    using 

Taylor series and the expressions for      
          can be obtained. Also, expressions for 

               are obtained in a similar manner 

by expanding around              and around 

               , The local truncation errors 

               associated with the scheme 

(2.14) are 
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   (  (       ))  
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(          )     

( )
 

  
 

  
(   (         ))      
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(            )    

( )
   

 
 

    
(    (          ))    

( )   

 
 

     
(                   )     

( )
 

 
 

      
(       (           

    ))       
(  )   (   )  

                                                     
                                                                            (2.24) 

The scheme (2.14 – 2.18) gives rise to a class of 

methods of different orders as follows: 

 

(I) Second order method 

For any choice of arbitrary   and   with 

      (    )   

And(                 )   (
   

   
  

   

    
         ) 

     (                  )   (
  

   
  
    

   
         )   

Then the local truncation errors for (     )  

(
 

   
  

  

   
  
   

   
) are  
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( )   (  )         
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(2.25) 

 

(II) Fourth order method 

For any choice of arbitrary   with   
     

 
 and 

     (   ) 
 

And 

 

(                 )  

                                           (
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(                  )  

                                          (
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(
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(2.26) 

 

(III) Six order method 

For (     )  (
  

   
 
   

   
 
   

   
)        and  

(                 )= 
 

(
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 (
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Then the local truncation errors are  
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(  )   (   )              

                            

 

                                                                         (2.27) 

 

Remark: 

(i) When   
 

   
   

  

   
 and   

   

   
 then the 

scheme (2.14) is reduced to Usmani method 

based on quartic polynomial spline [2]. 

(ii) When       
     

      
 and   

      

      
 then 

the scheme (2.14) is reduced to Al-Said and 

Noor based on finite difference method [11]. 

(iii) When       
 

  
 and   

  

  
 then the 

scheme (2.14) is reduced to Al-Said and Noor 

based on cubic polynomial spline method [5]. 

               

3. Spline solutions: 

The spline solution of (1.3) with the 

boundary condition (1.4) is based on the linear 

equations given by (2.14 – 2.18) , Let   

(     ⁄
)    (     ⁄

)    (  )   (  )   

     ⁄
     be n-dimensional column vectors, 

then we can write the standard matrix equations in 

the form: 

 ( )       

(  )          (3.1)         

(   )      

We also have       
           (     ⁄

)       

 

                                                                          (3.2) 
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Where 











































1051

5641

14641

14641

1465

1510

0N

  

                                    

                                                                   (3.3) 

The matrix   has the form 






























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

B   

                                   

                                                                (3.4) 

 

For the vector  , we have 

 

   

 

 

   


























































 





 













































niggfAhhA

nigh
h

A

nigggggh

igh
h

A

iggfAhhA

C

J
JnJnn

J
JnJ

iiiii

J
JJ

J
JJ

i

,
4

5
6

1,
4

2

2......,,3,

2,
4

2

1,
4

5
6

5

1 2
1120

4

2

2

2

6

1 2
137

4

2

2

2

2
1

2
1

2
3

2
3

2
5

4

6

1 2
1

4

1

2

1

5

1 2
10010

4

1

2

1











 

                                                   (3.5) 

4. Convergence analysis 

Our main purpose now is to derive a bound 

on ‖ ‖ where ‖     ‖ represents the infinity norm. 

Now we turn back to the error equation (iii) in (3.1) 

and rewrite it in the form 

       (    
   )   

 (    
      )     

     

 

We get  

‖ ‖  
‖  

  ‖  ‖ ‖

    ‖  
  ‖  ‖ ‖  ‖ ‖

         (4.1) 

Provided that    ‖  
  ‖  ‖ ‖  ‖ ‖     

It was shown in [2] that      is nonsigngular and its 

inverse satisfies the inequality 

‖  
  ‖    

 (   )    (   )         

      
  (   )     (4.2) 

Lemma 4.1. The matrix   given by (3.2) is 

nonsingular, provided that ‖ ‖ | ( )|  ̃        (4.3) 

Where  ̃  
 (   )    (   )         

   
 and ‖ ‖ is a 

finite number; the proof of this lemma follows from 

the following statement [14];   if   is a square matrix 

of order n and ‖ ‖     then  (   )   exists and 

‖(   )  ‖  
 

  ‖ ‖
 

As a consequence of lemma 4.1, the discrete 

boundary value problem has a unique solution if 

‖ ‖ | ( )|  ̃   . 

Now from Eqs. (2.25 – 2.27) we investigate the 

following three cases: 

 
 

Case (i): second order convergent method 

We have from Eq (2.25) 

‖ ‖  
    

     
                   | 

( )( )| 

     (4.4) 

And then it follows that: 

‖ ‖  
     ̃    

 

     [   ̃ ‖ ‖ | ( )|]
     

   ̃   (  )      

(4.5) 

Where    
     ̃   

     [   ̃ ‖ ‖ | ( )|]
   

 

 

Case (ii) : fourth order convergent method 

We have from Eq (2.26) 

‖ ‖  
    

       
                   | 

( )( )|                   

 

                                                                              (4.6) 

And then it follows that: 

‖ ‖  
      ̃    

 

       [   ̃ ‖ ‖ | ( )|]
     

   ̃   (  )      

 

                                                                              (4.7) 

Where      
      ̃   

       [   ̃ ‖ ‖ | ( )|]
 

 

Case (iii):  six order convergent method 

We have from Eq (2.27) 

‖ ‖  
    

       
                      | 

(  )( )|         

 

                                                                              (4.8) 

And then it follows that: 

‖ ‖  
      ̃     

 

       [   ̃ ‖ ‖ | ( )|]
     

   ̃   (  )           

(4.9) 

Where      
      ̃    

       [   ̃ ‖ ‖ | ( )|]
 

We summarize the above results in the next theorem  
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Theorem 4.1 

 Let  ( ) be the exact solution of the continuous 

boundary value problem (1.3) with the boundary 

condition (1.4) and let     ⁄
            , 

satisfy the discrete boundary value problem (ii) in            

(3.1). Further, if          ⁄
       ⁄

       ⁄
   then 

(1) ‖ ‖  ̃   (  ), is a second order method which 

is given by (4.5). 

(2) ‖ ‖  ̃   (  ), is a fourth order method which 

is given by (4.7). 

(3) ‖ ‖  ̃   (  ), is a six order method which is 

given by (4.9). 

 

 

5. Numerical examples and discussion: 

We now consider two numerical examples 

to illustrate the comparative performance of our 

method (ii) in (3.1) over other existing methods. All 

calculations are implemented by MATLAB 7   . 

 

Example 1. Consider the boundary value problem 

 

 ( )      (     ( )      ( ))                (5.1) 

 ( )   ( )     ( )( )     ( )( )
      ( )      ( ) 

The analytical solution of (5.1) is 

 ( )  (    )                             (5.2) 

 

The numerical results for our second, fourth and six 

orders are summarized in Table 1. 

 

 

Table1: The observed maximum errors for Example1 
 

  
Six order 

method 

Fourth 

order 

method 

Second 

order 

method 

 
 

 
 

 

 

5.07 – 10 

 

3.77 – 8 

 

5.10- 5 
a
 

 

  
 

 

7.81 – 12 3.18 – 10 2.97 – 5 

 

  
 

 

1.02 – 13 9.11 – 12 9.92 – 6 

a
 5.10 – 5 = 5.10 × 10

-5 

 

 

 

 

 

 

Example 2. Consider the boundary value problem 

 

 ( )      (       )                       (5.3) 

 ( )   ( )     ( )( )     ( )( )      
The analytical solution of (5.3) is 

 ( )   (   )           (5.4) 
 

Table 2: The observed maximum errors for example 2 
 

  
Six order 

method 

Fourth 

order 

method 

Second 

order 

method 

 
 

 
 

 

 

1.48 – 9 

 

1.08 – 7 

 

1.91 – 4 

 

  
 

 

 

2.22 – 11 

 

1.13 – 9 

 

6.98 – 5 

 

  
 

 

 

5.79 – 13 

 

2.92 – 11 

 

2.54 – 5 

 

Table 3: The observed maximum errors for example 2 

 

  

 
 

 
 

 

 
 

  
 

 

 
 

  
 

 

Our six order 

method 
 

1.48 – 9 2.22 – 11 5.79 – 13 

Ramadan et al. 

[13] 
 

1.76 – 8 2.98 – 10 4.75 – 12 

Ramadan et al. 

[12] 
 

1.91 – 7 3.12 – 9 5.02 – 11 

Al-Said and 

Noor [11] 
 

2.86 – 7 2.27 – 8 1.49 – 9 

Zhu [10] 
 

6.90 – 7 1.30 – 8 2.20 – 10 

Usmani and 

Warsi [3] 
 

1.26 – 6 7.87 – 8 4.91 – 9 

Al-Said et al. 

[5] 
 

5.69 – 4 1.47 – 4 3.71 – 5 

Usmani [2] 
 

4.24 – 4 1.08 – 4 2.70 – 5 

Usmani and 

Warsi [3] 
 

8.67 – 4 2.16 – 4 5.40 – 5 

Al-Said and 

Noor [4] 

1.62 – 3 6.39 – 4 5.88 – 5 

            The numerical results for our six, fourth and 

second ordered methods are summarized in Tables   

1-3 and compared with other existing methods. The 

results in Table 3 clearly show superiority over the 
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existing methods and also confirm that on halving the 

step size   , the ‖ ‖ is approximately reduced by a 

factor of  
 

  
  where   is the order of the numerical 

method.The proposed quartic nonpolynomial spline 

method generalizes other existing methods through 

arbitrary choices of           where we get six, 

fourth and second ordered methods. 

 

6. Conclusion: 

Three new methods are presented for 

solving fourth order two point boundary value 

problem using quartic nonpolynomial spline. These 

methods are shown to be optimal second, fourth and 

six ordered methods which are better than other 

existing methods [2-5, 10-13]. Introduction of the 

parameter   in the trigonometric part of the 

nonpolynomial spline function of the present 

methods improves the accuracy of the schemes 

which is evident from the numerical results given in 

tables 1-3, and these results show that the proposed 

methods maintain a very remarkable high accuracy 

which make them are very encouraging for dealing 

with the solution of two point boundary value 

problems. 
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