Journal of American Science

2010;6(11)

An Efficient Algorithm for Transforming XML Schema into
Relational Schema

! Abad Shah, 2Amjad Farooq, *Syed Ahsan

13 Al-Khawarizmi Institute of Computer Science, University of Engineering and Technology, Lahore
2 Department of Computer Science, University of Engineering and Technology, Lahore
Amjadfarooquet@gmail.com

ABSTRACT: The Web and XML have influenced all walks of life especially those that involve business activities
over the Internet. People like to do their business activities and transactions from their homes to save time and
money. Many business and commercial companies such as insurance companies and banks maintain their records
using relational database management systems. But the traditional relational database technology is unable to
provide all these new facilities to the users. To enable the traditional relational database technology to cope with the
new challenges of the Web and XML technologies, we need a transformation between the XML technology and the
relational database technology as a middleware. To achieve this objective, we already proposed and reported an
algorithm. In this paper, we extend our previous work and present automation details, testing, and performance
report of our proposed algorithm. The result shows that the implementation of the algorithm is more efficient than
the existing algorithms for the same purpose [Journal of American Science. 2010;6(11):24-37]. (ISSN: 1545-1003).

Keywords: XML, web, rational database, transforming algorithm

1. Introduction

An electronic document contains regular and
irregular structures and may not be completely
understood by wusers (Suciu, 1999; Abiteboul
&Vianu, 1997; Brayan, 1997). This type of document
(or data) is referred to as semistructured data (Suciu,
1999; Abiteboul, 1997). Unlike the data in relational
databases (RDBs), the semistructured data is stored
without any schema or with a vague schema (Suciu,
1999; Buneman, 1997). There are many other sources
of semistructured data, such as the Web,
heterogeneous networking of integrated systems, file
systems, electronic mail systems, digital libraries etc.
(Abiteboul, 1997; Buneman, 1997).

The introduction of Extensible Markup
Language (XML) as a standard data/information
representation has facilitated the publication of
electronic data on the Web (W3C). This language
also provides a hierarchical format for the data
exchange over the Web with structure (Laurent,
1999; Bray, 2002). Information in a XML document
is represented as nested element structures (i.e. a tree
structure), which start with a root element. An
element can have an attribute or a sub-element (for
further details about XML see (W3C; Bray et al.,
2002). A XML document has an optional part, which
is called Document Type Declaration/Description
(DTD). A DTD of a XML document is considered as
the schema of the XML document (W3C; Bray et al.,
2002; Men-Hin & Fu, 2001).

A relational database (RDB) has two main
components, a schema and a set of operational data

editor@americanscience.org

24

files which are created according to the schema. As
mentioned earlier, a DTD is considered as a schema
of a XML document but there are noticeable
differences between a RDB schema and DTD. A
complete comparison between them is given in Table
1. The basic difference between them is their
structural representations; a DTD represents a
hierarchical structure whereas a RDB schema
represents a relational (tabular) structure. We can
consider XML documents schema analogous to the
hierarchical data model schema.

XML is considered as the best tool for
representing, transporting and exchanging
information on the Web (Laurent, 1999; Bray et al.,
2002). This language allows users to define and also
display data on the Web. These features make XML
powerful and different from Hypertext Markup
Language (HTML) (Suciu, 1999; Comer, 2000).
XML enables the user to define his own structures
using the syntax of the elements in a DTD. A DTD
describes the structure of information in a XML
document in a hierarchical fashion (Bray et al.,
2002). The structure of a DTD consists of elements
which are further specified by attributes and/or sub-
elements. Recursive and optional type of the sub-
element can be defined using the operations * (zero
or more times), + (one or more times), ? (optional)
and | (or). Many types of data value can be assigned
to attributes, i.e. string-type or entity. The data value
ANY means that an arbitrary declaration can be made
by the programmer. An element in a XML document
is uniquely identified by a special attribute ID. This

http://www.americanscience.org

Journal of American Science

2010;6(11)

unique attribute of an element can be regarded as the
primary key of the element. As it has been mentioned
in Table 1, a DTD does not support the concept of the
composite ID (or key). An attribute can be
referenced in another element through a field called
IDREF, and it is a type-less attribute. The concept of
an IDREF is similar to the concept of a foreign key in
relational databases. There is no concept of a root of
a DTD (Bray et al., 2002).

Nowadays, many financial organizations want to
empower their customers so that they can perform
their financial activities from their homes through the
Internet. For these financial organizations to provide
their customers with this facility, it is essential and
beneficial that the databases (which are mostly
relational DB systems) should be presented and
processed in the XML format. To provide this
facility, we therefore need a technique that can
process and transform a RDB and queries into a
XML format and vice versa. This technique for the
transformation is essential because most of the
commercially available database management
systems (DBMSs) are relational DBMSs.

To meet these requirements, we have proposed a
transformation technique in the form of an algorithm
and reported in (Shah et al., 2005). This technique
integrates and handles heterogeneous RDBs in the
same and uniform manner. Most of investigators
agree that the currently available RDB technology

alone is not adequate to meet these objectives of
using them on the Web without such transformation
technique (Shanmug et al., 1999). Recently, some
investigators have proposed a few algorithms for this
purpose (Shanmug et al., 1999; Men-Hin & Fu, 2001;
Williams, 2000; Mani & Lee 2002). In these
transformation algorithms, most of the investigators
have considered a DTD as a schema of the XML
document, and they have used the tree data structure
during the transformation. In our proposed algorithm,
we didn’t use tree data structure because the
processes of creating and maintaining tree data
structures are expensive and affect the performance
of the transformation process as pointed out by
Shanmugasundaram et al in (Shanmug et al., 1999).
Also, there are many syntax options that are available
for writing DTDs. Most of the existing
transformation algorithms from DTD into RDB
schema are unable to accept DTDs written in
different ways (Men-Hin & Fu, 2001; Shanmug et
al., 1999). In (Shah et al., 2005), we have used a
different approach and proposed a simple algorithm
that transforms any DTD of a XML document into
RDB schema. In this paper, we extend that work and
further report the implementation details and testing
results of our algorithm. We also give its analytical
analysis and performance comparison with the
existing algorithms.

Table 1: Comparison between RDB schema and DTD

RDB Schema

DTD

Tabular format

Hierarchical format

It supports many data types.

It supports only character data types.

Schema and tuples of a relation are considered
as two different entities, and they are stored in
two different files.

XML document and its DTD can be stored in the
same file or in two different files.

It is mandatory for a database.

It is optional for a XML document especially for
small XML documents.

It is based on the rational data model.

It is not based on any such data model.

It supports the concept of a composite key.

The concept of composite key is not supported.

It supports the concept of foreign key.

Does not support any such concept.

A schema of a relation is defined before
creating its instances (or tuples)

Since it is optional, it can, therefore, be defined
after the creation of a XML document.

The remainder of this chapter is organized as
follows. In Section 2, we describe and analyze the
existing approaches for transforming a DTD of a

editor@americanscience.org

25

XML document into a relational database schema. In
Section 3, we present our proposed approach for
transforming a DTD into a relational database

http://www.americanscience.org

Journal of American Science

2010;6(11)

schema, and in Section 4, we demonstrate the
proposed approach in a case study. Finally, in Section
5, we give our concluding remarks and future
direction of this work.

2. Related Work

Investigators have produced many different
techniques for transforming DTDs into relational
database schemas (Shanmug et al., 1999; Men-Hin
& Fu, 2001; Eisenberg & Melton, 2002; Yan, 2001;
Williams, 2000; Mani & Lee 2002). There are three
(3) main issues that need to be handled during this
transformation. These issues are: i) the complexity of
the DTD element specifications, ii) the resolution of
the conflict between arbitrary nesting in a DTD and
relational schema, iii) set-valued attributes and
recursion (Shanmug et al., 1999). In the following
paragraphs, we give a brief description of the works
of these investigators and give, in Table 2 (at the end
of this chapter), a comparison of these transformation
approaches and our proposed approach.

Shanmugasundaram et al initially proposed an
approach in the form of algorithms for transforming a
DTD of a XML document into a RDB schema. Men-
Hin and Fu later proposed an improvement to the
algorithms, (Men-Hin & Fu, 2001; Shanmug et al.,
1999). Men-Hin and Fu proposed two algorithms
both of which work in the same way, except that they
differ mainly in their Step 2 and Step 5. In Step 2 of
the improved algorithm they gave more rules for
determining the roots. The transformation algorithm
by Men-Hin and Fu works in six (6) steps, and they
are briefly given below:

Step 1: Simplifying the DTD: This step
simplifies DTDs of XML documents using the rules
similar to regular expression rules. The information
that is useful in constructing schema prototype trees
is preserved in the DTDs. The value types (e.g.
#IMPLIED, #FIXED etc) for the character data
(CDATA) are removed from the DTDs.

Step 2: Determining the Root node: In this
step, roots of the prototype trees are determined from
the simplified DTDs using the set of rules that are
suggested for this purpose.

Step 3: Constructing Schema Prototype
Trees: The prototype trees are constructed from the
roots that are determined in the previous step using a
set of rules.

Step 4: Generating a Relational Schema
Prototype: This step realizes a prototype relational
database schema from the prototype tree using the
following rules:

editor@americanscience.org

26

i) Regard all the necessary attributes and
elements in the simplified DTD as the attributes that
are treated in the entity- relationship (ER) Model.

ii) Inline all the necessary descendants of the
schema prototype tree starting from the root. The
necessary descendants refer to all the leaf nodes in
the schema prototype tree, and the nodes marked with
a“#” if they exist.

Step 5: Discovering Functional Dependencies
(FDs) and Candidate Keys: In this step the
traditional relational database design techniques are
applied in order to produce suitable relational
schemas. These design techniques reduce the
redundancy and inconsistency in a relational database
schema, and discover the functional dependencies
and the candidate keys by analyzing the newly
constructed relational database schema.

Step 6: Normalizing the Relational Schema
Prototypes: This step applies the normalization
rules on the relational database schema, after
determining the FDs and candidate keys of a
relational database schema in the previous step.

In the first algorithm of Men-Hin and Fu, hence
functional dependencies are found in Step 5, first by
analyzing the XML data, and then by applying the
algorithm: Efficient discovery of functional and
approximate dependencies using partitioning. Step 6
of this algorithm is time-consuming according to
Men-Hin and Fu. Hence they modified this step to
make the first algorithm more efficient (Men-Hin &
Fu, 2001). The modified algorithm decomposes a
DTD into small prototypes in Step 4: Tree
Construction, and Step 5: Generating a Relational
Schema Prototype. The reason for the decomposition
is to minimize the cost of finding functional
dependencies.

Both of these algorithms-the first and the
modified algorithms- use the tree data structure in
their transformation processes (or algorithms). The
use of this data structure affects the performance of
the transformation process because creating and
maintaining the tree structure are costly procedures.
Also, these two algorithms are unable to handle all
types of DTDs as it has been mentioned in (Shanmug
etal., 1999).

Eisenberg, and Melton in (Eisenberg & Melton,
2001; Eisenberg & Melton, 2002) gave an informal
proposal for a bi-directional transformation between
a XML document and a RDB. This transformation
can do a complete or a partial transformation at
schema level as well as tuple-level (or row-level).
The partial transformation may however miss some
semantics. This draft for the bi-directional
transformations also suggests a transformation of the

http://www.americanscience.org

Journal of American Science

2010;6(11)

data types. The authors did not give any proper
formal algorithm for these transformations. It is
therefore difficult to comment about the real
effectiveness of these transformations.

Williams et al have proposed 18 steps for
transforming DTD into a relational database schema
and 11 steps for the reverse transformation
(Williams, 2000). Both of these transformations do
not use the tree data structure, but some steps in both
of these transformations are unclear. For example, in
Step 9 and Step 13 of the transformation of a DTD
into a relational database schema, data types are
assigned to attributes of a DTD without any
explanation and justification. This type of vagueness
in the transformation processes makes them difficult
to understand and to draw any conclusion about their
correctness and accuracy.

Mani, & Lee (Mani & Lee 2002) have proposed
a process for transforming a DTD into a relational
database schema using a regular tree grammar. The
use of the regular tree grammar is helpful in
maintaining semantics constraints in the
transformation process. The theory of regular tree
grammars provides a useful formal framework for
understanding various aspects of XML schema
languages. The two normal forms (NF1 and NF2) are
used for the representation of regular tree grammars.
NF1 is used in the XML document validation
process, and to check whether a given XML schema
satisfies the structural constraints imposed by the
schema languages.

XML schema (or DTD) provides several unique
data modeling features such as union type “+”, which
does not exist in the traditional database models such
as relational database model. In (Mani & Lee 2002),
NF2 is used for representing the basic items of the
conversion definition of the two schema languages,
that is, a schema that supports union types (e.g.,
XML-Schema Language (Thompson, 2001), and a
schema language that does not support union types
(e.g., SQL). This conversion definition is used as the
first step in this transformation process of XML
schema into relational database schema. The entities
and relationships, which form the basic items of data

DTD, DTD;

Pre-Processing
—>

modeling, are represented as elements and attributes
of aDTD.

The process of mapping XML schema (or DTD)
into RDB schema has several issues, and they have
been pointed out in (Mani & Lee 2002). One of the
most important among them is the semantic
constraint which exists in the XML model. Since
relational database schema cannot express these
constraints in the XML schema languages, a useful
and meaningful subset of those constraints should
therefore be found in the mapping process. This
process of finding the subset needs simplification of a
XML schema. The concept of inlining technique is
used for generating an efficient relational schema
(Mani & Lee 2002), however; the inline technique
that is presented in this work generates a huge
number of relations. In addition, this work does not
present any proposal for assigning data types to
attributes of tables after or during the transformation
process.

The transformation process of a XML DTD to
relational data schema is the mapping of each
element in the DTD to a relation, and it maps the
attributes of an element to the attributes of the
relation. However, there is no correspondence
between elements and attributes of DTDs and entities
and attributes of ER model. The attributes in an ER
model are often represented as elements in a DTD.

<IELEMENT author (name, address)>
<IATTLIST author id ID #REQUIRED>
<IELEMENT name (firstname , lastname)>
<IELEMENT firstname (#PCDATA)>
<IELEMENT lastname (#PCDATA)>
<IELEMENT address ANY>

In the ER model, author would be taken as an
entity and firstname, lastname and address would be
taken as the attributes of the entity. But in defining a
DTD there is no incentive to consider author as an
element and firstname, lastname, and address as
attributes. In the syntax of a DTD, if firstname and
lastname were defined as attributes, then they could
not be nested under name because DTD attributes
cannot have a nested structure. A direct mapping of
elements to relations therefore leads to an excessive
fragmentation.

RDB Schema

Algorithm

Transforming
Algorithm

Figure 1: General view of the algorithm

editor@americanscience.org

27

http://www.americanscience.org

Journal of American Science

2010;6(11)

3. The Proposed Algorithm

As mentioned earlier in (Shah et al., 2005), we
have reported a transforming algorithm that works in
two steps. In the first step it takes a DTD written in
any form using the DTD syntax and transforms it
into a standard form that is devised keeping in view
the syntax of a relational database schema. The
second step of the algorithm takes the standard DTD
and transforms it into a relational database schema.
Note that in our approach the transforming
algorithm development, we did not include the
processes of finding functional dependencies (FDs),
assigning data types to attributes of relations after the
transformation (note that DTD supports only one
data type, i.e. PCDATA), and normalization of the

relation database schema. The reason for this is that
these three processes are database design techniques
and they depend on the perception of a database
designer about the database schema (Elmasri &
Navathe, 2000). These processes also need direct or
indirect expert’s intervention and decision.
Therefore, in the proposed transforming algorithm,
we have separated these three processes from the
actual transformation process. Our decision is to
separate the manual processes and the automated
processes, and this has made our algorithm simpler
and helped in achieving our objective of
transforming any DTD into a relational schema. In
this section, we present only those processes of the
transforming algorithm that can be automated.

Table 2: Comparative study of our algorithm and existing algorithms

Bl Sl & HI GSE DSE WIL RTG EIS OPA
no such
Stll’:)attar Graph raph Tree Tree relational ret%géar relational ade;:gCt
Licture P grap structure structure .
Used grammars structure is
used
" structural
Type 0 Structured structured Structured Structured Structured &subset mapping Structura_l
conversion of & semantic
semantics
ensure that
creates a each preserves some some support Pre-
Operators relation for element is eliminates operators to rules are XML- support XML- | processing
li every represented operators preserve some specified Schema Schema algorithm
Handling element in only once from DTD sub-elements to handle (not (not DTD) processes
the DTD ina occurrences them DTD) them
relation
actual data number of S simple,
handles the fields are attributes of the | preserves | .o bi-directional direct
. common . X schema is less entities) transformation | mapping &
Advantage fragmentatlon clements avallqble in than the and semantics maintains
problem relational - . L constrains h
are shared h algorithms basic | definitions the
sehema inlining semantics
large some
number of numb_er of . rules of
creates large joins in possible works with the a complex data types
Disadvs. F number of mapping mlnlmal_ limited number mapping mapping miss some assigning is
- dependencies | of elements and process semantics with human
relations for is attribute: are vague intervention
particular . utes such as
exponential S
elements assigning
Prfce. FF low low Low low didn’t didn’t didn’t high
mention mention mention (expected)

Table Legends:

Bl: Basic Inlining (Shanmug et al., 1999), SI & HI: Shared Inlining & Hybrid Inlining (Shanmug et al.,

1999), GSE: Global Schema Extraction (Men-Hin & Fu, 2001), DSE: DTD-splitting Extraction (Men-Hin &

Fu, 2001) WIL: (Williams, 2000), RTG: Regular Tree Grammar (Mani & Lee 2002), EIS: , OPA: Our

Proposed Algorithm (Shah et al, 2005).

F: Disadvantages.

FF: Performance.

*: A direct mapping of elements to relations leads to excessive fragmentation of attributes (for more details see
[(Mani & Lee 2002).

editor@americanscience.org 28 http://www.americanscience.org

Journal of American Science

2010;6(11)

Our proposed transforming algorithm further
consists of two algorithms (or steps): i) Pre-
Processing Algorithm, ii) Transformation Algorithm.
In Figure 1, we have given a general view of our
transformation process. Pre-Processing Algorithm
transforms any DTD that is written in any form into
the standard DTD that is referred to as DTDs (see
Figure 1). The main objective of Pre-Processing
Algorithm is to transform a DTD into a simple
uniform and standard form which is denoted as
DTDs in Figure 1. The second algorithm, (i.e.,
Transformation Algorithm), transforms a DTDs in
this standard form into a RDB schema (see Figure 1).
In the next two paragraphs, we briefly describe the
working of these two algorithms. The details of these
algorithms can be seen in (Shah et al, 2005).

The main function of Pre-processing Algorithm
is to enable the overall transformation process to
handle DTDs which are written in different ways,
and to transform them into a uniform and standard
form. The output of this algorithm is the standard
DTD denoted as DTDs (Shah et al, 2005) and it is
used as the input to Transformation Algorithm as
shown in Figure 1. The working of Pre-Processing
Algorithm is given in Figure 1-1 for more details see
(Shah et al, 2005).

Transformation Algorithm takes the DTD, of a
XML document input and transforms it into
a relational database schema (RDB_Schema). In

Figure 1-2, we give the working of the algorithm. In
this algorithm, there are two nested loops. The outer
loop deals with elements of the DTDg and transforms
them into corresponding tables/relations. The inner
loop transforms every attribute of the element into
the attributes of the corresponding relation. In Step
(iii) of the algorithm (see Figure 1-2), it transforms
ID and IDREF attributes of an element into primary
key and foreign key of the relation, respectively.
Note that since the syntax of DTD does not allow the
concepts of composite key, therefore, our proposed
transformation process also does not support this
concept.

1. Implementation Details

As we know from the previous section that the
proposed transformation process consists of the two
algorithms, and these algorithms are implemented on
the platform Intel Pentium Il, 400 MHz, Microsoft
Windows 98, and using Visual C++ version 6.0. The
implementation has two (2) modules corresponding
to the two algorithms, namely the Pre-processing
module and the Transformation modules. The design
of the process is an object-oriented design and it
consists of five base classes as show in Figure 2. The
designs (or contents) of the classes are given in
Appendix Il.

CDTDElement

CAttribute

CChildElement

Figure 2: Class-lattice of the transformation process

editor@americanscience.org

29

http://www.americanscience.org

Journal of American Science

2010;6(11)

5. Testing and Analysis

In this section, we give description of the
selected test cases and the test data (or instances)
which are used to test our proposed transformation
process/algorithm. Then we analyze the test results,
and based on these results we compare our proposed
algorithm with the existing transformation
algorithms. We have taken five (5) different and
typical test cases and one test data for each test case
to test the proposed algorithm. In the next five
sections, we describe the five test cases, give their
test data, and report their test results.

Test Case 1: Simple DTD

We consider DTD as a simple DTD if it contains
the basic components/features of the DTD syntax. It
does not contain the features such as nesting
structures, ID and IDREF(s) attributes, or any
referencing to any external entity. We have taken
simple DTD as the first test case to the proposed
algorithm. A test data (or instance) of this test case
that is used for testing the algorithm, is given in
Figure 111-1 (see Appendix Il1). The execution of the
algorithm for this test data was successful, and the
result was as it was expected. The result/outputs of
the test data is given in Figure 111-2.

For the test case of the simple DTD, our finding
is that its automatic transformation using our
proposed algorithm into a relational schema is close
to its manual transformation.

Test Case 2: DTD Containing ID and IDREF

The concepts of ID and IDREF in DTD are
important from database point of view. To test these
concepts, we have taken a test case to test these
concepts. For this purpose, we have picked a DTD of
a Library system as an instance of this test case and it
is shown in Figure I11-3. After the execution of the
algorithm with the instance (given in Figure I11-3),
the result/output is shown in Figure Ill-4. After
testing this test case, we noticed that the results of our
transformation algorithm and the existing algorithms
are identical. Note that most of the existing
algorithms are not automated.

Test Case 3: DTD Containing Entity Reference
and Operators

In a DTD, an entity referencing is a reference to
a content of a named entity whether this entity is
referencing to a separate external or an internal
location, where the content is given in the declaration
of the DTD. In this test case, we have picked a DTD
as instance of the test case which has this
characteristic. An instance (DTD) of this test case is
given in Figure 111-5. After the successful executing
of the instance, the result is given in Figure 111-6. The
transformation algorithm has worked successfully for

editor@americanscience.org

30

the instance, and it has removed the entity declaration
from the Catalog DTD as shown in Figure I11-6.

Test Case 4: DTD Containing Multiple Root
Elements

Some DTDs may have irregular structure which
means that these DTDs are missing their root
elements. In other words, such type of DTDs have
multiple root elements. Our next test case deals this
type of DTDs. An instance of this test case is given in
Figure I11-7. Note that in the figure Building element
has two parent elements and they are owner and
compound. This instance was successfully executed,
and the result of the transformation algorithm is the
same as it was expected and given in Figure I11-8.

Test Case 5: DTD with Irregular Structure

Usually to write a DTD, there is no fixed format.
In other words, DTD of a XML document can be
written in many different ways. A DTD is called an
irregular DTD if it has one element existing as a sub-
element of two different main elements (Shah et al,
2005), an example is the element person in the
Conference DTD, shown in Figure II1-9, person
element is a sub-element of the two main elements
(editor and author). An instance of this test case is
given in Figure 111-9. After testing the instance, the
result is shown in Figure I11-10. From this test case
an interesting result can be concluded, that is, if root
element of a DTD contains an attribute of type ID,
then the DTD could be a part of another DTD.

DISCUSSION

In the previous section, we report testing result
of our proposed and implemented transforming
algorithm. These testing results show that this
algorithm works successfully on more different types
of DTDs as compared to many existing algorithms
which are described in Section 2. Another main
feature of our algorithm is its implementation
because most of the existing algorithms are not
implemented; therefore, it is hard to say about their
test results and performance. We can conclude that
the performance of our algorithm is better than the
existing algorithms because our algorithm does not
use the tree data structure during the transforming
process. Our algorithm saves the heavy construction
and maintenance of the tree structure.

During the testing of the algorithm, we have
noted that the number of elements and attributes do
not affect the working of the algorithm.

Now we summarize our findings of our
algorithm, compare it with the existing algorithms
and give our concluding discussion. In Table 2, we
present the summary of main features of our

http://www.americanscience.org

Journal of American Science

2010;6(11)

proposed and implemented algorithm, and the
existing algorithms.

In the three algorithms, i.e., Basic Inlining,
Hybrid Inlining, and Shared inlining, the evaluation
is based on real DTDs which raise the performance
concern as it has been mentioned in (Shanmug et al.,
1999). This concern is due to a big number of
relations generated by the algorithms. In Global-
Schema extraction and DTD-Splitting, it has been
pointed out in (Men-Hin & Fu, 2001) to the high
cost of finding the functional dependencies because
the cost of finding the possible minimal dependencies
is exponential due to the number of attributes. The
other algorithms did not mention their
implementation and test results. As we have
mentioned earlier that we have implemented our
proposed algorithm and successfully tested it by
taking different test cases. Whereas, most of the
existing algorithms are not yet automated, and also
they use graph or tree data structures during their
transformation process (see Table 2). We did not use
these data structure in our algorithm, which has
caused better performance of our algorithm than the
existing algorithms. By comparing other parameters
in Table 2, it is obvious that our algorithm shows
better results than the existing algorithms.

6. Concluding Remarks and Future
Directions

In this paper, we have presented the extension of
previous work that was reported in (Shah et al, 2005).
Here, we have presented development details, testing
results and analysis of our proposed algorithm. The
proposed algorithm efficiently transforms the DTDs
of a XML document (which are written in different
ways using different syntax options) into a relational
database schema. This transformation algorithm
works in two steps/sub-algorithms: i) Pre-Processing
Algorithm, and ii) Transformation Algorithm. The
first step transforms DTD into a standard form of
DTD which is closer to relational database schema.
The second step does the actual transformation.

We have demonstrated and tested the working of
our proposed algorithm by taking five different test
cases. The results are encouraging. The main factures
of our proposed algorithm are that it is simpler and
easy to understand, implemented and tested on
different types of DTDs, and more efficient than the
existing algorithms.

A possible extension of this work can be the
reverse-directional transformation (i.e., RDB Schema
into XML documents schema). These issues and
future directions of this work are following:

editor@americanscience.org

31

(M Handling of IDREFS: It can be an
interesting study to translate the concept of
IDREFS into relational paradigm.

(i) Naming conflict between relations and
attributes during the transformations.

(iii) Assigning data types to attributes, because
DTD supports only character data type and
RDB schema supports multiple data types.
REFERENCES

2. Abiteboul, S. & Vianu, V. (1997). Querying the Web, in:
Proceedings of the ICDT.

3. Abiteboul, S. (1997). Querying semi-structured Data, in: in:
Proceedings of International, Conference on Database
Theory.

4. Brayan, M. (1997). SGML and HTML Explained, 2™
Edition, Addison Wesley, 1997.

5. Buneman, P. (1997). Semi structured Data, in: Proceedings
ACM Symposium on Principles of Database Systems, pp
117-121.

6. Bray, T., Paoli & J.C.M. (2002). Sperberg-McQueen, E. M.,
Extendible Markup Language (XML), Second Edition,
Available at: http://www.w3c.org/TR/REC-xml.

7. Comer, D. (2000). The Internet Book, 3rd Edition, Prentice
Hall, New Jersey.

8. Eisenberg, A., Melton, J. (2001). SQL/XML and the SQL
Information Group of Companies, ACM SIGMOS Record,
30(3), pp 101-108.

9. Eisenberg, A. & Melton, J. (2002). SQL/XML is Making
Good Progress, ACM SIGMOS Record, 31(2), pp 101-108.

10. Elmasri, R. & Navathe, S. (2000). Fundamental of Database
Systems, Third Edition, The Benjamin/Cumming Publishing
Company.

11. Laurent & St. S. (1999). XML A Primer, 2™ Edition, M&T
Books, California, 1999.

12. Mani M., D. & Lee (2002). XML to Relational Conversion
using Theory Regular Tree Grammars, in: Proceedings of the
28th VLDB Conference, Hong Kong.

13. Men-Hin, Y. & Fu, A. (2001). From XML to Relational
Database, in: Proceedings of the 8th International Workshop
on Knowledge Representation meets Databases
(KRDB2001), Italy.

14. Shanmug, J., Tufte, K., Zhang, C., DeWit, D. & Naughton, J.
(1999). Relational Database For Querying XML Documents:
Limitations and Opportunities, in: Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland, pp 302-314.

15. Suciu, D.(1999). Semi Structured Data and XML, in:
Proceedings of ACM SIGMOD, pp 430-441.

16. Shah, A., Adeniyi, J. & Tuwairgi, T. (2005). An Algorithm
For Transforming XML Documents Schema into Relational
Database Schema, in: Patrick van Bommel (Eds),
Transformation of knowledge, information and data: theory
and applications, Idea Group Publishing, USA, pp 171-189.

17. Thompson, H. (2001). XML Schema, W3C Working Draft,
Available at: http://www.w3.org/XML/Schema.

18. Williams, K.(2000) Professional XML Databases, Wrox
Press, UK.

19. W3C, (2003) - World Wide Web Consortium: XML, 2003,
Auvailable at: http://www.w3.0rg/XML.

20. Yan, M. (2001). From XML to Relational Database, M. Phil.
Thesis, Chinese University of Hong Kong, Dept. of
Computer Science.

http://www.americanscience.org

Journal of American Science

2010;6(11)

Appendix |

Al gori thm Pre-processi ng (DTD,): DTD
(i) Scan DID Nane in DID, and nake it
DTDs_Name of DTDs
and add <! DOCTYPE DTDs_Nane [
/* DIDs is the standard DID */
(ii) Find all the Root_elenents
of DTDa.
/* Root_elenment is
the el ement that
is not sub-elenent
of any ot her
element in the DID
*/
(iii)Scan each Root_elenment of
DTDa and make it
Root _el enent of DID.
(iv) Find total nunber of
in the Root_el ement of
DTD,, say that they are n;

nmai n_el enent s

;» N is the total nunber of

mai n_el ements */

(v) Transform the nmin_elenents
DTD; as foll ows

into

/* mai n_el ement has the foll ow ng
features:

(i) a sub-elenment of the
Root _el ement, (ii)a sub-el enent of
anot her main_elenment, and/or (iii)
has at |east one sub-el enent, or
(iv) has at least one attribute */
<! ELEMENT Root _el erment

(mai n_el enent 4, .., mai n_el enent) > ;

(Vi)FORi=1to n
Find total nunber of
in main_el enent;
say they are m
/* Root _el enent coul d be
mai n_el ement; for exanple if
it has at |east one sub-
el enent or at |east one
attribte */

sub-el enent s

has one of
features (i)it

sub-el enent s,
(ii)neither sub-elenment of any
other nmmin_elenment nor sub-
el enent of the Root_elenent,
and (iii)is not
a main_el enent */

/* the sub-el enent
the follow ng
has no

IF m> 0 THEN

editor@americanscience.org

Add
(#PCDATA) > .
Add

<! ELEMENT mai n_el enent ;

<I ATTLI ST mai n_el enent ;

For j=1 to m

Transform sub-el ement; into
DTD;as sub-el ement; CDATA #FI XED
END FOR LOOP / *i nner
| oop*/
attribute:
I F main_el enent; has an
attribute of type ID THEN
Transformit in DIDs as
attribute_name ID
#REQU RED
ELSEI F nmai n_el enent; has an
attribute of type
| DREF/ | DREFS THEN
Transform it in DIDs
as
attribute_name | DREF

TYPE
/* TYPE is the type of the
attribute originally exist in
DID, it could be (#REQU RED,
#| MPLI ED, #FI XED, or
defaul tvalue) just transformit
as it is in DID; */
ELSE Transform any ot her

attribute defined in DID,
into DID; as it is defined
in DID,
add ‘>’
ELSE add nmin_elenent; to DIDs
as its;
/* it means m= 0; that is

for the two cases:

(i) <! ELEVENT

mai n_el ement; (#PCDATA) >
,and (ii)<! ELEMENT

mai n_el ement ; EMPTY> */

GOTO attribute,

END FOR LOOP
(vii) add ‘]’;
(viii) RETURN (DTDs);
(ix) END Al gorithm

Figure I-1: Pre-Processing Algorithm

/* outer loop */

Al gori thm Transform ng (DTDs): RDB_Schema

32 http://www.americanscience.org

Journal of American Science

2010;6(11)

(i) Scan Root _element of DIDs nake it as
Schena_nane
of RDB_schens;
(ii) Find total nunber of nain_elenents
in DIDs (say they are n);

(iii)IF n=0 THEN EXI T();
ELSE
FORi =1ton

Transform nai n_el enents into Tabl e
and give it the nane of the
el ement ;
Find total nunber of attributes
in main_elenent; (say they are

m; _
IF m=0 THEN i++
ELSE
FORj =0tom
Scan attribute_nane;;
IF attribute_name; is
of type ID THEN
nmeke attribute_naneg
as primary key of Table; ;
ELSEIF attribute_nane; is of type
| DREF THEN
make attribute_name; as a
foreign key of Table; ;
ELSE make attribute_nane;

a normal attribte; of
Tabl e;; }
END FOR LOCP; /* inner
| oop */
END FOR LOOP; /* outer loop */

(iv) RETURN (RDB_Schem);
(v) END Algorithm
Figure 1-2: Transformation Algorithm

Appendix 11
Here, due to the space problem we give design of sample
classes of the case study.

Cl ass nane: CParser

Attributes:

strPath : Char

m strError Char

m blsValid : BOOL = FALSE
m str DocTypeSt art Char
m strDocTypeEnd : Char

m st r DocTypeNanme : Char

Met hods:
1. Functi on ReadDTDFi | e(str DTDURL: Char)
: Char;

x= DTDfil e;
{
get URL of x;
read Xx;
i
2. Function

Mani pul at eParanEntities(strDIDFi |l e: Char, p
Arr Names: Char Arr ay*=NULL,

editor@americanscience.org

33

pArrVal s: Char Array*=NULL) : Char
X = Entity;
{
Renovel GNORE(Char) ;
RemoveComent s (Char) ;
Fi nd x;
IF (!Ix) exit();
El se get x nane;
If (paraneter x);
Then if x is external

{

entity

open the file;
x = file content;

If x is external entity {get the

val ue}
X = val ue;
Cal I Mani pul at ePar anEntitis;

b

3. Function

Rernovel GNORE(st r DTDURL: Char): Char
Find “<I[*;
Find “1]1>";
Renove i nbet ween;
}
4. Function
RermoveComrent s(str DTDURL: Char): Char
{
Find "<t - *
Find “ - > ;
Renove i nbet ween;
}

5. Function
Construct El enent Map(st r DTDFi | e: Char) :
Char

X = El enent;
find (x);
get nane;
if nane is not exist
map (HashTabl e)
Then Construct
obj ect ;
El se

in the
DTD El enment
(Error);

6. Function
Bui | dChi | dAttri but esArray

(strDTDFi | e: Char): BOOL
For each list of attributes
{
Find “<ATTLIST ”;

Cet the E enent nane of the
attribute list;

Fi nd El enent
Tabl e) ;

| f El erent not found

Di splay (Error);

}

in the Map (Hash

For each attribute in the

http://www.americanscience.org

Journal of American Science

2010;6(11)

attribute |ist

get attribute nane;

Determ ne attribute type;

CGet default val ue;

Const ruct Transf or ned
attribute Expression;

Put in El ement
Chil dAttri but eArray;
}
Repeat
7 Function SaveQut putFi l e

(str@tput Fil eNane : Char)

Wite “DOCTYPE';

For (m_El ement Map)
{
wite “<!ELEMENT";
If (m.blsEnpty)
wite “EMPTY>";
Else wite
“ (#PCDATA) ";

For
m arrChil dAttri bute)
get attributes;
wite “<! ATTLI ST";
wite attribute
nane

get child elements array of the
Mai n El enent ;
If child element is sub-el enment
and mbHasOR =Fal se Then

{
Transformit to attribute
of type CDATA

}
el se
| MPLI ED;
}
}
}
8. Function SaveCut put Mappi ngFi |l e
(strQut put Mappi ngFi | eNarne: Char)
{

attribute is of type

Wite Relation_Nanme =
Wite Relation Tables
Wite “(“;

For (m_El enent MAp)

DOCTYPE;

read el ement ;

If element has no child and no
attrai butes Then (continue);

Else wite (El erment_Nane)

W| te u)n;
}
}
Cl ass nane: CDTDEl enent
Attributes:

editor@americanscience.org 34

m str Chi | dEl ement sExpression : Char
m st r El ement Expression : Char
m bHasOR : BOOL = FALSE

m bl sEnpty : BOOL = FALSE

Met hods:

1. Function
Chi | dEI errent Ar r ay(pPar ser:
CPar ser *) : BOOL

CEE= m str Chi | dEl enment Expr essi on;

o ="|";

Emp = “EMPTY”;

Any = “ANY”";

PCdata = “#PCDATA";

{

For each El enent
{
get CEE
Renove operators;
Ren,ove u(n;
Scan CEE;

{

If (Enp) Then m bl sEnpty=
true;

Cont i nue;

If (Any or PCdata) continue;

get the nane of each
el enents in CCE

search for the nane at the
m_El enent Map

If (nane not found) Then
di splay Error;

Exit();

Get CDTDEl enent of
Chi | dEI enent Array

Put CChi |l dEl enent object in
m_ ar r Chi | dEl enent s;

Conti nue;

}

}

2. Function
CheckAttributeValidity(pParse
r: CParser*): BOOL

For each attribute
If attribute name is repeated
Then (Error);

Appendix 1

<IDOCTYPE PEOPLE [

<IELEMENT People (Person)>

<IELEMENT Person (Name, Address, PhoneNumber,
FaxNumber, Email, Notes)>

<IELEMENT Name (FirstName, MiddleName,
FamilyName, Title)>

<IELEMENT Address (Streetl, Street2, City, State,
Country, ZipCode) >

http://www.americanscience.org

Journal of American Science

2010;6(11)

<IELEMENT FirstName (#PCDATA)>
<IELEMENT MiddleNAme (#PCDATA)>
<IELEMENT FamilyName (#PCDATA)>
<IELEMENT Title (#PCDATA)>
<IELEMENT Streetl (#PCDATA)>
<IELEMENT Street2 (#PCDATA)>
<IELEMENT City (#°CDATA)>
<IELEMENT State (#PCDATA)>
<IELEMENT Country (#PCDATA)>
<IELEMENT ZipCode (#PCDATA)>
<IELEMENT PhoneNumber (#PCDATA)>
<IELEMENT FaxNumber (#PCDATA)>
<IELEMENT Email (#PCDATA)>
<IELEMENT Notes (#PCDATA)>]>

Figure 111-1: People DTD - test cases of the simple DTD

RELATION NAME: PEOPLE
RELATION TABLES: (Person,Name,Address)
TABLE: Person
ATTRIBUTES:

PhoneNumber (Char)

FaxNumber (Char)

Email (Char)

Notes (Char)
TABLE: Name
ATTRIBUTES:

FirstName (Char)

MiddleName (Char)

FamilyName (Char)

Title (Char)

TABLE: Address
ATTRIBUTES:

Streetl (Char)

Street2 (Char)

City (Char)

State (Char)

Country (Char)

ZipCode (Char)

Figure 111-2: Relational schema of the People DTD;

<IELEMENT Library
Borrowers+, Loans+)>

(Books+, Publishers+,

<IELEMENT Books (#PCDATA)>
<IATTLIST Books LCNo ID
#REQUIRED

PName IDREF
#REQUIRED

title CDATA
#FIXED

author CDATA
#FIXED>

<IELEMENT Publishers (#PCDATA)>

<IATTLIST Publishers PName ID
#REQUIRED

PAddr CDATA
#FIXED

editor@americanscience.org

35

PCity CDATA
#FIXED>
<IELEMENT Borrowers (#PCDATA)>
<IATTLIST Borrowers CardNo ID
#REQUIRED

Name CDATA
#FIXED

Addr CDATA
#FIXED

City CDATA
#FIXED>
<IELEMENT Loans (#PCDATA)>
<IATTLIST Loans CardNo ID
#REQUIRED

LCNo IDREF
#REQUIRED

Date CDATA
#FIXED>

Figure 111-3: DTD of the library system

RELATION NAME: LIBRARY
RELATION TABLES:
(BOOKS,PUBLISHER,BORROWERS,LOANS)

TABLE: BOOKS
ATTRIBUTES:
LCNOoB (Char) [Primary Key]
Pname (Char) [Foreign Key] [Not Null]
TITLE (Char)
AUTHOR (Char)
PName (Char)
TABLE: PUBLISHER
ATTRIBUTES:
PNAME (Char) [Primary Key]
PADDR (Char)
PCITY (Char)
TABLE: BORROWERS
ATTRIBUTES:
CARDNOB (Char) [Primary Key]
NAME (Char)
ADDR (Char)
CITY (Char)
TABLE: LOANS
ATTRIBUTES:
CARDNOoL (Char) [Primary Key]
LCNoL (Char) [Foreign Key] [Not Null]
Date (Char)

Figure 111-4: RDB schema of Library DTD;

<IDOCTYPE CATALOG [

<IELEMENT CATALOG (PRODUCT+)>
<IELEMENT PRODUCT (SPECIFICATIONSH+,
OPTIONS?, PRICE+, NOTES?)>

<IELEMENT SPECIFICATIONS (#PCDATA)>
<IELEMENT OPTIONS (#PCDATA)>
<IELEMENT PRICE (#PCDATA)>
<IELEMENT NOTES (#PCDATA)>
<IELEMENT CATEGORY (#PCDATA)>

http://www.americanscience.org

Journal of American Science

2010;6(11)

<IELEMENT PARTNUM (#PCDATA)>
<IELEMENT PLANT (#PCDATA)>

<IELEMENT INVENTORY (#PCDATA)>
<IELEMENT SPECIFICATIONS (#PCDATA)>
<IATTLIST PRODUCT NAME CDATA #IMPLIED>
<IATTLIST CATEGORY TYPE (HandTool | Table |
Shop-Professional) "HandTool ">

<IATTLIST PARTNUM Num CDATA #IMPLIED>
<IATTLIST PLANT Branch (Pittsburgh | Milwaukee |
Chicago) "Chicago™>

<IATTLIST INVENTORY Status (InStock | Backordered |

Discontinued) "InStock">

<IATTLIST SPECIFICATIONS Weight CDATA
#IMPLIED>

<IATTLIST OPTIONS Finish (Metal | Polished | Matte)
"Matte">

<IATTLIST OPTIONS Adapter (Included | Optional |
NotApplicable) "Included">

<IATTLIST OPTIONS Case (HardShell | Soft |
NotApplicable) "HardShell">

<IATTLIST PRICE Msrp CDATA #IMPLIED>
<IATTLIST PRICE WholeSale CDATA #IMPLIED>
<IATTLIST PRICE Street CDATA #IMPLIED>
<IATTLIST PRICE Shipping CDATA #IMPLIED>
<IENTITY AUTHOR "John Doe">

<IENTITY COMPANY "JD Power Tools, Inc.">
<IENTITY EMAIL "jd@jd-tools.com">]>

Figure 111-5: The catalog DTD

RELATION NAME: CATALOG

RELATION TABLES: (PRODUCT,SPECIFICATIONS,
OPTIONS,PRICE, CATEGORY, PARTNUM, PLANT,
INVENTORY)

TABLE: PRODUCT
ATTRIBUTES:
Name (Char)
NOTES (Char)

TABLE: SPECIFICATIONS
ATTRIBUTES:
Weight (Char)

TABLE: OPTIONS
ATTRIBUTES:
Finish (Char) [Not Null]
Adaptor (Char)
Case (Char)

TABLE: PRICE
ATTRIBUTES:
Msrp (Char)
WholeSale (Char)
Street (Char)
Shipping (Char)

TABLE: CATEGORY
ATTRIBUTES:

editor@americanscience.org

36

AA (Char)

TABLE: PARTNUM
ATTRIBUTES:
Type (Char)

TABLE: PLANT
ATTRIBUTES:
Branch (Char) [Not Null]

TABLE: INVENTORY
ATTRIBUTES:
Status (Char)

Figure 111-6: RDB schema for the catalog DTD;

<IDOCTYPE HOUSING [
<IELEMENT OWNER (BUILDING+)>
<IELEMENT COMPOUND
(BUILDING+)>

<IELEMENT BUILDING (ROOM+)>
<IELEMENT ROOM

(BED*,CHAIR* (CENTRAL_AC
L(EXT_AC|(FAN,HEATER)+)))?>

<IELEMENT BED EMPTY>

<IELEMENT CHAIR EMPTY>

<IELEMENT CENTRAL_AC (#PCDATA)>
<IELEMENT EXT_AC (#PCDATA)>

<IELEMENT FAN (#PCDATA)>

<IELEMENT HEATER (#PCDATA)>

<IATTLIST OWNER NAME ID #REQUIRED>
<IATTLIST OWNER AGE CDATA #IMPLIED>
<IATTLIST COMPOUND ADDRESS ID
#REQUIRED>

<IATTLIST BUILDING BUILDING_NO ID
#REQUIRED>

<IATTLIST ROOM ROOM_NO ID #REQUIRED>
<IATTLIST CENTRAL_AC ELECTRIC_POWER
CDATA #IMPLIED>

<IATTLIST CENTRAL_AC HORSE_POWER
CDATA #IMPLIED>

<IATTLIST EXT_AC ELECTRIC_POWER CDATA
#IMPLIED>

<IATTLIST EXT_AC HORSE_POWER CDATA
#IMPLIED>

<IATTLIST FAN ELECTRIC_POWER CDATA
#IMPLIED>

<IATTLIST FAN SPEED CDATA #IMPLIED>
<IATTLIST HEATER ELECTRIC_POWER CDATA
#IMPLIED>

Figure 111-7: Housing DTD

RELATION NAME: HOUSING

RELATION TABLES:
(OWNER,COMPOUND,BUILDING,ROOM,CENTRAL_
AC,EXT_AC,FAN,HEATER)

http://www.americanscience.org

Journal of American Science

TABLE: OWNER

ATTRIBUTES:
NAME (Char) [Primary Key]
AGE (Char)

TABLE: COMPOUND
ATTRIBUTES:
ADDRESS (Char) [Primary Key]

TABLE: BUILDING
ATTRIBUTES:
BUILDING_NO (Char) [Primary Key]

TABLE: ROOM

ATTRIBUTES:
ROOM_NO (Char) [Primary Key]
BED (Char)
CHAIR (Char)

TABLE: CENTRAL_AC

ATTRIBUTES:
ELECTRIC_POWER (Char)
HORSE_POWER (Char)

TABLE: EXT_AC

ATTRIBUTES:
ELECTRIC_POWER (Char)
HORSE_POWER (Char)

TABLE: FAN

ATTRIBUTES:
ELECTRIC_POWER (Char)
SPEED (Char)

TABLE: HEATER
ATTRIBUTES:
ELECTRIC_POWER (Char)

Figure 111-8: RDB Schema after the transformation

Figure 111-9: DTD of there conference

ELATION NAME: Conference

RELATION TABLES:

(conf,date,editor, paper,contact,author,person,name,cite)

TABLE: conf

ATTRIBUTES:
id (Char) [Primary Key]
title (Char)

TABLE: date
ATTRIBUTES:
year (Char) [Not Null]
mon (Char) [Not Null]
day (Char) [Not Null]

TABLE: editor
ATTRIBUTES:

editor@americanscience.org

37

eids (Char) [Foreign Key]

TABLE: paper

ATTRIBUTES:
id (Char) [Primary Key]
title (Char)

TABLE: contact
ATTRIBUTES:
aid (Char) [Foreign Key] [Not Null]

TABLE: author
ATTRIBUTES:
id (Char) [Primary Key]

TABLE: person
ATTRIBUTES:
id (Char) [Primary Key]
email (Char)
phone (Char)

TABLE: name

ATTRIBUTES:
first_name (Char)
last_name (Char)

TABLE: cite

ATTRIBUTES:
id (Char) [Primary Key]
format (Char)

Figure 111-10: RDB schema of the conference

5/5/2010

http://www.americanscience.org

