
Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

52

A Prototype-based Approach to Meta-Modeling using SELF

1Syed Ahsan 2 Amjad Farooq, 3Abad Shah

1, 3 Al-Khawarizmi Institute of Computer Science

2 Department of Computer Science and Engineering, University of Engineering and Technology, Lahore
ahsancs@hotmail.com

 Abstract: The activities of system modeling and system implementation have traditionally been viewed as
two distinct entities owning to the purported differences between modeling languages and programming
languages. We however feel that with raised abstractions of programming languages and executable
capabilities of modeling languages, these differences are no more distinct. Based on this argument, in our
opinion, SELF, as a prototype based programming language is sufficiently rich to form the basis of
prototype-based meta-modeling approach. Existing meta-modeling approaches do not provide adequate
meta-design patterns in order to be able to alleviate inherited methodological deficiencies of class-based
methodologies. We feel that our proposed approach may prove to be a suitable candidate for adoption by
various agile practices to model today’s complex and evolutionary systems. Also included is a comparison
between class based and prototype based object modeling techniques to highlight the suitability of the later
for modeling evolutionary domains. [Journal of American Science. 2010;6(10):52-59]. (ISSN: 1545-1003).

Keywords: Evolutionary System, Object modeling, Meta modeling, Prototype, SELF, Agile development,
Software Engineering, Knowledge Sharing

1. Introduction
 With increased reliance on computational
tools, modern day systems are becoming
increasingly complex as customers demand
richer functionality delivered in ever shorter
timescales. Conventional software engineering
practices are not suitable for handling the
complexity of modern system development
because of their peculiar characteristics and ever
evolving nature. More recently Meta modeling
has been advocated to manage the design
complexity of evolutionary domains by
providing support to customized, flexible and
agile methods that satisfy the requirements for
stakeholder involvement and user participation,
we feel that this approach has limitations because
of the static structure of “meta-meta-modeling”
architectures. Although these agile practices
advocate an iterative, dynamic and agile
approach to application development, we
however feel that they have limited capability to
model evolutionary domains because, i) Majority
of them do not follow any formal software
development model ii) Those which follow a
formal model are based on one of the above
mentioned conventional linear or static model,
and iii) They suffer from the limitations of static
analysis and design iv) Code migration and
maintenance is difficult in case of “too agile” or
“too casual” approach to software development.

 In literature, for modeling the objects of
evolutionary and explorative domains such as
bioinformatics, the prototype-based object
modeling technique has been identified as a more
suitable candidate then the class-based object
modeling technique (Chambers, 1992; Borning,
1986). SELF being a prototype-based language
provides a rich environment for language design
that supports the key requirements of a meta-
modeling facility. Concreteness, uniformity, and
flexibility make the physical world
comprehensible. SELF attempts to apply these
principles by using a model based on Prototypes
that provides for a smooth transition from
concrete to abstract and vice versa through one-
to-one mapping between the representation and
the object. The remainder of the chapter is
organized as follows. In Section 2, we give the
related work which includes limitations of Meta-
modeling approach, the comparison and relative
suitability of two object modeling techniques
i.e., class based and prototype based technique to
model evolutionary domains. The potential of
SELF for meta modeling is discussed in Section
3. We conclude this research work by presenting
conclusion and Future directions in Section 4.

1. Literature Survey

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

53

Software engineering has been enabling
developers to cope with increasing complexity of
software –intensive systems by better techniques
of designing, implementing and testing the
system. The focus has been on achieving the
objectives of; a) more clearly defined
methodologies b) raised abstraction of
implementation tools and, c) better organization
and automation of software verification and
testing tools .
Model Driven Engineering (MDE) attempts to
achieve the above mentioned objectives by
proposing a framework in which any
specification should be expressed by models,
which are both human and machine
understandable and can reside at any level of
abstraction (Dedecker, 2001). Since these models
are machine readable, the process of developing
systems becomes iterative, refining abstract
models to more concrete ones, and in the end,
automatically generating and deploying the
complete code (Walker, 1992).
In order to apply MDE in large software
development projects, the Object Management
Group (OMG) has launched the Model Driven
Architecture (MDA) initiative to address the
issues related to large development teams and a
diversity of tools, such as model interchange,
diagram interchange, model versioning and
concurrent management etc.. In order to support
MDA approach to software development, it is
important to define precisely what language
should be used to express models (Ungar and
Smith, 1991) how to specify model
transformations, how to exchange models, how
to store and make models evolve, and more
recently, how to generate code [54]. To achieve
this MDE uses the techniques of meta-modeling
and model transformation. Meta-modeling,
through a meta-model, clearly defines a
modeling language by specifying its abstract
syntax along with its concrete syntaxes, in which
a class of models can be precisely defined.
Model transformation technique is used to
clearly define relationships between models
(Ahsan and Shah, 2008; Amber, 2002).
A meta-model must be part of a meta-model
architecture which enables a meta-model to be

viewed as a model, which itself is described by
another meta-model. This allows all meta-
models to be described by a single meta-model
known as a meta-meta-model that enables all
modeling languages to be described in a unified
way. The traditional meta-model architecture,
proposed by the original OMG MOF 1.X
standards is based on 4 distinct meta-levels
(Shah, 2001). These are as follows:
M0 contains the run time instances of application
modeled at meta-level M1. M2 is the
architectural level which contains the meta-
model that captures the language: for example,
UML elements such as Class, Attribute, and
Operation. M3 is the meta-meta-model layer that
describes the properties of all meta-models can
exhibit. The meta-meta-model is the glue that
binds the simplest set of concepts required to
define any meta-model of a language.

2.1. Golden Braid Meta-model
Architecture

An alterative and better representation of meta-
model is provided through Golden Braid
architecture (Shah and Mathkour, 1995) that
relates meta-models, models and instances based
on the fundamental property of instantiation,
thus enabling description of an arbitrary number
of meta-levels. Models at any level of abstraction
are instances of this meta-architecture. This
along with the ability to use meta-object protocol
(MOP) that allows a program to keep its meta-
model in sync with its runs time behavior, offers
Golden Braid Architecture a great deal of
flexibility (Chambers et al., 1989). We will
show in Section 4 how our propose prototype
based technique provides natural support for this
behavior.
The quality of a meta-model can be measured by
determining the quality of the
a) Abstract syntax definition, b) meta-
operations definition, c) concrete syntax
definition, d) semantics definition, and e)
mappings to other languages. The Golden Braid
Architecture proposes five levels to determine
the quality of the above mentioned tasks
(Chambers and Ungar 1991).

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

54

Table 1: Five levels of Golden Braid Architecture

Level Abstract Syntax Meta Operations Concrete
Syntax

Semantics Mappings

Level 1 Defined Partially defined Not defined Informal,
incomplete

Not defined

Level 2 Relatively
complete.
Snapshots
constructed and
tested

Significantly
defined

Not defined Informally
defined

Note
defined

Level 3 Completely
tried and tested

Completely
defined

Defined but
Partially
formalized

Informally
defined

In Initial
stages

Level 4 Formalized and
tested

Complete and
Formalized

Completely
formalized and
tested

Initial models Partially
defined

Level 5 Complete and
Formalized

Complete and
Formalized

Complete and
Formalized

Executable
semantic model

Formalized
and
complete

At Level 5 the language definition will
be complete and self-contained capable of
generating semantically rich models capable of
simulation, evaluation and execution. Even
international standards such as UML do not
exceed level 3 As we see in Section 4, SELF
which is based on prototype technique of object
modeling achieves level 5 owning to the
uniformity, flexibility and concreteness provided
by prototype based approach.

2.2. Limitations of Meta modeling approach
 The aim of meta-modeling has been to

raise design abstraction and to achieve full code
generation to automate development, leading to
improved productivity, quality and complexity
hiding. Meta modeling approach has tried to
address the challenge of managing complexity of
evolutionary systems by providing a comparatively
a unified and flexible design environments for
languages (Ahsan and Shah, 2008; Agesen et al.,
1993. However, it has the following non-
exhaustive set of limitations:
i) Meta model focuses on high-level
abstractions with other artifacts (of increasing
concreteness) seen as of lesser value. We feel
that low level abstractions are central to and
useful in system development. and have a crucial
role to play in the process;

ii) Existing approaches do not offers direct
method implementation

iii) The basic metamodeling architectures
are based on ‘static’ data models (mostly Entity

Relationship Diagrams) and on their extensions.
Hence the basic limitations that appear in the
accurate expression of a method are semantic
and syntactic weaknesses, which are inherent in
the generic structure of the data model it SELF.

iv) Expensive change management in
metamodeling associated to the static structure of
“metametamodeling” architectures.

v) Current meta-modeling and concrete syntax
standards suffer from semantic ambiguity as they
primarily define the syntax of a language and fail
to give the semantic definition (Level 5 of
Golden Braid Architecture). The semantic
definition still requires a reference to software
development artifacts, such as requirements
specifications, models, and even program code.
A lack of semantic ambiguity is particularly
important in the context of a model-driven
development as it is likely that several
languages, or language variants will be used in
any given development and this proliferation of
languages introduces ambiguity in semantic
representations concrete artifacts.

In literature, amongst various major features of
existing MDA standards that contribute towards
ambiguity in concrete artifacts, following are
worth mentioning (Bornberg-Bauer and Paton,
2001; Amber, 2002):

• Concrete standards, in most cases, do not
unambiguously refer to concrete artifacts and
never to the actual language specification.

• Semantic of the language are not defined
using a concrete model, but by using English

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

55

with the assistance of intermediate semantic
models.

• To correctly and completely interpret a
concrete artifact, its abstract syntax and
semantics must be identified. Ideally, the
concrete syntax standard should permit the
artifact to be interpreted sufficiently so that
related specifications of syntax and semantics
can be identified if they are separate from the
concrete syntax standard.

vi) Many modeling Languages such as UML
represents programming concepts (classes, return
values, etc.) with graphical symbols such as
rectangles. This forces developers to visualize
static structures (Chambers, 1992). Also for
example, having a rectangle symbol to illustrate
a class in a diagram and then equivalent textual
presentation in a programming language, in most
cases ends up with having the same information
in two places without a significant improvement
in automated code generation. Limited code
generation possibilities force developers to start
manual programming after design and a lot of
effort goes into rewriting generated code and
keeping all the other models up-to-date (Myers et
al., 1992).

Meta-models should not be conceived to visualize
code, but describe higher-level abstractions on
top of programming languages. A few authors
have suggested achieving this by narrowing
down the design space through Domain-Specific
Modeling (DSM) languages. However this can
also be achieved by raising the abstraction level
of programming languages as we will explain in
Section 4.

vii) The above mentioned problems also
influence and aggravate the model
interoperability issues. Interoperability issues in
the meta-model domain may occur in the
definition, integration and representation of the
syntax, semantics and notation of modeling
languages.

Some important additional aspects to be
considered in model interoperability are (Myers
et al., 1992; Kniesel, 1999):

• The amount of available meta-attributes
to define concrete attributes of a certain
type may be limited.

• Existence of non-corresponding model
fragments, i.e. their meta-models are partly not
corresponding with the concrete models. This
can result in information loss or in hidden
information.

• Diversity of graphical representations and
models cannot be understood after model
exchange because of complete or partial loss of
graphical information.

• History logs to record model changes which can
be necessary in model synchronization in
distributed model change scenarios or in
evolutionary domains...

viii) One of the most widely known OMG
standards for describing languages through meta-
models, MOF (the Meta Object Facility), has a
number of limitations (Seco and Caires, 2000;
Flatt and Felleisen, 1998):

• It is not rich enough to capture semantic
concepts in a platform independent way.
MOF does not provide a means of expressing the
concrete syntax of a language, whether it is a
textual or diagrammatical syntax.

The limitations listed above are inherent in meta-
modeling approach as this approach is an
extension of class-based object modeling
technique. Owning to this, the limitations of class
–based object modeling technique as discussed
below are reflected in Meta modeling.

The two object modeling techniques which are
called class-based and prototype-based techniques
form the basis of two types of software
development methodologies; the class-based
methodologies and prototype-based
methodologies (Ungar and Smith, 1991; Elmasri
and Navathe, 2002). These two types of
methodologies mainly differ from each other as
highlighted in Table 1 because they use the two
different object-modeling techniques (Amber,
2002). Although, the prototype-based technique is
considered more flexible, powerful, and simpler
technique than the class-based technique but the
prototype-based technique could not get the
popularity that it deserved (Chambers et al.,
1989).

3. THE POTENTIAL OF SELF FOR
PROTOTYPE-BASED META-MODELING

Modeling languages have traditionally been
viewed as distinct from programming languages
owning to the purported differences between their
abstract syntax, concreter syntax and semantics.
The reason for this view point has been the
differences between:

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

56

a) The level of abstraction that the languages are
targeted at. For instance, UML tends to focus on
specification whilst Java emphasizes
implementation.
b) The representation choice of a language’s
concrete syntax. Modeling languages tend to
provide diagrammatical syntaxes, whilst
programming languages are textual (Garzotto et
al., 1991).
c) Modeling languages have been traditionally
viewed as having an informal and abstract
semantics whereas programming languages are
significantly more concrete due to their need to be
executable (Smith et al., 1994).

However, with raised abstractions of
programming languages and executable
capabilities of modeling languages, these
differences are no more distinct. Both have a
concrete syntax, abstract syntax and semantics
[52]. For example, Java has been widely
extended with declarative features, such as
assertions, whilst significant inroads have been
made towards developing executable versions of
UML. Similarly, there is already a human
readable textual form of UML and tools that
provide visual front ends to programming
languages like Java are commonplace. With these
developments, modeling languages and
programming languages are increasingly viewed
as being one and the same. Based on this
argument, in our opinion, SELF, as a prototype
based programming language is sufficiently rich
to form the basis of prototype-based meta-
modeling approach. SELF with its following
features and capability fulfils the requirements of
meta-modeling facility.

Concreteness
SELF uses prototypes which make objects to be
easily comprehended, manipulated, directly
inspected and even tested: new objects in SELF
are created through copy and extending an
existing object, a process called cloning
(Borning, 1986). In class-based systems, an
object is instantiated from a description, and thus
is on a less concrete level. All display objects
(circles, frames, buttons, pieces of text, and so
on) in the SELF user interface inherit morph
behavior which is the default behavior of the
basic graphical object, called a “morph.”, and are
therefore kinds of morphs, acquiring concrete
behavior by default (Chambers and Ungar, 1989;
Lee, 1988).

Also, any SELF object can be viewed as a kind
of morph called an “outliner,” so the task of
modifying or making new SELF objects takes
place in this concrete world. The language, being
based on prototypes lets the programmer work
with real data structures rather than descriptions.
Concreteness is in the user interface architecture
in four ways: a physical look and feel, a single
SELF level representation, the reification of
layout constraints, and the use of embedding for
composite structure (Smith et al., 1994).

Figure 1: Two SELF Objects with ‘morph’

behavior

Uniformity
SELF enables a few concepts to be used to
understand everything as everything is an object
composed of named slots, and all computation is
performed by message passing between objects.
The user can directly take apart an application
down to a very low level (Chambers and Ungar,
1989). Even the programming environment itself
can be modified and deconstructed for use in
applications. There is no system level distinction
between using an application and changing or
programming it (Lee, 1998). Enabling immediate
and direct access to pieces of a running
application can save time and enhance the sense
of direct effect.

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

57

Figure 2: SELF slots are directly accessible and
there is no run/edit distinction

Uniformity in the language semantics is

achieved because everything is an object, all
computation happens by message passing, and
because slots are used to hold both state and
behavior (Lee, 1998; Xin and Jian, 2008).
Uniformity is in the user interface architecture
because a single kind of display object, used to a
very low level, can be directly accessed, and
because there is no run/edit distinction. The
environment itself is made of morphs, and is
therefore available for reuse and modification.

Flexibility
In SELF-4.0, the morph serves down to a quite
low level of graphics detail and everything the
user perceives as a graphical entity is
manipulable as a concrete object (Chambers and
Ungar, 1990). The uniformity of SELF helps
achieve flexibility by applying uniform change
mechanism throughout the system. Use of
message-activated slots for both state and
behavior, and the lack of a class/ non-class
distinction help achieve it further. SELF being a
“prototype” based system, any object can have
inheritance children, or can itself inherit from
any other object. Also inheriting from an object

gives you access to that object’s slots. This
simple object model enables the SELF
environment to use a single object representation
mechanism, the outliner, to present all the state
and behavior available to an object through itself
and its parents (Lee, 1998; Xin and Jian, 2008).

From the above discussion, it is evident
that SELF provides a rich environment for
language design that supports the key
requirements of a meta-modeling facility.
Concreteness, uniformity, and flexibility make
the physical world comprehensible. SELF
attempts to apply these principles by using a
model based on Prototypes that provides for a
smooth transition from concrete to abstract and
vice versa through one-to-one mapping between
the representation and the object .The object in
the interface is intended to be concrete,
immediate, and primary facilitating its
conformance to the golden-braid metamodel
architecture ensuring that the language, including
its semantics is completely self described. One of
the most important advantages of using SELF as
a meta-modeling language is its adaptability to
changes. When a change occurs, be it at the
highest level of abstraction (e.g., a change in the
requirements of the system) or at a lower level of
abstraction its impact is well localized and the
parts that are not touched by the change are
immediately reusable.

SELF also supports the following
features that are an essential part of the
development process. These include:
• Execution: allows the model or program to be
tested, run and deployed;
• Analysis: provides information of the
properties of models and programs;
• Testing: support for both generating test cases
and validating them must be provided;
• Visualization

After presenting briefly the potential of
a prototype based language such as SELF we
now clearly define a Prototype-based
methodology so that the steps required to apply
SELF as a meta-modeling language are outlined.

A Prototype based language such as
SELF allows the methodologists to develop
models at different levels of abstraction just like
code. The advantage of having a Prototype-based
methodology is that it clearly defines each step to
be taken, forcing the developers to follow the
defined methodology in this way. It specifies the
sequence of models to be developed, and how to
derive a model from another one at the abstraction

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

58

level immediately above it. Providing developers
with such a methodology will ensure that they
know at any moment during the development life
cycle what is to be done next and how to achieve
it.

4. CONCLUSION AND FUTURE DIRECTIONS

Contrary to the argument provided by
Stein in his work Delegation is Inheritance, in this
paper we argued that although delegation, just like
inheritance, is a knowledge sharing mechanism, it
is not constrained by strictly static inheritance like
structure (class lattice) of class-based
methodologies. In evolutionary system modeling,
there are situations where prototype-based
approach is not only more powerful but also
entirely different than class-based methodology.
We feel that by dealing with concrete entities
instead of conceptual ones, our proposed approach
has increased concreteness, uniformity and
flexibility. The increased flexibility is also the
result of its ability to dynamically change the
Knowledge Sharing graph. These features helped
us to realize the feature of Dynamic Design.
Another important contribution of our proposed
methodology is the realization of the concept of
Dynamic Design. This has been possible owning
to the ability of a prototype to change its parent
dynamically. Dynamic Design enables Prototype
based software development methodology to
accommodate and handle the specialized needs of
modeling evolutionary domains such as
Bioinformatics. This flexibility is also the result
of concreteness and uniformity that is achieved by
treating everything in a system as a concrete
prototype.

With the availability of more formal
methods and tools, Prototype based object
modeling languages will get their well deserved
importance and be accepted by the mainstream
software development community. Class-based
design functionality can be achieved through
Class-less techniques.
 We have taken first step towards formalizing the
Agile software development using evolutionary
and dynamic prototype based languages such as
SELF. However, the object-focused model is not
only applicable to prototype-based languages.
There is no reason why class-based languages like
Smalltalk and C++ cannot be supported by an
object-focused programming environment. We
feel that with the availability of more formal
methods and tools, Prototype based object

modeling techniques and languages will get their
well deserved importance and be accepted by the
mainstream software development community.

After presenting the potential of a
prototype based language such as SELF we are
working on formally defining a Prototype-based
methodology so that the steps required to apply
SELF as a meta-modeling language are clearly
and unambiguously outlined. A Prototype based
language such as SELF allows the methodologists
to develop models at different levels of
abstraction just like code. The advantage of
having a Prototype-based methodology is that it
clearly defines each step to be taken, forcing the
developers to follow the defined methodology in
this way. It specifies the sequence of models to be
developed, and how to derive a model from
another one at the abstraction level immediately
above it. Providing developers with such a
methodology will ensure that they know at any
moment during the development life cycle what is
to be done next and how to achieve it.

REFERENCES
2. [33]Clemens A. Szyperski, Import is Not

Inheritance, Why We Need Both: Modules
and Classes, ECOOP’92, Springer-Verlag,
pp. 19- 32.

3. Abrahamssons, P., Salo, O., Ronkainen, J.,
Warsta., J., “ Agile Software development
methods” , Review and Analysis. VTT
Publications, 2002.

4. Agesen, O., Palsberg, J., and Michael I.
“Type Inference of SELF: analysis of
Objects with Dynamic and Multiple
Inheritance”, in Proc. ECOOP ‘93, pp. 247-
267. Kaiserslautem, Germany, July 1993.

5. Ahsan, S. and Shah A.(2008), A Framework
for Agile Methodologies for Development
of Bioinformatics, The Journal of American
Science VOL(4), PP 15-21, Marsland Press
Michigan, The United States.

6. Amber, S., “Agile Modeling: Effective
Practices for Extreme Programming and the
Unified Process” New York. John Wiley &
Sons, Inc., 2002.

7. Bornberg-Bauer, E. and Paton, N.W.,
‘Conceptual Data Modeling for
Bioinformatics”, Briefings in
Bioinformatics. 2001.

8. Borning, A. H. “Classes Versus Prototypes
in Object-Oriented Languages”, Proceedings
of the ACM/IEEE Fall Joint Computer
Conference (1986) 36- 40.

Journal of American Science 2010;6(10)

http://www.americanscience.org editor@americanscience.org

59

9. Chambers C., “ The Design and
Implementation of the SELF Compiler, an
Optimizing Compiler for Object-Oriented
Programming Languages” Ph.D. Thesis,
Computer Science Department, Stanford
University, April, 1992.

10. Chambers, C. and Ungar, D. “Iterative Type
Analysis and Extended Message Splitting:
Optimizing Dynamically-Typed Object-
Oriented Programs”, In Proceedings of the
SIGPLAN ’90 Conference on Programming
Language Design and Implementation,
White Plains, NY, June, 1990. Published as
SIGPLAN Notices 25(6), June, 1990.

11. Chambers, C. and Ungar., D. “ Making Pure
Object-Oriented Languages Practical.” In
OOPSLA ’91 Conference Proceedings, pp.
1-15, Phoenix, AZ, October, 1991.

12. Chambers, C., Ungar, D. and Lee., E. ” An
Efficient Implementation of SELF, a
Dynamically-Typed Object-Oriented
Language Based on Prototypes”,OOPSLA
’89 Conference Proceedings, pp. 49-70,
New Orleans, LA, 1989. Published as
SIGPLAN Notices 24(10), October, 1989.

13. Dedecker J. Prototype-based languages and
their programming idioms. Capita selecta,
Vrije Universiteit Brussel, Ecole des Mines
de Nantes, 2001.

14. Deutsch, L. P., and Schiffman, A. M.
Efficient Implementation of the Smalltalk-
80 System. In Proceedings of the 11th
Annual ACM Symposium on the Principles
of Programming Languages (1984) 297-302.

15. Elmasri, R.A. and Navathe, S.B. 2000.
Fundamentals of Database Systems 3rd
Edition. Addision-Wesley Pubishing. ISBN:
0805317554

16. Flatt M., and Felleisen. M. Units: Cool
modules for HOT languages. In Proceedings
of the ACM Conference on Programming
Language Design and Implementation,
pages 236–248, 1998.

17. Garzotto, F., Paolini, P., & Schwabe D.
(1991). Authoring-in-the-Large: Software
Engineering Techniques for Hypermedia
Application Design. Proceedings of 6th
IEEE International Workshop on
Specification and Design, (193–201).

18. Kniesel G., Type-safe delegation for run-
time component adaptation. In Proceedings

of the 13th European Conference on Object-
Oriented Programming, pages 351–366,
Lisbon, Portugal, 1999.

19. Lee, E. Object Storage and Inheritance for
SELF, a Prototype-Based Object- Oriented
Programming Language. Engineer’s thesis,
Stanford University (1988).

20. Myers B., Giuse D., Vander B. Declarative
Programming in a Prototype-Instance

21. Pierce B. C. Types and Programming
Languages. MIT Press, February 2002.
ISBN 0-262-16209-1.

22. Randall B. Smith and David Ungar,
Programming as an Experience: The
Inspiration for SELF. ECOOP’95, Springer
Verlag

23. Seco J. C. and Caires L.. A basic model of
typed components. In Proceedings of the
14th European Conference on Object-
Oriented Programming, pages 108–128,
2000.

24. Shah A., and Mathkour, H., “Developing an
Application Using SELF Programming
Language,” ECOOP'96 Workshop WS14,
Linz, Austria, July 1995

25. Shah, A., (2001) .A Framework for Life-
Cycle of the Prototype-Based Software
Development Methodologies. the Journal of
King Saud University, Vol. 13, Pp. 105-125,.

26. Smith, R.B., Lentczner, M., Smith, W.R.,
Taivalsaari, A., Ungar, D., “Prototype-based
languages: object lessons from class-free
programming (panel)”, OOPSLA'94
Conference Proceedings (Portland, Oregon,
October 23-27), ACM SIGPLAN Notices
vol 29, nr 10 (Oct) 1994, pp.102-112

27. Ungar, D., and Smith, R. B. SELF: The
Power of Simplicity. In OOPSLA ’87
Conference Proceedings. Published as
SIGPLAN Notices, 22, 12 (1987) 227- 241.
Also to be published in Lisp and Symbolic
Computation, 4, 3 (1991).

28. Walker, J. (1992). Requirements of an
object-oriented design method. Software
Engineering Journal, 102–113.

29. Xin F., Jian C. “A Framework and
Methodology for Development of Content-
based Web Sites” Department of Computer
and Information Science University of South
Australia Downloaded on November 13,
2008 at 04:48 from IEEE Xplore.

 5/6/2010

