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Abstract: The idea of difference sequence spaces was introduced by Kizmaz [4]. Recently, Subramanian [13] studied the 
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Introduction 

Orlicz [9] used the idea of Orlicz function to 

construct the space )( ML . 

 Lindentrauss and Tzafriri [5] investigated 

Orlicz sequence spaces in more detail, and they 

proved that every Orlicz sequence space M contains 

a subspace isomorphic to )1(  pp . 

Subsequently different classes of sequence 

spaces defined by Parashar and Ghoudhary [10], 

Murasaleen et al. [6] Bekats and Altin [1], Tripathy et 

al. [14], Rao and Subramanian [2] and many others. 

The Orlicz sequence spaces are the special cases of 

Orlicz spaces studied in Ref [3]. 

Recall ([3],[9]) an Orlicz function is a function 

),0[),0[: M  which is continuous, non-

decreasing and convex with 0)0( M ,  

0)( xM for 0x and  

  xas  )(xM . 

If convexity of Orlicz function M is replaced 

by )()()( yMxMyxM  then this 

function is called modulus function, introduced by 

Nakano [8] and further discussed by Ruckle [12] and 

Maddox [7]. By , we denote the space of all real or 

complex sequences. The sets of natural numbers and 

real numbers will denoted by = {1,2,3, …}  

respectively. 

Lindentrauss and Tzafriri [5] used the idea of 

Orlicz function to construct Orlicz sequence 

space
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omes a Banach space which is called Orlicz sequence 

space. For 
p)M( tt  ,  p1 , the space M  

coincide with the classical sequence space p . A 

linear topological space X over the real field  is said 

to be a paranormed space if there is a sub additive 

function Xg :  such that 0)( g , 

)()( xgxg   and for any sequence  )( nx   in X  

such that 0)(  n

n xxg , and any sequence 

)( n   in  such that 0||  n

n  , we get 

0)(  n

nn xxg   . 
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The idea of difference sequence was first 

introduced by Kizmaz [4] write  

1 kkk xxx for k=1,2,3, …. Let  denote 

the set of all real or complex sequences,  :  

be the difference defined by 


 1k)( kxx , and 

),0[),0[: M  be an Orlicz function; or a 

modulus function. 

Let  be the sequence of absolutely convergent 

series. Define a sequence space 

   xxx k :)()( . 

The sequence space  
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becomes a Banach space which is called an Orlicz 

difference sequence space )(M , see [13]. 

The Cesaro-Orlicz sequence space MCes generated 

by Orlicz function M is defined by  
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Is a Banach space (see [11]).We define the 

following sequence space 
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Theorem(1): 

)(MCes Is a Banach space with the norm 














































 




 1

||
1

:0inf||||
1

1

n

n

k

kx
n

Mx


 . 

 

Proof: 

Let 
)(ix be any Cauchy sequence in  

)(MCes , where  

 ,...),(
)()(

21

)( ii

xxx i )(MCes  i . 

Let 0, 0 xr  be fixed. Then for each 0
0


rx


 

there exist a positive integer N such that 

Nji
rx

xx ji   ,||||
0

)()( 
using the  

definition of norm we get  
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  be a Cauchy Sequence in  (complete) 

Then xx j  )(
  as j∞.Using the 

continuity of M We can find that 
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Taking infimum of such  ’s we get 
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for all Ni  .  Since )()(  M

i Cesx  and M is 

continuous then )()( 


M

ii Cesxx , 

this completes the proof. 

 

Theorem(2): MCesCes MM ),(  is a modulus 

function. 

Proof: Let MCesx , then 
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Since M is non-decreasing and modulus 
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Paranormed sequence spaces: 

Let )( npp  be any sequence of positive real 

numbers. Then in the same way we can also define 

the following sequence space  
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Note: If ppn  , for all n , then  

)(),(  MM CespCes . 

 

Theorem(3): ),( pCesM   is a complete 

 paranormed space with 
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  nn pH sup,1max . 
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continuous it follows that ),( pCesx M  , then the 

proof is complete. 

 

Theorem(4):   Let  nn qp0 n  , 

Then ),(),( qCespCes MM   

Proof: Let ),( pCesx M    

then 
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),( qCesx M  .This completes the proof. 

Theorem(5): 

(a) Let 1inf0  nn pp n . Then 

)(),(  MM CespCes . 

 

(b) Let  nnn pp sup1 n . Then 

),()( pCesCes MM  . 

Proof:(a) Let ),( pCesx M   
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Theorem (6): Let nn qp 0 and 
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Proof: Let ),( qCesx M   

(i.e.) 
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.Then ),(),( pCesqCes MM  . 

Theorem(7): ),( pCesM  is a linear set over the set 

of complex numbers. 

Proof: is easy so omitted. 
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