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Abstract: The biodynamic response behaviors of seated human body subject to whole-body vibration have been 

widely investigated. The biodynamic response characteristics of seated human subjects have been extensively 

reported in terms of apparent mass and driving-point mechanical impedance while seat-to-head vibration 

transmissibility has been widely used to characterize response behavior of the seated subjects exposed to vibration. 

These functions (apparent mass, driving-point mechanical impedance) describe “to-the-body” force–motion 

relationship at the human–seat interface, while the transmissibility function describes “through-the-body” vibration 

transmission properties. The current study proposed a  4-DOF analytic biomechanical model of the human body in a 

sitting posture without backrest in vertical vibration direction to investigate the biodynamic responses  of different 

masses and stiffness. Following the analytical approach, numerical technique developed in the present paper to 

facilitate and rapid the analysis. The numerical analysis used here applies one of the artificial intelligence technique 

to simulate and predict the response behaviors of  seated human body for different masses and stiffness without the 

need to go through the analytic solution every time. The Artificial Neural Network (ANN) technique is introduced in 

the current study to predict the response behaviors for different masses and stiffness rather than those used in the 

analytic solution. The results of the numerical study showed that the ANN method with less effort was very 

efficiently capable of simulating and predicting the response behaviors of seated human body subject to whole-body 

vibration. [Journal of American Science. 2010;6(11):228-239]. (ISSN: 1545-1003).  

 

Keywords: Biodynamic response, Analytic seated human body model, Numerical simulation model, Artificial   
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1. Introduction 

The biodynamic responses of seated human 

occupant exposed to vibration have been widely 

characterized to define frequency-weightings for 

assessment of exposure, to identify human sensitivity 

and perception of vibration, and to develop seated 

body models [1]. The biodynamic response of the 

human body exposed to vibration have been 

invariably characterized through measurement of 

force motion relationship at the point of entry of 

vibration ''To-the-body response function'', expressed 

as the driving-point mechanical impedance (DPMI) 

or the apparent mass (APMS) and transmission of 

vibration to different body segments ''Through-the-

body response function'', generally termed as seat-to-

head transmissibility (STHT) for the seated occupant. 

Considering that the human body is a complex 

biological system, the ''To-the-body'' response 

function is conveniently characterized through non–

invasive measurements at the driving point alone.  

The vast majority of the reported studies on 

biodynamic response to whole-body vibration have 

considered vibration along the vertical axis alone. In 

many of the early studied, such as those conducted by 

Coermann [2], Vogt [3], and Suggs [4], the numbers 

of subjects was usually relatively small, and only 

sinusoidal excitation was used, not generally 

representative of the type of excitation and levels of 

vibration usually encountered in practice. In many of 

these studies, the feet of the subjects were either not 

supported or supported but not vibrated, a condition 

not common in most driving situations. Fairley and 

Griffin [5], reported the vertical apparent mass of 60 

seated subjects including men, women and children, 

which revealed a large scatter of data presumably 

owing to large variations in the subject masses.  

Boileau et al. [6] investigated the relationships 

between driving point mechanical impedance and 

seat-to-head transmissibility functions based upon 11 

reported one dimensional lumped parameter models.  

The majority of the models showed 

differences in frequencies corresponding to peak 

magnitudes of the two functions, which were 

expressed as resonant frequencies. Toward [7], 

summarized that a support of the back caused higher 

resonance frequency and slightly lower peak 

magnitude of the APMS response for subjects sitting 

on a horizontal plane. Wang et al. [8], study the 
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vertical apparent mass and seat-to-head 

transmissibility response characteristics of seated 

subjects are derived through measurements of total 

biodynamic force at the seat pan, and motions of the 

seat pan and head along the applied input 

acceleration direction, using 12 male subjects. The 

data were acquired under three different back support 

conditions and two different hands positions 

representative of drivers and passengers-like 

postures. Steina et al.[9], analyzed apparent mass 

measurements in the y- direction with a group of 13 

male test subjects exposed to three excitation 

intensities.  

In early studies, various biodynamic models 

have been developed to depict human motion from 

single-DOF to multi-DOF models. These models can 

be divided as distributed (finite element) models, 

lumped parameter models and multi-body models. 

The distributed model treats the spine as a layered 

structure of rigid elements, representing the vertebral 

bodies, and deformable elements representing the 

intervertebral discs by the finite element method. 

Multi-body human models are made of several rigid 

bodies interconnected by pin (two-dimensional) or 

ball and socket (three-dimensional) joints, and can be 

further separated into kinetic and kinematic models. 

It is clear that the lumped-parameter model is 

probably one of the most popular analytical methods 

in the study of biodynamic responses of seated 

human subjects, though it is limited to one-

directional analysis. However, vertical vibration 

exposure of the driver is our main concern. 

Therefore, this paper carries out a thorough survey of 

literature on the lumped- parameter models for seated 

human subjects exposed to vertical vibration.  

The lumped parameter models consider the 

human body as several rigid bodies and spring-

dampers. This type of model is simple to analyze and 

easy to validate with experiments. However, the 

disadvantage is the limitation to one-directional 

analysis. Coermann [2], measured the driving-point 

impedance of the human body and suggested 1-DOF 

model. Suggs et al. [4], developed a 2-DOF human 

body. It was modeled as a damped spring-mass 

system to build a standardized vehicle seat testing 

procedure. A 3-DOF analytical model for a tractor 

seat suspension system is presented by Tewari et al. 

[10]. It was observed that the model could be 

employed as a tool in selection of optimal suspension 

parameters for any other type of vehicles. Boileau et 

al. [11] used an optimization procedure to establish a 

4-DOF human model based on test data.  

It is quite clear from the literature mentioned 

previously the amount of effort (experimentally or 

analytically) required to accurately investigate and 

understand the biodynamic response behaviors of 

seated human body subject to whole-body vibration 

of different types and magnitudes. This fact urged the 

need for utilizing new technology and techniques to 

facilitate this comprehensive effort and at the same 

time preserving high accuracy. 

Artificial intelligence has proven its 

capability in simulating and predicting the behavior 

of the different physical phenomena in most of the 

engineering fields. Artificial Neural Network (ANN) 

is one of the artificial intelligence techniques that 

have been incorporated in various scientific 

disciplines. Ramanitharan and Li [12] utilized ANN 

with back-propagation algorithm for modeling ocean 

curves that were presented by wave height and 

period. Abdeen [13] developed neural network model 

for predicting flow depths and average flow 

velocities along the channel reach when the 

geometrical properties of the channel cross sections 

were measured or vice versa. Allam [14] used the 

artificial intelligence technique to predict the effect of 

tunnel construction on nearby buildings which is the 

main factor in choosing the tunnel route. Allam, in 

her thesis, predicted the maximum and minimum 

differential settlement necessary precautionary 

measures. Azmathullah et al. [15] presented a study 

for estimating the scour characteristics downstream 

of a ski-jump bucket using Neural Networks (NN). 

Abdeen [16] presented a study for the development 

of ANN models to simulate flow behavior in open 

channel infested by submerged aquatic weeds. 

Mohamed [17] proposed an artificial neural network 

for the selection of optimal lateral load-resisting 

system for multi-story steel frames. Mohamed, in her 

master thesis, proposed the neural network to reduce 

the computing time consumed in the design 

iterations. Abdeen [18] utilized ANN technique for 

the development of various models to simulate the 

impacts of different submerged weeds' densities, 

different flow discharges, and different distributaries 

operation scheduling on the water surface profile in 

an experimental main open channel that supplies 

water to different distributaries. 

 

2. Problem Description 

To investigate the biodynamic response 

behaviors of seated human body subject to whole-

body vibration (sinusoidal wave with amplitude 5 

m/s
2
 ), analytical and numerical techniques will be 

presented in this study. The analytical model and its 

results will be described in detail in the following 

sections. The numerical models presented in this 

study utilized Artificial Neural Network technique 

(ANN) using the data and the results of the analytical 

model to understand the biodynamic response 

behaviors and then can predict the behaviors for 
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different data of the human body without the need to 

go through the analytical solution. 

 

3.  Analytical Model  

3.1  Biomechanical modeling 

The human body in a sitting posture can be 

modeled as a mechanical system that is composed of 

several rigid bodies interconnected by springs and 

dampers. (Boileau and Rakheja [11]. This model as 

shown in Fig. 1 consists of four mass segments 

interconnected by four sets of springs and dampers. 

The four masses represent the following four body 

segments: the head and neck (m1), the chest and 

upper torso (m2), the lower torso (m3), and the thighs 

and pelvis in contact with the seat (m4). The mass due 

to lower legs and the feet is not included in this 

representation, assuming they have negligible 

contributions to the biodynamic response of the 

seated body. The stiffness and damping properties of 

thighs and pelvis are (k4) and (c4), the lower torso are 

(k3) and (c3), upper torsos are (k2) and (c2), and head 

are (k1) and (c1).  

 

The equation of motion of the human body 

can be obtained as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Biomechanical Boileau and Rakheja 4-

DOF model. 

 
The system equations of motion, equation 

(1), for the model can be expressed in matrix form as 

follows:  

 

             (2) 

                                                              

Where  , and  are  mass, 

damping, and stiffness matrices, respectively;  is 

the force vector due to external excitation. 

 

 
 

 
 

 
And, 

 
 

By taking the Fourier transformation of 

equation (2), the following matrix form of equation 

can be obtained: 

 
             (3)                              

 

Where,  are the 

complex Fourier transformation vectors of 
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, respectively. ω is the excitation 

frequency. Vector  contains complex 

displacement responses of n mass segments as a 

function of ω 

( ). 

 Consists of complex excitation forces on 

the mass segments as a function of ω as well. 

 

3.2 Biodynamic response of human body 

The biodynamic response of a seated human 

body exposed to whole-body vibration can be broadly 

categorized into two types. The first category "To-

the-body" force motion interrelation as a function of 

frequency at the human-seat interface, expressed as 

the driving-point mechanical impedance (DPMI) or 

the apparent mass (APMS). The second category 

"Through-the-body" response function, generally 

termed as seat-to-head transmissibility (STHT) for 

the seated occupant. 

The DPMI relates the driving force and 

resulting velocity response at the driving point (the 

seat-buttocks interface), and is given by [1]: 

                                     (4)                       

Where,  is the complex DPMI,   

 and  or (  ) are the driving 

force and response velocity at the driving point, 

respectively.  is the angular frequency in rad/s , and 

j =   is the complex phasor. 

 

Accordingly, DPMI for the model can be 

represented as:  

 

 

              (5)                                                   

In a similar manner, the apparent mass 

response relates the driving force to the resulting 

acceleration response, and is given by [19]: 

 

                                           (6)                                                                      

Where,   is the acceleration response 

at the driving point 

The magnitude of APMS offers a simple 

physical interpretation as it is equal to the static mass 

of the human body supported by the seat at very low 

frequencies, when the human body resembles that of 

a rigid mass. The above two functions are frequently 

used interchangeably, due to their direct relationship 

that given by: 

                                  (7)   

APMS for the model can be represented as: 

                                                                                 (8)                                                                     

The biodynamic response characteristics of 

seated occupants exposed to whole body vibration 

can also be expressed in terms of seat-to-head 

transmissibility (STHT), which is termed as 

"through-the-body" response function. Unlike the 

force-motion relationship at the driving-point, the 

STHT function describes the transmission of 

vibration through the seated body. The STHT 

response function is expressed as: 

                                           (9)                                                                

Where,  is the complex STHT, 

 is the response acceleration measured at 

the head of seated occupant, and  is the 

acceleration response at the driving point. According 

to equation (9) seat-to-head transmissibility for the 

model is: 

                                       (10)                                                   

The above three functions have been widely used to 

characterize the biodynamic responses of the seated 

human subjects exposed to whole body vibration.  

 

4. Analytic Results and Discussions 

On the basis of anthropometric Boileau data 

[19], the proportion of total body weight estimated 

for different body segments is 7.5% for the head and 

neck, 40.2% for the chest and upper torso, 12.2% for 

the lower torso, and 18.2% for the thighs and upper 

legs. For a seated driver with mean body mass, 

maintaining an erect back not supported posture, 78% 

of the weight was found to be supported by the seat. 

The biomechanical parameters of the human model 

(Stiffness, Damping) are listed in Table 1. 

Table 1: The biomechanical parameters of the 

Boileau and Rakheja model. 

Stiffness Coefficient 

(N/m) 

Damping coefficient 

(N.s/m) 

k1  = 310000 c1   = 400 

k2  = 183000 c2  = 4750 

k3  = 162800 c3  = 4585 

k4   = 90000 c4  = 2064 
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4.1 Response behaviors of the human body 

In the following subsections the effect of 

body's mass, stiffness coefficient, and damping 

coefficient on the response behaviors of the human 

body (STHT, DPMI, and APMS) will be investigated 

using the analytical solution presented in the current 

study. 

 

4.1.1 Effect of human body’s mass 
Three different total body masses (65, 75, 

and 85 kg) are used to investigate the effect of mass 

on the response behaviors of human body (STHT, 

DPMI and APMS) as shown in Fig. 2 (a, b, and c) 

respectively. From these figures, one can see that by 

increasing the human body mass, the biodynamic 

response characteristics of seated human body 

(STHT, DPMI, and APMS) are increased. 

 

4.1.2 Effect of stiffness coefficient 

Three different values of pelvic stiffness k4 

(Boileau value (B.V.), B.V. +40%, and B.V. -40%) 

are used to investigate the effect of pelvic stiffness on 

the response behaviors of human body (STHT, DPMI 

and APMS) as shown in Fig. 3 (a, b, and c) 

respectively. From these figures, it is clear that by 

increasing the pelvic stiffness, the biodynamic 

response characteristics of seated human body 

(STHT, DPMI, and APMS) are increased. 
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                          (a)                                                    (b)                                               (c) Figure Figure Figure Figure 2222: : : : Effect of human body’s mass on the biodynamic response behaviors (Analytic Results) ((a)STHT, (b) DPMI and (c) APMS) 
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                                            (a)                                                                 (b)                                                          (c)                                             Figure Figure Figure Figure 3333:::: Effect of stiffness coefficient on the biodynamic response behaviors (Analytic Results)            ((a) STHT, (b) DPMI and (c)  APMS)                 
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4.1.3 Effect of damping coefficient 

Three different values of pelvic damping 

coefficient C4 (Boileau value (B.V.), B.V. +40%, and 

B.V. -40%) are used to investigate the effect of pelvic 

damping coefficient on the response behaviors of 

human body (STHT, DPMI and APMS) as shown in 

Fig. 4 (a, b, and c) respectively. From these figures, it 

is clear that by increasing pelvic damping coefficient, 

the biodynamic response characteristics of seated 

human body (STHT, DPMI, and APMS) are 

decreased. 

 

5. Numerical Model Structure 

Neural networks are models of biological 

neural structures. Abdeen [13] described in a very 

detailed fashion the structure of any neural network. 

Briefly, the starting point for most networks is a 

model neuron as shown in Fig. 5. This neuron is 

connected to multiple inputs and produces a single 

output. Each input is modified by a weighting value 

(w). The neuron will combine these weighted inputs 

with reference to a threshold value and an activation 

function, will determine its output. This behavior 

follows closely the real neurons work of the human’s 

brain. In the network structure, the input layer is 

considered a distributor of the signals from the 

external world while hidden layers are considered to 

be feature detectors of such signals. On the other 

hand, the output layer is considered as a collector of 

the features detected and the producer of the 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5:  Typical picture of a model neuron that 

exists in every neural network 

 

 

5.1 Neural Network Operation 

It is quite important for the reader to 

understand how the neural network operates to 

simulate different physical problems. The output of 

each neuron is a function of its inputs (Xi). In more 

details, the output (Yj) of the j
th

 neuron in any layer is 

described by two sets of equations as follows: 

∑ 







=
ij

w
i

XjU                                        (11) 

And 

( )jtjU
th

FjY +=                                       (12) 

For every neuron, j, in a layer, each of the i 

inputs, Xi, to that layer is multiplied by a previously 

established weight, wij. These are all summed 

together, resulting in the internal value of this 

operation, Uj. This value is then biased by a 
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     (a)                                                       (b)                                                    (c)             Figure Figure Figure Figure 4444::::  Effect of damping coefficient on the biodynamic response behaviors (Analytic Results)  ((a) STHT, (b) DPMI and (c)  APMS)     
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previously established threshold value, tj, and sent 

through an activation function, Fth. This activation 

function can take several forms such as Step, Linear, 

Sigmoid, Hyperbolic, and Gaussian functions. The 

Hyperbolic function, used in this study, is shaped 

exactly as the Sigmoid one with the same 

mathematical representation, as in equation (13), but 

it ranges from – 1 to + 1 rather than from 0 to 1 as in 

the Sigmoid one (Fig. 6) 

 

( ) xe
xf −

+
=

1

1
                                           (13)                                                                

 

The resulting output, Yj, is an input to the 

next layer or it is a response of the neural network if 

it is the last layer. In applying the Neural Network 

technique, in this study, Neuralyst Software, Shin 

[20], was used. 

 
 

Figure 6: The Sigmoid Activation Function 

 

5.2 Neural Network Training  

The next step in neural network procedure is 

the training operation. The main purpose of this 

operation is to tune up the network to what it should 

produce as a response. From the difference between 

the desired response and the actual response, the error 

is determined and a portion of it is back propagated 

through the network. At each neuron in the network, 

the error is used to adjust the weights and the 

threshold value of this neuron. Consequently, the 

error in the network will be less for the same inputs at 

the next iteration. This corrective procedure is 

applied continuously and repetitively for each set of 

inputs and corresponding set of outputs. This 

procedure will decrease the individual or total error 

in the responses to reach a desired tolerance. 

Once the network reduces the total error to 

the satisfactory limit, the training process may stop. 

The error propagation in the network starts at the 

output layer with the following equations: 

 

( )
ijijij XeLRww +=

'
                                   (14)                                                                                             

And, 

( )( )jYjdjYjYje −−= 1                            (15)                                                                                        

 

Where, wij is the corrected weight, w
’
ij is the 

previous weight value, LR is the learning rate, ej is 

the error term, Xi is the i
th

 input value, Yj is the 

output, and dj is the desired output.  

 

6. Numerical Simulation Cases 

To fully investigate numerically the 

biodynamic response behaviors of seated human 

body subject to whole body vibration, several 

simulation cases are considered in this study. These 

simulation cases can be divided into two groups to 

simulate the response behaviors due to changing of 

human body’s mass and stiffness respectively. From 

the analytic investigation, it is clear that the effect of 

damping coefficient is opposite to the effect of 

stiffness coefficient on the response behaviors of the 

human body. So in the numerical analysis, the effect 

of stiffness coefficient will be studied only in 

addition with the effect of human body’s mass. 

 

6.1 Neural Network Design 
To develop a neural network model to 

simulate the effect of mass and stiffness on the 

biodynamic response behaviors of seated human 

body, first input and output variables have to be 

determined. Input variables are chosen according to 

the nature of the problem and the type of data that 

would be collected. To clearly specify the key input 

variables for each neural network simulation group 

and their associated outputs, Tables 2 and 3 are 

designed to summarize all neural network key input 

and output variables for the first and second 

simulation groups respectively. 

It can be noticed from Tables 2 and 3 that 

every simulation group consists of three simulation 

cases (three neural network models) to study the 

effect of mass and stiffness on the seat-to-head 

transmissibility (STHT), driving point mechanical  

impedance (DPMI) and apparent mass (APMS). 

  

Table 2:  Key input and output variables for the first 

neural network simulation group (effect of human 

body’s mass) 

Simulation 

Case 
Input Variables Output 

STHT STHT 

DPMI DPMI 

APMS 

m1 m2 m3 m4 Frequency 

APMS 
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Table 3: Key input and output variables for the 

second neural network simulation group (effect of 

stiffness coefficient) 

 

Simulation 

Case 
Input Variables Output 

STHT STHT 

DPMI DPMI 

APMS 

k4 Frequency 

APMS 

   

Several neural network architectures are 

designed and tested for all simulation cases 

investigated in this study to finally determine the best 

network models to simulate, very accurately, the 

effect of mass and stiffness based on minimizing the 

Root Mean Square Error (RMS-Error). Fig. 7 shows a 

schematic diagram for a generic neural network. The 

training procedure for the developed ANN models, in 

the current study, uses the data from the results of the 

analytical model to let the ANN understands the 

behaviors. After sitting finally the ANN models, 

these models are used to predict the biodynamic 

response behaviors for different masses and stiffness 

rather than those used in the analytic solution.  

 
Table 4 shows the final neural network 

models for the two simulation groups and their 

associate number of neurons. The input and output 

layers represent the key input and output variables 

described previously for each simulation group. 

 

 
 

 

 

   

 

 

 

 

 

 

 

 

 
Figure 7: General schematic diagram of asimple generic neural network 

 

  

Table 4: The developed neural network models for all the simulation cases 

No. of Neurons in each Layer 

Simulation Group No. of Layers 
Input Layer 

First 

Hidden 

Second 

Hidden 

Third 

Hidden 

Output 

Layer 

STHT 5 5 6 4 2 1 

DPMI 
First Group  

(mass) 

APMS 
4 5 6 4 - 1 

STHT 

DPMI 

Second 

Group 

(Stiffness) APMS 

4 2 5 3 - 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input # 1 

Input # 2 

Hidden layer 

3 neurons 

Hidden layer 

3 neurons 

Output # 1 

Output # 2 
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Table 5: Parameters used in the developed neural 

network models 

Simulation Group 
Training 

Epochs 
MPRE 

RMS-

Error 

STHT 45931 1.213 0.0015 

DPMI 7560 2.609 0.0022 

First 

Group  

(mass) 
APMS 7174 3.743 0.0023 

STHT 14012 3.449 0.0014 

DPMI 100185 3.938 0.002 

Second 

Group 

(Stiffness) 
APMS 101463 1.644 0.0012 

 

The parameters of the various network 

models developed in the current study for the 

different simulation models are presented in table 5. 

These parameters can be described with their tasks as 

follows: 

Learning Rate (LR): determines the magnitude of 

the correction term applied to adjust each neuron’s 

weights during training process  = 1 in the current 

study.  

Momentum (M): determines the “life time” of a 

correction term as the training process takes place = 

0.9 in the current study. 

Training Tolerance (TRT): defines the percentage 

error allowed in comparing the neural network 

output to the target value to be scored as “Right” 

during the training process = 0.001 in the current 

study. 

Testing Tolerance (TST): it is similar to Training 

Tolerance, but it is applied to the neural network 

outputs and the target values only for the test data = 

0.003 in the current study. 

Input Noise (IN): provides a slight random variation 

to each input value for every training epoch = 0 in 

the current study. 

Function Gain (FG): allows a change in the scaling 

or width of the selected function = 1 in the current 

study. 

Scaling Margin (SM): adds additional headroom, as a 

percentage of range, to the rescaling computations 

used by Neuralyst Software, Shin (1994), in 

preparing data for the neural network or interpreting 

data from the neural network = 0.1 in the current 

study. 

Training Epochs: number of trails to achieve the 

present accuracy. 

Percentage Relative Error (PRR): percentage relative 

error between the numerical results and actual 

measured value and is computed according to 

equation (16) as follows: 

 

PRE = (Absolute Value (ANN_PR - 

AMV)/AMV)*100                                     (16)                                       

Where: 

ANN_PR: Predicted results using the developed 

ANN model 

AMV       : Actual Measured Value 

MPRE: Maximum percentage relative error during 

the model results for the training step. 

 

7. Numeric Results and Discussions 

Numerical results using ANN technique will 

be presented in this section for the two groups (six 

models) to show the simulation and prediction 

powers of ANN technique for the effect of human 

body’s mass and stiffness coefficient on the 

biodynamic response behaviors (STHT, DPMI and 

APMS) subject to whole-body vibration. 

 

7.1 Effect of human body’s mass 

Three ANN models are developed to 

simulate and predict the effect of  human body’s 

mass on the biodynamic response behaviors (STHT, 

DPMI and APMS). Figures 8, 9, and 10 show the 

ANN results and analytical ones for different human 

body’s masses. From ANN training figures (Left), it 

is very clear that ANN understands and simulates 

very well the biodynamic response behaviors. After 

that the developed ANN models used very 

successfully and efficiently to predict the response 

behaviors for different masses rather than those used 

in the analytic solution as shown in the predicted 

figures of ANN results (Right). 

 

7.2 Effect of stiffness coefficient 

Another three ANN models are developed in 

this sub-section to simulate and predict the effect of 

stiffness coefficient (k4) on the biodynamic response 

behaviors (STHT, DPMI and APMS). Figures 11, 12, 

and 13 show the ANN results and analytical ones for 

different values of k4. From ANN training figures 

(Left), it is very clear that ANN understands and 

simulates very well the biodynamic response 

behaviors. After that the developed ANN models 

used very successfully and efficiently to predict the 

response behaviors for different values of k4 rather 

than those used in the analytic solution as shown in 

the predicted figures of ANN results(Right). 
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Figure 8: ANN results for the effect of human body’s mass on STHT (Left : ANN Training, Right : ANN 

Prediction) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: ANN results for the effect of human body’s mass on DPMI(Left : ANN Training, Right : ANN 

Prediction) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10: ANN results for the effect of human body’s mass on APMS(Left : ANN Training, Right : ANN 

Prediction) 
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Figure 11: ANN results for the effect stiffness coefficient on STHT(Left : ANN Training, Right : ANN Prediction)     
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: ANN results for the effect stiffness coefficient on DPMI(Left : ANN Training, Right : ANN Prediction) 

 

 

 

 

 

 

 

 
Figure 13: ANN results for the effect stiffness coefficient on APMS(Left : ANN Training, Right : ANN Prediction) 
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8. Conclusions 

Based on the analytical investigation 

conducted in the course of the current research, it 

could be concluded that the change in human 

body's mass, pelvic stiffness, and pelvic damping 

coefficient give a remarkable change in biodynamic 

response behaviors of seated human body (direct 

proportional for human body’s mass and pelvic 

stiffness coefficient and inverse proportional for 

pelvic damping coefficient.)  

Based on the results of implementing the 

ANN technique in this study, the following can be 

concluded: 

1. The developed ANN models        presented in 

this study are very successful in simulating the 

effect of human body’s mass and stiffness on 

the biodynamic response behaviors under 

whole-body vibration. 

2. The presented ANN models are very efficiently 

capable of predicting the response behaviors at 

different masses and stiffness rather than those 

used in the analytic solution. 

 

References 
1. Wu X., Rakheja S., and Boileau P.-E., ''Analyses of 

relationships between biodynamic response functions'', 

Journal of Sound and Vibration, Vol. 226, No. 3, PP.595-

606, 1999. 

2. Coermann R. R., ''The mechanical impedance of the 

human body in sitting and standing position at low 

frequencies'', Human Factors, 227–253, October 1962. 

3. Vogt H. L., Coermann R. R., and Fust H. D., ''Mechanical 

impedance of the sitting human under sustained 

acceleration'', Aerospace medicine, Vol. 39, PP. 675-679, 

1968. 

4. Suggs C.W., Abrams C. F., and Stikeleather L. F., 

''Application of a damped spring-mass human vibration 

simulator in vibration testing of vehicle seats'', 

Ergonomics, Vol. 12, PP. 79–90, 1969. 

5. Fairley T.E., and Griffin M.J., ‘’The apparent mass of the 

seated human body: vertical vibration’’ Journal of 

Biomechanics Vol. 22, No 2, PP. 81–94, 1989. 

6. Boileau, P.E., Rakheja, S., Yang X., and Stiharu 

I.,''Comparison of biodynamic response characteristics of 

various human body models as applied to seated vehicle 

drivers'', Noise and Vibration Worldwide Vol. 28 ,PP. 7–

14, 1997. 

7. Toward M.G.R., ‘’Apparent mass of the seated human 

body in the vertical direction: effect of holding a steering 

wheel’’,  In Proceedings of the 39th United Kingdom 

Group, Meeting on Human Response to Vibration, 

Ludlow, 15–17, pp 211–221, 2004. 

8. Wang W., Rakhejaa S., and Boileau P.E., ''Relationship 

between measured apparent mass and seat-to-head 

transmissibility responses of seated occupants exposed to 

vertical vibration'', Journal of Sound and Vibration, Vol. 

314, PP. 907-922, 2008. 

9. Steina G. J., Mucka P., Hinz B., and Bluthner R., 

''Measurement and modeling of the y-direction apparent 

mass of sitting human body–cushioned seat system'' 

Journal of Sound and Vibration, Vol. 322, PP. 454-474, 

2009. 

10. Tewari V. K., and Prasad N., "Three-DOF modelling of 

tractor seat-operator system", Journal of Terramechanics, 

Vol. 36, pp. 207-219, 1999. 

11. Boileau, P.E., and Rakheja, S., "Whole-body vertical 

biodynamic response characteristics of the seated vehicle 

driver: Measurement and model development", 

International Journal of Industrial Ergonomics, Vol. 22, 

pp. 449-472, 1998. 

12. Ramanitharan, K. and C. Li, “Forecasting Ocean Waves 

Using Neural Networks”, Proceeding of the Second 

International Conference on Hydroinformatics, Zurich, 

Switzerland, 1996. 

13. Abdeen, M. A. M., “Neural Network Model for predicting 

Flow Characteristics in   Irregular Open Channel”, 

Scientific Journal, Faculty of Engineering-Alexandria 

University, 40 (4), pp. 539-546, Alexandria, Egypt, 2001. 

14. Allam, B. S. M., “Artificial Intelligence Based Predictions 

of Precautionary Measures for building adjacent to Tunnel 

Rout during Tunneling Process” Ph.D., 2005. 

15. Azmathullah, H. Md., M. C. Deo, and P. B. Deolalikar, 

“Neural Networks for Estimation of Scour Downstream of 

a Ski-Jump Bucket", Journal of Hydrologic Engineering, 

ASCE, Vol. 131, Issue 10, pp. 898-908, 2005. 

16. Abdeen, M. A. M., “Development of Artificial Neural 

Network Model for Simulating the Flow Behavior in Open 

Channel Infested by Submerged Aquatic Weeds”, Journal 

of Mechanical Science and Technology, KSME Int. J., 

Vol. 20, No. 10, Soul, Korea, 2006 

17. Abdeen, M. A. M., “Predicting the Impact of Vegetations 

in Open Channels with Different Distributaries’ 

Operations on Water Surface Profile using Artificial 

Neural Networks”, Journal of Mechanical Science and 

Technology, KSME Int. J., Vol. 22, pp. 1830-1842, Soul, 

Korea, 2008. 

18. Boileau P.E., ''A study of secondary suspensions and 

human drivers response to whole-body vehicular vibration 

and shock'', PhD. Thesis, Concordia university, Montreal, 

Quebec, Canada, 1995. 

19. Shin, Y., “NeuralystTM User’s Guide”, “Neural Network 

Technology for   Microsoft Excel”, Cheshire Engineering 

Corporation Publisher, 1994 

20.    Mohamed, M. A. M., “Selection of Optimum      

Lateral Load-Resisting System Using Artificial Neural 

Networks”, M. Sc. Thesis, Faculty of Engineering, Cairo 

University, Giza, Egypt, 2006. 

 

 

 

 

5/6/2010 


