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Abstract: One of the phenomena observed during strong earthquakes is the pounding of adjacent 
buildings which has been known as the pounding in dynamic of structures science. This pounding 
sometimes can lead to significant pounding forces which ultimately resulted into the destruction of 
adjacent buildings. Various methods for prevention against to the pounding were having been 
proposed. Most simple and practical method to mitigate this damaging force is to provide adequate 
separation distance between adjacent buildings which has become a standard criterion in all structural 
codes. Various dynamic analyses such as time history, spectral response and random vibration method 
have been applied for determining of that separation distance. In the mentioned methods often the 
torsion behavior of buildings due to their inherent asymmetrical forms has been neglected. In this work 
an attempt has been performed to calculate the required separation distance in asymmetric buildings 
via some analytical relations developments using the torsional-lateral behavior. The most important 
factor which previous studies did not consider is the effect of similarity of torsional modes of two 
adjacent building in reducing the necessary separation distance assignment. The random vibration 
method was implemented as the analytic solution method and the effects of various parameters such as 
eccentricity, damping and natural frequency were taken into account in separation distance 
determination and the obtained results were compared to UBC97, IBC 2006 and standard No.2800 of 
Iran structural codes. The results were presented in the form of some graphs. It is important to note 
that throughout the entire of study the linear elastic response analysis was applied.  [Journal of 
American Science. 2010;6(10):184-194]. (ISSN: 1545-1003).  
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1. Introduction 
 
        Insufficient distance between adjacent buildings 
would probably result into striking of the buildings 
during strong earthquakes and subsequently create an 
excessive dynamic force called pounding. Pounding is the 
collision of adjacent buildings during an earthquake due 
to insufficient lateral clearance. Pounding has been the 
cause of a number of mid-rise building collapses, most 
notably in the 1985 Mexico City Earthquake (Chen and 
Lui, 2006, Kasai and Maison, 1989). In buildings with a 
torsional-lateral behavior it is necessary to calculate and 
implement proper separation distance between adjacent 
buildings in contrast to the case in which the buildings 
with only have lateral deflections where usually a simply 
predefined linear varied separation distance can be used 
(UBC97, 1997,IBC2006, 2006,2008Iran 2007). In the 
former, a coupled torsional-lateral response is being 
created which may result into the increase or decrease of 
the relative displacement between adjacent buildings. 
After the Loma preita earthquake in 1989, the pounding 
force and the seeking of practical solutions to mitigate 
such a force were being seriously taken into account. In 

order to mitigate the pounding force scientists have 
proposed various methods, the most important being: 
 

1. Creating of a suitable separation distance (the 
placing of two buildings at a calculated distance 
from one another) 

2. Placing of the story of each floor for both 
buildings at same story level 

3. Unifying the response of both structures by 
joining the building via a link beam 

4. Utilizing of Bomber walls 
5. Foreseeing and implementation of sufficient 

lateral resistant elements in order to restrict the 
extent of the relative displacement of the 
structure 

 
It may be deduced that between mentioned methods, the 
first one is in most cases the most economic solution 
method and in this paper we are going to focus on it. The 
separation distance between adjacent buildings is 
calculated on the basis of  a series of variables such as the 
building's mass , story stiffness, damping , height of each 
story, largeness,  earthquake time duration , and the 
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behavior characteristics of the building itself  whether 
shear or lateral-torsional. Standard building code 
specifications provide various methods for the 
estimating/ or calculating of adequate separation 
distance between buildings for example in the UBC97, 
it is specified that the separation distance between two 
buildings should be calculated on the basis of the 
algebraic sum of the non-linear relative displacement of 
the two adjacent buildings . In the IBC2006, it has been 
stated that the sum of squared lateral displacements 
between two adjacent buildings should be used as the 
basis for calculating the required separation distance; 
however when adjacent buildings show tandem 
vibration characteristics the calculated separation 
distance would provide to be excessive in extent. 
According to the Iranian Seismic Resistance Building 
Code, the separation distance between adjacent 
buildings is defined as the five thousandth of the total 
height of each story from base level. This distance must 
be provided from the property line of the building in 
each side. It is also mentioned in the code that this 
distance must be always greater than the calculated 
lateral displacements based on the proper nonlinear 
analysis (2800Iran, 2007).  
Most of previous researches used only lateral mode of 
kinematics of two adjacent building in determination of 
separation distance. None of them considered torsional-
lateral behavior of two adjacent building in their 
separation distance calculations (Ohta, et. al., 2006, 
Mahmoud and Jankowski, 2009, Shehata, 2006, 
Jankowski, 2005, Lopez and Soong, 2009). In this 
paper this effect will be examined.  

 
 

2. Material and Methods  

2.1. The Relative Displacement Function  
 
The relative displacement function of building a in 
comparison to building b is as follows (Chopra, 
2004): 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

b a
b b a a

D Dt u t t u t t                 (1) 

In this equation ( )bu t and ( )au t are the horizontal 
displacement of the center of mass for building a 
and b respectively, whereas ( )b t and ( )a t are the 
amount of the rotational displacement of the center 
of mass for building a and b. also Da and Db are 
the length of building a and b vertical to the 
earthquake direction. 
The displacement Function in time t  as per 
equation (1) can be replaced by  t   instead of 
t thus developing the following equation: 

( ) ( ) ( ) ( ) ( )
2

b
b b a

Dt u t t u t               

( ) ( )
2

a
a

D t                                                      (2) 

,a bu u  in equation (1) and (2) can be found using 
modal Analysis method, thus the equation (1) 
becomes : 
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( )t    is obtained from (3) by replacing t by 
t  .In relation (3) ( , )b aN j  and ( , )b a bN N j   
are corresponding component of jth lateral and 
torsion degree of freedom in the j mode for 
building b at the level of the roof of  building a 
while ( , )a aN k and (2 , )a aN k are corresponding 
component of jth lateral and torsion degree of 
freedom in the kth mode for building a. 
Furthermore ( )bjy t and ( )ajy t are the normalized 
coordinate of the Jth mode for buildings a and b, 
respectively.   

bN and aN both refer to the number of stories for 
both buildings a and b, respectively. In order to 
determine the relative velocity function, we must 
differentiate the relative displacement function over 
time. 
 
2.2. The Auto- Correlation Function 
 
The auto- correlation function of the relative 
displacement function of adjacent structures is: 

 )()(  ttER                                (4) 
By substituting (1) and (2) in (4) and the rewriting 
of the equation using the modal method, the auto- 
Correlation function can be stated as: 
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Equation (5) is rewritten as follow for simplicity: 
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(6) 
In above equation for example

, ,a Na a Nau uR  is the cross 

correlation function of displacement building a at 
floor Na and displacement building a at floor Na 
.The auto- correlation function has 16 terms. The 
first term is calculated as follow and other term's 
calculations are similar.  
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The relationship between the elements of the 
equation can be restated:  
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                                                                              (8) 
For building b; 
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This becomes significance due to the following:  

[ ( ) ( )]
br bsf f br bsR E f t f t                                    (10) 

In the above equation ( )brf t and ( )bsf t are 
respectively rth and sth of the vector for the 
external force of building b, hence the final form 
for equation (8) would be as below: 
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(11) 
In this equation the functions 

1( )ajh  and 
1( )bjh  are 

respectively the unit impulse response functions of 
the jth mode of buildings a and b. Other terms in 
relation 8 can be defined through a similar way. In 
order to determine the auto correlation function of 
the relative velocity of systems similar calculations 
can be applied. 
 
3.2. The Power Spectral Density Function (PSD) 
 
The Earthquake Spectral Density Function of the 
relative displacement is the Fourier transition of the 
relative displacement autocorrelation function of 
the adjacent buildings, thus: 
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Therefore by inserting (6) into (12), the equation 
can be rewritten as follows: 
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(13) 
In the above equation, for instance we have: 
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In which by replacing amounts such as 
, ,b Na b Na NbuR  

 

we can obtain: 
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Due to the fact that the vibration mode shape 
remains constant over time, it is possible to replace 
the Integral and summation in (15), thus obtaining: 
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 Using (14) the latest relation becomes:  
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Since the variable 1  and 2  are two independent 
variables, the double integral in eq.17 can be 
replaced by two single integral: 
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Now by using the definition of complex frequency 
response functions, the equation (18) can be 
rewritten as follows: 
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The other part of earthquake SPD function and 
cross SPD of the relative displacement of buildings 
a and b are capable of being estimated using the 
abovementioned calculations. In eq.19, 

( )bkH  and ( )bkH 


 are the complex frequency 
response functions (Transference Function) of 
building b in the kth mode and its conjugate, 
respectively is as follows: 
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 
bsar ffS  , in fact, is the intersecting spectral 

density of rth (the vector for the external force of 
building a) and sth (the vector for the external force 
of building b) and  

asbr ffS  is the function of the 
combined rate of the Frequency response of 
building b in the rth mode (the vector for the 
external force of building b) with corresponding 
quantity of building a in the sth t(he vector for the 
external force of building a). Thus from equations 
(23) and (24) the following results are obtained: 
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The earthquakes spectral density function for the 
relative velocity of the two corners of the adjacent 
buildings can be derived from the direct Fourier 
transform of coupling between the angles of the 
adjacent buildings and calculated as follows:  
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4.2. The Mean Square of Relative Displacement 
Function 
 
The Mean square of Relative Displacement 
Function which can be influenced by the relative 
displacement of adjacent buildings is defined as 
follows: 
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By inserting (13) INTO (26) the Mean squared of 
total displacement squares influenced by relative 
displacement is obtained as: 
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5.2. Explicit Form of Equation Formulation  
 
The external force imposed upon the structure 
which is itself influenced by the induced 
earthquake excitations is as follows: 
 

..
( ) ( )gf t u t m                                               (28) 

 

In the above equation 2 2[ ] N Nm  and 
..

( )gu t  are the 
mass matrix of the structure and the earthquake's 
acceleration vector respectively. By using above 
formulation, equation (21) becomes: 

1 [ ( ) ( )]
2ar as

i
f f ar g as gS E m u t m u t e d 








        (29) 

Or 
1 [ ( ) ( )]

2ar as

i
f f ar as g gS m m E u t u t e d 








         (30) 

Regards to the definition of the earthquake spectral 
density function in (31) we have: 




  detutuES i
ggg






  )]()([
2
1)(      (31) 

Thus (29) can be stated as:  
)(gasarff SmmS

asar
       (32) 

And by the same way we shall obtain: 
)(gbsbrff SmmS

bsbr
       (33) 

)(gbsarff SmmS
bsar
       (34) 

)(gasbrff SmmS
asbr
       (35) 

In the above equations, arm and bsm are the mass 
of floor rth of building a and the mass of floor sth 
of building b respectively. The equation ( )gS  is 
the earthquake spectral density function. It should 
be noted that in our study the earthquake consider 
as white noise process, within constant PSDF. 
If the results from (33) and (35) are superimposed 
for each of the parameters in the equation of (27) 
and if the occurrence of the earthquake is in the 
form of white noise with a spectral density of 0S , 
thus we will have the following result for the first 
parameter: 

, ,

2 2

1 1

*

1 1

2 2

1 1 1 1

( ) ( , ) ( , )

{ ( , ) ( , ) ( ) ( ) ( ) }

( , ) ( , ) { ( , ) ( , ) }

b Na b Na

br bs

Nb Nb

u u b a b a
j k

Nb Nb

b b f f bj bk
r s

Nb Nb Nb Nb

b a b a b b br bs
j k r s

S d N j N k

r j s k S H H d

N j N k r j s k m m

   

     

   



 



  

   

 

 





 

 
*

0 ( ) ( ) ( )bj bkS H H d   




                                    (36) 

The above equation can replace by a simple 
summation and double summation as follow;  
 

, ,

2
2

1 1 1

2 1 22

0
1 1

( ) ( , ){ ( , ) ( , ) }

( ) ( , ) ( , )

b Na b Na

Nb Nb Nb

u u b a b b br bs
j r s

Nb Nb

bj b a b a
j k j

S d N k r j s j m m

S H d N j N k

    

   



  

 

  



  

 

 
*

0
1 1

{ ( , ) ( , ) [ ( ) ( )
Nb Nb

bkb b br bs bj
r s

r j s k m m S H H   


  

  
*

( ) ( )] }bj bkH H d                                     (37)  
As can be seen in equation (37) the most difficult 
aspect of calculating the relationship is determining 
its mathematical Integral, hence it is necessary to 
simplify the calculations as follows: 
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* *

0( )[ ( ) ( ) ( ) ( )] }bkbj bj bkI S H H H H d     




    (38) 

The equation in parentheses in (38) can be 
rewritten as follows:  

* *

* *
* *

* *

2 2
* *

[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( )
[ ( ) ( ) ( ) ( ) ]

( ) ( ) [ ( ) ( )
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bkbj bj bk

bkbj bk bj

bj bk

bkbj bk bj

A H H H H

H H H H
H H H H

H H H H

H H
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 
   

    
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  

 

 
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Thus the above relationship in A can be modified 
to state: 
 

2 2

* *

( ) ( )

1 1[ ]
( ) ( ) [ ( ) ( )

bj bk

bkbj bk bj

A H H

H H H H

 

   




 

                             

(39) 
In the equation above 2

( )bjH  and 2( )bkH  are 

the quantity of the complex frequency response 
function of kth and jth vibration modes of building 
b. Equations ( )bkH  and ( )bjH  are the complex 
frequency response function of kth and jth vibration 

modes of building b and the equations 
*

( )bjH  and 
*

( )bkH  are the conjugate complex frequency 
response function. On the other hand as per the 
definitions provided we have: 

2
jj jM K   

2j j j jC M   
It is worth to note that parameters jC , jM and 

jK are respectively the modal dampening, the 
mass and the stiffness in the jth mode of the 
structure under study. By inserting the 
aforementioned in the complex frequency response 
function of kth and jth vibration modes of building 
b, the following equations are obtained: 

2 2

1
(( ) 2 )bj

bj bj bj bj

H
M i   


 

      (40) 

2 2

1
(( ) 2 )bk

bk bk bk bk

H
M i   


 

      (41) 

Using the aforementioned relationships and by 
inserting these equations in (39), the following 
equation is redefined as: 

* *

2 2 2 2 2

1 1[ ]
( ) ( ) [ ( ) ( )

2 [( ) ( ) 4 ]

bkbj bk bj

bj bk bj bk bk bk bj bj
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M M
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        

 
 

    

                          

(42) 
The statement in parentheses in (42) can be defined 
as: 

]4)()[()( 22222
bjbjbkbkbkbjN    

(43)  

bj And bj are respectively the angular frequency 
and the coefficient of damping for the jth mode of 
building b; hence it can be stated that the final 
simplified equation would be: 

2
2

2 ( ) ( ) ( )bkbj bk bjA M M N H H         (44) 

The quantity of the complex frequency response 
function of kth and jth vibration modes of building b 
can be obtained from the multiplying of conjugate 
complex frequency response function to complex 
frequency response function, here are: 

2

2 2 2 2 2 2 2

1( )
{( ) 4 }bj

bj bj bj bj

H
M


    
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  (45) 

2
2 2 2 2 2 2 2

1( )
{( ) 4 }bk

bk bk bk bk

H
M


    


 

  (46) 

Finally by substituting eq.44 to 46 in eq.38 we 
have; 

2 2
02 ( ) ( ) ( ) }bj bk bj bkI M M N S H H d   





                             

(47) 
The equation under integral in eq.47 can be 
simplified as; 

2 2

2 2 2 2 2 2 2 2 2 2 2 2[( ) 4 ] [( ) 4 ]
jk jk jk jk

bj bj bj bk bk bk

A B C D 
         

 


   
          

(49) 
Where the coefficients jkA , jkB , jkC and jkD  are 
obtained from the following equations : 

1wDB jkjk   
2

222222 )24()24( wDCBA bjbjbjjkjkbkbkbkjkjk    
3

42224222 )24()24( wDCBA bjjkbjbjbjjkbkjkbkbkbkjk  

4
44 wCA bjjkbkjk    

                                                                            (50) 
In which: 
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Finally the close form of the solution of these 
equations is obtained as below: 
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Hence the integral part of eq.47 becomes: 
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 (51)  
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In order to determine the integral terms in eq.51 the 
following relation is used: 

 
210

2
02

2
10

2

2
2

10

10

AAA
BABAd
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BiB 


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(52)  
This leads to: 

2 2
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2
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bj bj bj bk bk bk
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(53) 
Finally equation (37) reduced to: 
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2
o
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        (54) 

 
The other terms in the equation (27) can be 
calculated from similar procedure. 
 A method implemented for obtaining of the Mean 
Square function of relative displacement is also 
applied for  determining the elements required for 
the Mean square of relative velocity function; the 
only difference is  that the constant coefficient for 
the equation (50) are : 
 

2 2 2 2
1 2 3 41, ( 4 ), , 0bj bk bk bk bj bj bj bkw w w w               

 
It should be noted that the relation between 
Displacement PSDF and velocity PSDF of an 
arbitrary process z can be stated as: 

2( ) ( )zz
z z

S S        (55) 

 
6.2. The Required Separation Distance and the 
Calculation of the Standard Deviation 
 
Using a Gaussian process, Davenport, showed that 
the Mean and Standard Deviation of the maximum 
values of the system is obtained [11]: 

 
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


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
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Z

Z





2

      (58) 

 
In this equation 

Z is the relative displacement 
function, 

Z  is the relative velocity function, T is 
the time duration of the random vibrations process 
and   is the Euler constant equal to 0.5772. Using 
these equations, the Mean and Standard deviation 
of the required separation distance of adjacent 
buildings can be determined. 
 
3. Results and Discussions 

A Computer program developed in this study 
(2009) to calculate the mean and standard deviation 
of the separation distance .In order to study the 
effect of various parameters on this distance, some 
building with torsional behavior and with different 
stories, eccentricities and damping ratios have been 
analyzed and the mean and standard deviation of 
their separation distances have been determined. 
The dynamic properties of the buildings are 
summarized in table 1 to 3. The stiffness of 
buildings is selected in such a way that their 
periods are nearly equal to that obtained by 
empirical relations in seismic codes. 
 
3.1. The Effects of the Natural Period 
In order to study the effects of the natural period on 
the separation distance, various buildings with 
different periods have been considered. Building a 
and b have 2,4,6,8,10,12,14,16,18,20 stories so, 10 
different cases have been considered. In figures 1, 
2 and 3, three cases of 10 cases have been shown.  
For example, in figure 1 the building a has 4 stories 
and stories of building b varies from 2 to 20. So, 
the natural period of building a is considered 
constant and that of building b is varing. From 
these graphs it can be seen that as the difference 
between natural periods of both buildings 
increases, the more separation distance between 
them is required. If the natural period of adjacent 
buildings is similar to each other there would be no 
need for separation distance theoretically. 
However, standard building codes require a 
minimum distance for the buildings. 
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Table 1: Dynamic Characteristic of Building a & b with 5% Eccentricity 
 
Number 
of stories Mass 

(ton) 

Building 
Height 
(m) 

Stiffness of story 1 
–x direction 
(KN/mm) 

Stiffness of story 1 
–y direction 
(KN/mm) 

experimental 
Natural period 
(sec) 

Analytical 
Natural period 
(sec) 

Buildin
g length 
(m) 

Building 
wide (m) 

2 454.5 6 380 400 0.2684 0.2692 

9 6 

4 454.5 12 430 450 0.451 0.4507 
6 454.5 18 480 510 0.612 0.6132 
8 454.5 24 520 600 0.759 0.7615 
10 454.5 30 570 680 0.897 0.8950 
12 454.5 36 610 770 1.029 1.0247 
14 454.5 42 640 820 1.155 1.1589 
16 454.5 48 690 880 1.277 1.2703 
18 454.5 54 720 920 1.394 1.394 
20 454.5 60 760 1000 1.509 1.500 
Eccentricity of x-Direction: 0 
Eccentricity of y-Direction: 5% 
 
 
 
 
 
 
 
Table 2: Dynamic Characteristic of Building a & b with 10% Eccentricity 
Number 
of stories 

Mass 
(ton) 

Building 
Height 
(m) 

Stiffness of story 1 
–x direction 
(KN/mm) 

Stiffness of story 1 
–y direction 
(KN/mm) 

experimental 
Natural period 
(sec) 

Analytical 
Natural period 
(sec) 

Buildin
g length 
(m) 

Building 
wide(m) 

2 454.5 6 410 460 0.2684 0.2688 

9 6 

4 454.5 12 470 510 0.451 0.4498 
6 454.5 18 520 560 0.612 0.6171 
8 454.5 24 570 660 0.759 0.7586 
10 454.5 30 620 720 0.897 0.8976 
12 454.5 36 670 770 1.029 1.085 
14 454.5 42 720 820 1.155 1.1541 
16 454.5 48 770 870 1.277 1.2718 
18 454.5 54 800 920 1.394 1.394 
20 454.5 60 850 970 1.509 1.500 
Eccentricity of x-Direction: 0 
Eccentricity of y-Direction: 10% 
 
 
 
 
 
Table 3: Dynamic Characteristic of Building a & b with 20% Eccentricity 
Number 
of stories 

Mass 
(ton) 

Building 
Height 
(m) 

Stiffness of story 1 
–x direction 
(KN/mm) 

Stiffness of story 1 
–y direction 
(KN/mm) 

experimental 
Natural period 
(sec) 

Analytical 
Natural period 
(sec) 

Buildin
g length 
(m) 

Building 
wide(m) 

2 454.5 6 460 520 0.2684 0.2707 

9 6 

4 454.5 12 520 580 0.451 0.4548 
6 454.5 18 590 660 0.612 0.6146 
8 454.5 24 650 750 0.759 0.7579 
10 454.5 30 710 830 0.897 0.8920 
12 454.5 36 760 880 1.029 1.0289 
14 454.5 42 790 960 1.155 1.1540 
16 454.5 48 840 1020 1.277 1.2737 
18 454.5 54 890 1070 1.394 1.3913 
20 454.5 60 940 1130 1.509 1.500 
Eccentricity of x-Direction: 0 
Eccentricity of y-Direction: 20% 
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Fig. 1-Natural Period Effects, Building a 4 story 
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Fig .2-Natural Period Effects, Building a 12 story 
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Fig.3 -Natural Period Effects, Building a 18 story 
 
3.2. The Effects of Eccentricity 
In order to determine the effects of eccentricity (the 
relative distance between center of mass and center 
of rigidity of story) on separation distance of adjacent 
buildings, the 2 cases were studied: 
 
Case 1:  
The eccentricity of building a considered as constant 
and of building b varies as below: 

1) Building a has an eccentricity equal to %5 
and building b has corresponding value of 
%5, %10, and %20. 

2) Building a has an eccentricity of %10 and 
building b has eccentricities equal to %5, 
%10, and %20 respectively. 

3) Building a has an eccentricity of %20 and 
building b has eccentricities of %5, %10, 
and %20 respectively. 

It is worth to note that building a has 8 , 16 and 20 
stories respectively and the number of stories in 
building b varies from 2 to 20 floors. The obtained 
results have been presented in figures 4 to 7. 
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Fig.4 - Case1, Building a 8 story – ECC : 5% , 
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Fig. 5- Case 1, Building a 8 stories -ECC : 10% 
 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

 

 

Se
pa

ra
tio

n 
di

st
an

ce
 (c

m
)

Natural period of building b (sec)

ECC. 20%
ECC. 10%
ECC. 5%

ECC. of building a=5%

 
 

Fig .6- Case 1, Building a 16 stories- ECC : 5% 
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Eccentricity of both buildings=10% 
 

Eccentricity of both buildings=10% 
 

Eccentricity of both buildings=10% 
 

 Two building has 4 stories and 
similar natural periods 

 Two building has 12 
stories and similar natural 
periods 

 Two building has 18 
stories and similar natural 
periods 

 Two building has 8 stories 
and similar natural periods 
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Fig .7- Case 1, Building a 16 stories- ECC :10% 
 
Case 2: 
In this case the eccentricity of both building is taken 
similar and equal to 5, 10 and 20%. Furthermore, the 
number of stories for building a have fixed and for 
building b is set to be varied from 2 to 20 stories. The 
obtained results have been shown in figures 8 to 10. 
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Fig.8- Case2, Building a 4story 
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Fig.9- Case2, Building a 14 story 
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Fig.10- Case2, Building a 20story 
 
 
From figures 4 to 10 we can obtain that when the 
difference between natural period of building a  and 
b becomes large , the eccentricity would be increased 
and subsequently  lead to increase in required 
separation distance. But if the difference closes to 
zero, the eccentricity would be decreased and cause 
to decrease in the required separation distance value. 
So, we can say that the effect of eccentricity is 
greatly influenced by the natural period factor and its 

role is not important like as the natural period in 
separation distance calculations.   
 
3.3. The Effect of Damping Ratio 
In order to investigate the effect of the damping ratio 
on the separation distance of two adjacent buildings, 
the values of damping coefficients were considered 
as 2%, 5% and 10%. The number of the stories of 
building a assumed to be constant and for building b 
were considered 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20, 
respectively. In order to calculate the separation 
distance, data of Table (2) were used. The results of 
the calculations for a case in which the building a has 
4 and 12 stories are demonstrated in figures (11) to 
(12). 
From figure 11 and 12 it could be found that as the 
damping ratios becomes larger the required 
separation distance in all cases with different 
eccentricities decreases. 
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Fig.11- Effect of damping ratio, Building a 4story – ECC: 10%  
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Fig.12- Effect of damping ratio, Building a 12story – ECC: 10% 
 
3.4. Comparison with Seismic Codes 
In this section, obtained results in previous 
paragraphs calculated based on random vibration 
theory have been compared with corresponding 
values in mentioned code relations. Figures 13 to 15 
have shown this comparison for 4, 12 and 20 stories 
buildings.  



Journal of American Science                                                                                                                 2010;6(10)   

  

http://www.americanscience.org            editor@americanscience.org 193

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

 

 

Se
pa

ra
tio

n 
di

st
an

ce
 (c

m
)

Natural period of building b (sec)

Random Vibration
UBC97
IBC2006
2800Iran

 
 

Fig .13- Building a with 4 story 
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Fig.14- Building a with 12 story 
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Fig .15- Building a with 20 story 
 

From above figures, it can be seen that in all cases 
UBC 97 require much more separation distance than 
the other codes and random vibration theory. 
Furthermore, when the height of the buildings 
becomes large, in most range of natural period, the 
required separation distance calculated by random 
vibration theory is close to Standard 2800 of Iran 
approximately. 
 
4. Conclusions 
In this paper relations for calculating required 
separation distance between torsional adjacent 
buildings have developed using random vibration 
method. Some building has been analyzed and effects 
of various parameters have been investigated. 
Furthermore, the results have been compared with 

seismic codes. The main results are summarized as 
below:  
1. If the difference between natural periods of 

adjacent structures increases the required 
separation distance increases too. It is evident 
that if the natural periods of the two structures 
become equal, i.e all the dynamic 
characteristics of the adjacent buildings are the 
same; the theoretical separation distance 
between the two buildings becomes negligible.  

2. As shown in the Figures 11 and 12 with the 
increase of the damping ratio of the two 
adjacent buildings the required separation 
distance would be reduced. So for retrofitting of 
the coherent buildings, one can use dampers to 
increase damping. This is used as a method in 
order to prevent the pounding of the adjacent 
old buildings  in order to avoid pounding, 
during earthquake 

3. When the difference between natural periods of 
buildings becomes large, any increase of the 
eccentricity will reduce the required separation 
distance between them. It can be justified that 
the torsion mode of the both buildings becomes 
more similar. This case, in fact, is similar to a 
case which two shear buildings have a similar 
natural period and vibration mode.  

4. Fig 13 to 15 shows that the calculated separation 
distances of the UBC97 code in comparison to 
IBC2006, 2800Iran and random vibration 
theory are overestimated.  

5. The random vibration method gives high values 
of separation distance in compared to IBC2006 
while it has no meaningful difference from that 
estimated by 2800Iran.  
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