Data Networks' Design and Optimization through MPLS VPNs using BGP

Mohammad Junaid Arshad¹, Tauqir Ahmad², Amjad Farooq³

^{1, 2, 3} Department of Computer Science & Engineering, University of Engineering and Technology Lahore, Pakistan junaidarshad@uet.edu.pk

Abstract: The key strong points of the Internet have been its vast scalability and flexibility to provide accommodation to the variety of applications. In this context, MPLS (Multi Protocol Label Switching) is the newest technology being employed today's in the Internet core, which is continuously growing to meet the increasing demands of bandwidth and connectivity. In this research work, we provide a survey of MPLS, BGP (Border Gateway Protocol) and both layer-2 and layer-3 VPNs (Virtual Private Networks). We address the issues (such as speed, scalability and security) of traditional IP-based VPNs. Since layer-2 VPNs are efficient but not so intelligent and scalable, while layer-3 VPNs are intelligent and scalable but not so efficient. Thus, we propose a new design scheme for MPLS/BGP-VPNs in such a way that the features of layer-3 as scalability and security. The proposed design of optimized data networks through MPLS/BGP-VPNs is implemented in Dynagen simulator for the better understanding the system. This research work will be helpful for adding new security features in core networks in future and provides a guideline for network engineers towards the world of network security. [Journal of American Science. 2010;6(12):88-95]. (ISSN: 1545-1003).

Keywords: BGP-Border Gateway Protocol, MPLS-Multi Protocol Label Switching, QoS-Quality of Service and VPN-Virtual Private Network

1. Introduction

The purpose of this work is to analyze and identify the features and advanced requirements of core networks (i.e., MPLS/BGP-VPNs (Previdi, 2000)). MPLS/BGP-VPNs aim to provide secure, reliable and consistent communication. Some of the aspect of the world most popular core networks design is miserably handled and due to which they are being compromised time after time.

MPLS aim to provide enhanced Traffic Engineering (TE) (Awduche, 1999) mechanisms for IP-based networks to facilitate the ISPs for capably monitoring, assessing and fulfilling a variety of service provisions all through their networks backbone. Like L3-VPN PE-based (Rosen et al., 1999) technology, MPLS/BGP-VPN employs BGP for VPN routes advertisement and utilizes MPLS to send VPN packets over the provider backbone networks. MPLS/BGP-VPN has flexible networking modes, good extensibility and convenient support for MPLS QoS (Lee et al., 2003) and MPLS TE (Swallow, 1999), that's why it is extensively employed.

When building a VPN (Ferguson et al., 1998) based on p-to-p overlays, connection-oriented (like ATM or frame relay, tunneling-on-IP techniques) scalability is a main problem, while VPNs based on MPLS are used to address scalability issues (as they are purely designed on the basis of connection-less,

peer-based architecture). Since, a customer-site in a peer-based architecture requires the peer simply within a single provider-edge router in place of the entire customer-edge/provider-edge routers which are associated with the VPN that results in the reduction of large number of VCs. In addition, MPLS-based VPNs naturally use connectionless approach. The Internet is to be obliged its worth to its fundamental approach which is based on connection-less, packetswitching network topology (i.e., TCP/IP). Thus, it does not require any prior act to make association possible in a flexible and useful way among the hosts. In an IP-based connection-less setup the traditional VPNs require initial connection establishment process over p-to-p, connection-oriented overlay networks. When it utilizes under a connection-less environment it still can not get benefit from the connection simplification and service expandability offered by connection-less network. In contrast, if a connectionless VPN is built, to guarantee the network privacy the use of tunnels and encryptions are not required, hence it eliminates the considerable complications.

In this work, the basic goal is also to highlight drawbacks in traditional IP-based VPNs (Callon, 2002) and show how MPLS/BGP VPNs (Alawieh et al., 2008) are used to handle these issues. The conventional IP VPNs in core networks have the following issues:

88

• Quality of Service (QoS) Problem

IP-based applications do not have any straight mechanism to state QoS, as many users and clients are uneasy with independently desirable QoS, because it requires extra charging on behalf of additional QoS category adopted. The regulations for policy managing to create QoS are achievable which are related to customers, servers and associations; however, the dilemma is the volume of the organization tasks. A better policy in simple is to give the matter of OoS headed for the whole VPN (e.g., the working of an ATM/frame-relay network etc). But it is hard to do this through IP-based services, for the reason that the OSPF protocols utilized for constructing routing table cannot share QoS statistics, in other words information concerning resource utilization of the specified trunks or nodes.

• Scalability Problem

A very large number of associations can be easily supported by a huge VPN network, and lots of millions can be easily supported by the Internet. So it requires a huge number of VCs which generally makes the process so weak. When every service-linktoward-partner relation is evaluated onto a VC, then the networks having C links of service will generate C(C-1)/2 VCs.

• Security Problem

Conventional IP-based Virtual Private Networks (VPNs) have been broadly employed all over the world for remote connectivity; however they are usually vulnerable by multifarious client software and complexities in handling the health position of remote clients. A lot of worms and viruses broadcast through these abandoned VPN endpoints causing destruction of the internal security of the networks. Thus with the Internet, one of the most important issue is the VPN's security, particularly for those which depend upon the publicly designed Internet used for transportation. The IP-based network (unlike ATM/frame relay or private-line services) doesn't allocate the constant logical/physical pipes to the special sites, applications or protocols. To address the Internet security, IPSec (Davis, 2001) is the latest IETF (Internet Engineering Taskforce) solution that was initially proposed for the IPv6 (Deering et al., 1998) protocol; however, it has been used in the current's IPv4 networks. Since, it describes a framework for giving a powerful security in support of network transport over the IP-based environments.

1.1 Contribution and Scope of the Proposed System

To meet high-level demands of security and efficiency in the backbone networks, MPLS aim to

offer advanced IP network TE mechanisms these will facilitate the ISPs for easily evaluating, examining and meeting a variety of their service necessities a-cross the backbone. By the use of intelligent routers and speedy switches MPLS provides a technique for mapping IP segments with connection-based transport (such as frame relay or ATM) more efficiently. This supports the QoS definition inside the header of MPLS (Rosen et al., 2001: Rosen et al., 1999) as well. Using routing statistics of layer 3, MPLS distributes resources and builds forwarding tables for routing, while it utilizes layer 2 for switching or forwarding the information through the right link or route. Each IP packet includes a label of MPLS which is subsequently linked with a specific entry inside the forward routing table that identifies the upcoming hop. The network-flows with similar requirements for level of service and routing decisions, commonly keep the same pathway/route across the network resulting in a consistency of service-level for network-flows which having higher priority. MPLS is required to deploy the Label Switching Routers (Das et al., 2003) in the networks that will affect the momentum whereupon MPLS based solution is deployed. At the moment, MPLS is at target in favor of deployment in the backbones first.

We have implemented the MPLS/BGP VPNs in such a way that the features of layer 3 as scalability and intelligence are merged with the efficiency of layer 2 to cope up with almost all modern demands of speed, scalability and security. The proposed MPLS/BGP VPN design is implemented in Dynagen simulator (Dynagen, 2007) for easily understanding the system. Dynagen simulator is easily available and supports variety of network designs. In the proposed system five routers are used in which two routers belong to customer network and the rest belong to MPLS core network. BGP is used for route MPLS Cloud

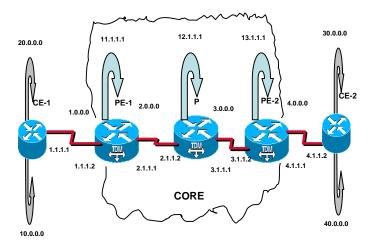


Figure 1. Network Topology

advertisement. After creating MPLS core testing is performed on customer routers which meet stated requirements.

2. MPLS/BGP VPNS Implementation 2.1 Network Topology

The proposed system MPLS/BGP VPN in a network core is implemented using Dynagen simulator in which the network topology consists of five routers that are as follows (also shown in Figure 1):

- CE-1 Customer Edge router at the one end of the network.
- CE-2 Customer Edge router at the other edge of the network.

Table 1.	Proposed	Network	Design	Configuration
1 4010 1.	110pobea	1.000011	Design	configuration

Customer Edge	Customer Edge	Provider Edge	Provider Edge	Provider Edge
(CE-1)	(CE-2)	(Core Router P)	(PE-1)	(PE-2)
config t	config t	config t	config t	config t
host CE-1	host CE-2	host P-1	host PE-1	host PE-2
no ip routing	no ip routing	no ip routing	no ip routing	no ip routing
ip routing	ip routing	ip routing	ip routing	ip routing
no ip domain-loo	no ip domain-loo	no ip domain-loo	no ip domain-loo	no ip domain-loo
no ena sec	no ena sec	no ena sec	no ena sec	no ena sec
enable pass cisco	enable pass cisco	ena pass cisco	ena pass cisco	ena pass cisco
int s1/0	int s1/1	ip cef	mpls label protocol ldp	mpls label protocol
ip address 1.1.1.1 255.0.0.0	ip address 4.1.1.2 255.0.0.0	mpls label protocol ldp	mpls ldp router-id loop 0 force	ldp mpls ldp router-id
no shutdown	no shutdown	mpls ldp router-id	ip vrf vpn1	loop 0 force
k	k	loop 0 force	rd 1:1	ip vrf vpn1
no en	no en	int s1/0	route-target 1:1	rd 1:1
clock rate 128000	clock rate 128000	mpls ip	int s1/0	route-target 1:1
int loop 0	int loop 0	ip address 3.1.1.1	ip address 1.1.1.2	int s1/0
	ip address 30.1.1.1	255.0.0.0	255.0.0.0	mpls ip
255.0.0.0	255.0.0.0	no sh	no shutdown	ip address 3.1.1.2
int loop 1	int loop 1	k	k	255.0.0.0
ip address 20.1.1.1	ip address 40.1.1.1	no en	no en	no sh
255.0.0.0	255.0.0.0	clock rate 128000	clock rate 128000	k
router rip	router rip	int s1/1	ip vrf forwarding vpn1	no en
ver 2	ver 2	mpls ip	ip address 1.1.1.2	clock rate 128000
no auto	no auto	ip address 2.1.1.2	255.0.0.0	int s1/1
network 1.0.0.0	network 4.0.0.0	255.0.0.0	int s1/1	ip address 4.1.1.1
network 10.0.0.0	network 30.0.0.0	no shutdown	mpls ip	255.0.0.0
network 20.0.0.0	network 40.0.0.0	k	ip address 2.1.1.1	no shutdown
line v 0 4	line v 0 4	no en	255.0.0.0	k
no login	no login	clock rate 128000	no sh	no en
privi 1 15	privi 115	int loop 0	k	clock rate 128000
line c 0	line c 0	ip address 12.1.1.1	no en	ip vrf forwarding
no login	no login	255.0.0.0	clock rate 128000	vpn1
privi 1 15	privi 1 15	router rip	int loop 0	ip address 4.1.1.1
		ver 2	ip address 11.1.1.1	255.0.0.0 int loop 0
		no auto	255.0.0.0	ip address 13.1.1.1
		network 2.0.0.0	router rip	255.0.0.0
		network 3.0.0.0	ver 2	router rip
		network 12.0.0.0	no auto	ver 2
		line v 0 4	network 2.0.0.0	no auto
		no login	network 11.0.0.0	network 3.0.0.0
		privi 115	address-family ipv4 vrf	network 13.0.0.0
			vpnl	10.0.0.V

line c 0	ver 2	address-family ipv4
		vrf vpn1
no login	no auto	ver 2
privi 115	network 1.0.0.0	
	redistribute bgp 100	no auto
	metric transparent	network 4.0.0.0
	router bgp 100	redistribute bgp 100
	no auto-summary	metric transparent
	no synchronization	router bgp 100
	neighbor 13.1.1.1	no auto-summary
	remote-as 100	no synchronization
	address-family vpnv4	neighbor 11.1.1.1
	neighbor 13.1.1.1	remote-as 100
	activate	address-family vpnv4
	neighbor 13.1.1.1 send-	neighbor 11.1.1.1
	community both	activate
	neighbor 13.1.1.1 next-	neighbor 11.1.1.1
	hop-self	send-community both
	address-family ipv4 vrf	
	vpn1	next-hop-self
	no auto-summary	address-family ipv4
	no synchronization	vrf vpn1
	redist rip	no auto-summary
	line v 0 4	no synchronization
	no login	redist rip
	privi 115	line v 0 4
	line c 0	no login
		privi 115
	privi 1 15	line c 0
	PHV1115	no login
		privi 1 15
		privitits

- PE-1 Provider Edge router by the side of one end of the MPLS cloud. Interface of this router with IP address 2.1.1.1 is a part of MPLS/BGP VPN while the interface with IP address 1.1.1.2 does not belong to VPN.
- PE-2 Provider Edge router by the side of other end of the MPLS cloud. Interface of this router with IP address 3.1.1.2 is a part of MPLS/BGP VPN while the interface with IP address 4.1.1.1 does not belong to VPN.
- P is a Core router.

2.2 Network Configuration

Following configurations are made on each router in the proposed network design as given in Table 1:

2.3 Simulation Results

2.3.1 Operation 1

The following operation (Figure 2) is to perform that the designed MPLS/BGP VPN has been established and showing the VPNs basic feature of security against the unauthorized access. An attempt to access interface 1.1.1.2 of router PE-1 from CE-1 gets 100 percent success while for the 2.1.1.1 is totally denied. Similarly, all attempts to access router P and 3.1.1.2 interface of PE-2 from CE-1 are refused. But all attempts to access 4.1.1.2 interface of router PE-2 and router CE-2 are again perfectly successful. So, it shows that MPLS BGP VPN exists consisting of three routers.

2.3.1.1 Results

The interfaces of the routers lying within the VPN are inaccessible by any external host but traffic destined through these is communicated properly which is an ultimately key security feature of VPN. As above configuration is of MPLS/BGP VPN so it becomes obvious that MPLS/BGP VPN is a dedicatedly secure channel for traffic transmission.

2.3.2. Operation 2

The following operation shows how labels are assigned to the routes in MPLS based networks (i.e., edge and core routers) and what is the role of these routers in traffic forwarding treat the routes.

2.3.2.1 Router PE-1

Tagging and Label Distribution

The following output (Figure 3) shows the labels being received and forwarded by the provider's edge router PE-1.

MPLS Forwarding & BGP Routing Table

🚚 Telnet localhost

The output displayed in Figure 4 shows the basic operation of provider edge router PE-1. It pops

up the tags from all of routes received form P while it tags up the routes properly coming from CE-1 and directly connected to it. It shows the detail of valid and best routs along with their next hops. The presence of VPN named as VPN1 expresses the establishment of Tunnel.

2.3.2.2 Router P

MPLS Forwarding Table

The output displayed in Figure 5 shows the basic operation of provider core, it pops up the tags from all of routes received form PE-1 and PE-2.

Tagging and Label Distribution

Figure 6 and Figure 7 show the labels being received and forwarded by the provider core router P.

2.3.2.3 Router PE-2

Tagging and Label Distribution

Figure 8 shows the labels being received and forwarded by the provider edge router PE-2.

MPLS Forwarding & BGP Routing

The output displayed in Figure 9 shows the basic operation of provider edge router PE-2, it pops up the tags from all of routes received form P while it tags up the routes properly coming from CE-2 and directly connected to it. It shows the detail of valid and best routes along with their next hops. The presence of VPN named as VPN1 expresses the establishment of tunnel.

```
1#ping 1.1.1.2
        ape sequence to abort.
5, 100-byte ICMP Echos to 1.1.1.2, timeout is 2 seconds:
               is 100 percent (5/5), round-trip min/avg/max
                                                                             16/48/92 ms
        ape sequence to abort.
5, 100-byte ICMP Echos
                                      to 2.1.1.1, timeout is 2 seconds:
                     percent <0/5>
        rate is
g 2.1.1
                  .0
            sequence to abort.
100-byte ICMP Echos
                                      to 2.1.1.2, timeout is 2 seconds:
                     percent (0/5)
               is
1
  cess r
1#ning
            sequence to abort.
100-byte ICMP Echos to 3.1.1.1, timeout
ype escap
ending 5.
                     percent <0/5
                  02
    escape sequence to abort.
.ng 5, 100-byte ICMP Echos
                                      to 3.1.1.2. timeout
                  0 percent <0/5
     ss rate is
            sequence to abort.
100-byte ICMP Echos
                                      to 4.1.1.1, timeout is 2 seconds:
                  100 percent
                                   (5/5), round-trip min/avg/max
                                                                             60/90/128 ms
               is
1
        cape sequence to abort.
5, 100-byte ICMP Echos to 4.1.1.2, timeout is 2 seconds:
  ::
cess rate is 100 percent (5/5), round-trip min/avg/max = 96/125/160 ms
1#
```

Figure 2(a). MPLS BGP VPN Test

🛃 Teinet localhost
CE-2#ping 1.1.1.1
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds: !!!!!
Šuččess rate is 100 percent (5/5), round-trip min/avg/max = 84/134/168 ms CE-2#ping 1.1.1.2
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 1.1.1.2, timeout is 2 seconds: !!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 72/89/112 ms CE-2#ping 2.1.1.1
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2.1.1.1, timeout is 2 seconds:
Success rate is 0 percent <0/5> CE-2#ping 2.1.1.2
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2.1.1.2, timeout is 2 seconds:
Success rate is 0 percent <0/5> CE-2#ping 3.1.1.1
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 3.1.1.1, timeout is 2 seconds:
Success rate is 0 percent (0/5) CE-2#ping 3.1.1.2
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 3.1.1.2, timeout is 2 seconds:
Success rate is 0 percent (0/5) CE-2#ping 4.1.1.1
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 4.1.1.1, timeout is 2 seconds: !!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 48/64/96 ms CE-2#ping 4.1.1.2
Type escape sequence to abort.
$\Gamma' = \Delta(1)$ MDL (1) D (1) MDL (1)

Figure 2(b). MPLS BGP VPN Test

🚚 Telnet localhost				
PE-1#show mpls ip bind	ding			
2.0.0.0/8 in label:	imp-null			
out label:		lsr: 12.1.1.1:	. 0	
3.0.0.0/8	Tub ugit	ISI - ISIIII.		
in label:	16			
out label:	imp-null	lsr: 12.1.1.1:	:0 inuse	
5.0.0.0/8 in label:	imp-null			
	Imp-null			
in label:	imp-null			
out label:	17	lsr: 12.1.1.1:	:Ø	
12.0.0.0/8				
in label: out label:	17	lsr: 12.1.1.1:	:0 inuse	
13.0.0.0/8	Tub-uarr	18F- 12-1-1-1-	o muse	
in label:	18			
	16	lsr: 12.1.1.1:	:0 inuse	
PE-1#show mpls ldp bi				
tib entry: 2.0.0.0/3 local binding				
		.1.1.1:0, tag:	imp-pull	
tib entry: 3.0.0/	8. rev 8		imp nair	
local binding	: tag: 16			
		.1.1.1:0, tag:	imp-null	
tib entry: 5.0.0/2 local binding				
tib entry: 11.0.0.0		ք–ուլլ		
local binding		v-null		
remote binding	g: tsr: 12	.1.1.1:0, tag:	17	
tib entry: 12.0.0.0				
local binding		.1.1.1:0, tag:	imm_n.11	
tib entry: $13.0.0.0$			Tub-uarr	
local binding				
remote binding	g: tsr: 12	.1.1.1:0, tag:	16	

Figure 3. MPLS and LDP bindings at PE-1

2.3.3 Results

- The provider edge router PE-1 assigns labels to its directly connected networks and the traffic coming from CE-1 as starting edge router of MPLS cloud and sends it to core route P. The router which receives the outside traffic at the edge of MPLS VPN and forwards it to the core after labeling is called Ingress Router (IR). Similarly, it pops up the tags of traffic coming from core as ending edge router of MPLS cloud and sends it to C-1.
- The edge router which receives tagged traffic from the core and forwards this traffic after untagging is called Egress Router (ER). So PE-1 is ingress for the traffic coming form CE-1 and being forwarded to the core and is egress for the traffic coming from core and being forwarded outside the MPLS cloud.
- The PE-2 (provider edge router) is ingress for the traffic coming from CE-2 while it is egress for the traffic coming from core.
- The core router just switches the tags which causes a huge enhancement in traffic forwarding.

🚚 Teli	net loc	alhost								
		npls for								
Local	Outs	going_	Prefi>		Bytes	tag	Outgoi		lext Ho	o po
tag 16 17 18 19	Pop Pop 16	or ÜC tag tag	3.0.0. 12.0.0 13.0.0	1.0/8	swite) 0 0 3120	hed	interf Se1/1 Se1/1 Se1/1	10	oint2) oint2) oint2)	point
20 21 PE-1#s	Unta Unta	regate agged agged	10.0.0 20.0.0	0/8[U] 0/8[U]	0 0 0		Se1/0 Se1/0		oint2) oint2)	
PE-1#s PE-1#s PE-1#s PE-1#s For ad	how how how how dress	ip b ip bgp a ip bgp a ; family	11 : IPv4							
For ad	dress	s family	= IPv6	Unicast						
BGP ta Status	code	version s: s su r RI	is 13. ppresse B-failu	Unicast local rout d, d damped re, S Stal - EGP, ? -	d, h hi: e	story	1.1.1 , * val	.id, >	best,	i — intern
	work Disti	inguishe	Next	Hop <default f<="" th=""><th>Mer or urf</th><th>tric 1</th><th>LocPrf</th><th>Weight</th><th>Path</th><th></th></default>	Mer or urf	tric 1	LocPrf	Weight	Path	
*> 1.0	.0.0		0.0.0	1.0		- 0		32768		
× 14.0	.0.0		13.1.			ø	100	6		
₩>i ₩> 10.		-	5.1.1			Ø	100	2000		
*> 20	8-8-8	2	1111			111		32768 32768		
* i30.	ត ត ត	2	13111			1	1 99	32,000		
-×>1.			5.1.1	2		11	100	G	1 ?	
* i40.	0.0.0	3	13.1.	1.1		1	100	6	2	
**>i			5.1.1	_2		1	100	5	1 ?	
For ad	dress	s family	: IPo4	Multicast						
For ad	dress	s family	: IPv6	Multicast						

Figure 4. MPLS Forwarding & BGP Routing Table of PE-1

📠 Telr	net localhost				
	mpls forwar Outgoing	ding-table Prefix	Dut t	Outgoing	Nevet Neve
		or Tunnel Id	switched	interface	мехс нор
tag 16 17	Pop tag Pop tag	11.0.0.0/8 13.0.0.0/8	1165 1045	Se1/1 Se1/0	point2point point2point

Figure 5. MPLS Forwarding Table of P

👼 Telnet localhost			
P#show mpls ip bindin 2.0.0.0/8	a		
in label: out label: out label: 3.0.0.0/8	imp-null imp-null 17	lsr: 11.1.1.1:0 lsr: 13.1.1.1:0	
in label: out label: out label: 5.0.0.0/8	imp-null 16 imp-null	lsr: 11.1.1.1:0 lsr: 13.1.1.1:0	
out label: out label: 11.0.0.0/8	imp-null	lsr: 11.1.1.1:0 lsr: 13.1.1.1:0	
in label: out label: out label: 12.0.0.0/8	16 imp-null 16	lsr: 11.1.1.1:0 lsr: 13.1.1.1:0	inuse
in label: out label: out label: 13.0.0.0/8	imp-null 17 18	lsr: 11.1.1.1:0 lsr: 13.1.1.1:0	
in label: out label: out label:	17 imp-null 18	lsr: 13.1.1.1:0 lsr: 11.1.1.1:0	inuse

Figure 6. MPLS labeling on core router P

🚚 Telnet localhost	
P#show mpls ldp binding	
tib entry: 2.0.0.0/8, rev 4	
local binding: tag: imp-null	
remote binding: tsr: 11.1.1.1.0,	
remote binding: tsr: 13.1.1.1:0,	tag: 17
tib entry: 3.0.0.0/8, rev 2	
local binding: tag: imp-null	
remote binding: tsr: 11.1.1.1.0,	
remote binding: tsr: 13.1.1.1:0,	tag: imp-null
tib entry: 5.0.0.0/8, rev 9 remote binding: tsr: 11.1.1.1:0,	
remote binding: tsr: 13.1.1.1.0,	
tib entry: 11.0.0.0/8, rev 8	cag. Tub unit
local binding: tag: 16	
remote binding: $tsr: 11.1.1.1:0$,	tag: imp-pull
remote binding: tsr: 13.1.1.1:0.	
tib entry: 12.0.0.0/8, rev 6	009-10
local binding: tag: imp-null	
remote binding: tsr: 11.1.1.1:0,	tag: 17
remote binding: tsr: 13.1.1.1:0,	
tib entry: 13.0.0.078, rev 11	
local binding: tag: 17	
remote binding: tsr: 13.1.1.1:0,	
remote binding: tsr: 11.1.1.1:0,	tag: 18

Figure 7. LDP binding on Core router P

🗾 Telnet localhost				
PE-2#show mpls ip bind	ding			
2.0.0.0/8				
in label:	17		_	
out label:	imp-null	lsr: 12.1.1.1:0	inuse	
3.0.0.0/8 in label:	imp-null			
out label:		lsr: 12.1.1.1:0		
5.0.0.0/8	TUD HOLT	101 - 10111111-0		
in label:	imp-null			
11.0.0.0/8				
	16	1 - 10 1 1 1 0		
out label: 12.0.0.0/8	16	lsr: 12.1.1.1:0	inuse	
	18			
		lsr: 12.1.1.1:0	inuse	
13.0.0.0/8				
	imp-null			
	1?	lsr: 12.1.1.1:0		
PE-2#show mpls ldp bin tib entry: 2.0.0.0/8	nding			
local binding				
remote binding	a: tsr: 12	.1.1.1:0, tag: in	mp-null	
tib entry: 3.0.0.0/8	8, rev 4			
local binding	tag: im	p-null		
		.1.1.1:0, tag: i	mp-null	
tib entry: 5.0.0.0/8 local binding				
tib entry: 11.0.0.0		p-nutt		
local binding				
		.1.1.1:0, tag: 10	6	
tib entry: 12.0.0.0/				
local binding				
		.1.1.1:0, tag: i	mp-null	
tib entry: 13.0.0.0 local binding:		n-nu11		
remote binding	q: tsr: 12	1.1.1.0, tag: 1	7	

Figure 8. MPLS & LDP bindings at PE-2

🗾 Telne	t localhost				
PE-2#sho	ow mpls foru	varding-table			
Local (Outgoing	Prefix	Bytes tag		Next Hop
tag 1	tag or UC	or Tunnel Id 11.0.0.0/8	switched	interface	
16 :	16	11.0.0.0/8	Ø	Se1/0	point2point
17 1	Pop tag	2.0.0.0/8	5	Se1/0	point2point
18 1	Pop tag	12.0.0.028	0	Se1/0	point2point
12 (Hggregate	4.0.0.0/8101	00	0 4 44	
20 l 21 l	Untaggea	12.0.0.0/8 4.0.0.0/8[U] 30.0.0.0/8[U] 40.0.0.0/8[U]	Ø	Se1/1 Se1/1	point2point point2point
PE−2#sh	uncayyeu	40.0.0.0/0101		SELVI	μοτικεμοτικ
PE-24sh	ou in				
	ow ip bg				
PE-2#sho	ow ip byp al	L			
PE-2#sho	ow ip bgp al	Ll			
For addi	ress family:	: IPv4 Unicast			
For add	ress family:	: IPv6 Unicast			
For add	ress familu:	: VPNv4 Unicast			
		is 13, local route:	r ID is 13.	1.1.1	
	codes: s suj	opressed, d damped	, h history		> best, i - interr
		B-failure, S Stale			
Origin d	codes: i — l	(GP, e - EGP, ? -	incomplete		
Netwo	owk	Next Hop	Metnic	LocPrf Weig	ht Path
		1:1 (default fo:		Looring Hory	
	0.0		- и	100	0 ?
*>i		5.1.1.1	Ø	100	Ø?
*> 4.0.0		0.0.0.0	0		68 ?
* i10.0.	.0.0	11.1.1.1	1	100	0?
*>i		5.1.1.1	1	100	0 ?
* 120.0.	-0-0	11,1,1,1	1	100	0 ?
*>i		5-1-1-1	1	100	0 ?
*> 30.0. *> 40.0.		4.1.1.2 4.1.1.2	1		68 ? 68 ?
~/ 40.0.	- 8 - 8	4-1-1-2	T	327	bo :
For add	ress family:	: IPv4 Multicast			
For add	ress family:	: IPv6 Multicast			

Figure 9. MPLS Forwarding & BGP Routing Table of PE-2

3. Conclusions and Future Work

In this research work firstly, we have comprehensively presented an overview of MPLS, BGP and, both layer 2 and layer 3 VPNs. In particular, IP VPNs issues such as speed, scalability and security are discussed in detail. Secondly, we have proposed a new design scheme for MPLS/BGP-VPNs by merging the features of layer-3 (such as scalability and intelligence) with the features of layer-2 (such as efficiency and simplicity), to deal with the today's evolving demands of network speed, quality of service, scalability and security.

We have discussed in detail the challenges when these two architectures will be merged to provide another infrastructure and we have also provided the solution to some of these challenges to make this new concept worthy and an asset to the current research world. We have presented a network simulation architecture that helps us to assess the security constraints for MPLS/BGP-VPNs. Further this research can be enhanced to traffic engineering (TE), end-to-end performance, security and path management. Traffic engineering (TE) includes schemes and methods that are applied to force routed traffic to pass through the network on a path, except one which is selected on the basis of standard routing. This system will be helpful for adding new security features in core networks in future and provides a guideline for network engineers towards the world of network security.

In our future work, we will discuss the various issues regarding the implementation of MPLS/BGP-VPNs in multihomed (Junaid and Saleem, 2010; Junaid & Saleem, 2008) environments.

Acknowledgments:

This work was supported by the Directorate of Research Extension and Advisory Services, University of Engineering and Technology (UET), Lahore-Pakistan.

Corresponding Author:

Mohammad Junaid Arshad, PhD Department of Computer Science & Engineering, University of Engineering and Technology, Lahore-Pakistan-54890. Email: junaidarshad@uet.edu.pk

References

- 1. Previdi, S. Introduction to MPLS-BGP-VPN, Proceeding of MPLS Forum 2000, Cisco, April, 2000.
- 2. Awduche, D.O. MPLS and Traffic Engineering in IP Networks, IEEE Communication Magazine, Volume 37, No. 12, pp. 42-47, New Jersey, USA., December, 1999.
- 3. Rosen, E., and Rekhter, Y. BGP/MPLS VPNs, RFC 2547, IETF (draft-rosen-rfc2547bis-03.txt), March, 1999.
- Lee, H., Hwang, J., Kang, B., and Jun, K. End-To-End QoS Architecture for VPNs: MPLS VPN Deployment in a backbone Network, Proceedings of IEEE International Workshop on Parallel Processing, Volume 5, No. 1, pp. 479-483, Toronto, Canada, August, 2003.
- Swallow, G. MPLS Advantages for Traffic Engineering, IEEE Communication Magazine, Volume 37, No. 12, pp. 54-57, New Jersey, USA. December, 1999.
- 6. Ferguson, P., and Huston, G. What is VPN, The Internet Protocol Journal, Volume 1, No. 2, San Jose, USA., September, 1998,
- 7. Callon, R. A framework for layer 3 provider provisioned virtual private networks, IETF (draft-ietf-ppvpn-frame-work-06.txt), October, 2002.

- Alawieh, B., Ahmed, R.E., and Mouftah, HT. Security impacts on establishing MPLS/BGP VPNs, Journal of Security and Communication Networks, Volume 1, No. 4, pp. 269-275, John Wiley & Sons, New Jersey, USA., July, 2008.
- 9. Davis, C. IPsec: Securing VPNs, McGraw-Hill, Berkley, pp. 1-432, California, USA. April, 2001.
- Deering, S., and Hinden, R. Internet Protocol Version 6 (IPv6) Specification, RFC 2460, December, 1998.
- Rosen, E., Viswanathan, A., and Callon, R. Multiprotocol Label Switching Architecture", IETF RFC 3031, January, 2001.
- 12. Rosen, E., and Rekhter, Y. BGP/MPLS VPNs, RFC 2547, March, 1999.
- Das, S.K., Venkataram, P., and Biswas, J. MPLS-BGP based LSP Setup Techniques, Proceedings of the 28th Annual IEEE Conference on Local Computer Network (LNC), Volume 17, No. 1, pp. 279-280, Singapore, July, 2003.
- 14. Dynagen Simulator, http://dynagen.org/ [online, April, 2007].
- Junaid, M., and Saleem, M. A Simulation-Based Study of FAST TCP Compared to SCTP: Towards Multihoming Implementation Using FAST TCP. Journal of Communications and Networks (JCN), VOL. 12, NO. 3, pp. 275-284, June 2010.
- 16. Arshad, MJ., and Saleem, M. Issues of Multihoming Implementation Using FAST TCP: A Simulation Based Analysis, IJCSNS International Journal of Computer Science and Network Security, VOL. 8, No. 9, pp.104-114, August 2008.

6/28/2010