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Abstract: In this paper, we define the sequence space     nnn qpa ,),(  to be consisting of all sequences

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for which 


 01)( kkk xx  belongs to the sequence space )](),(),[( nnn qpa  introduced by Altay and Başar [7]. We 

also define a modular functional on this space and show that it is a complete paranomed space, and when equipped with 
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Introduction 

Let (X, ||.||) be a real Banach space and let 

B(X) (respe. S(X)) be the closed unit ball (resp. unit 

sphere) of X. 

A point )(
0

XSx  is an H-point of B(X) if 

for any sequence )( nx in X such that 1|||| 


n
n

xLim  

,the weak convergence of  

nx to 0x ) ( 0xx
W

write n   implies  

that 0|||| 0 


xxLim n
n

 .If every point of 

S(X) is an H-point of B(X); then X is said to have H–

property (Kadec-Klee).Shortly; X is said to have the 

property (H), if for any sequence on the unit sphere 

of X, weak convergence coincides norm 

convergence. 

A point )(XSx  is an extreme point of 

B(X), if for any )(, XSzy  , the equality 

x=

2

zy 
 implies y=z. 

A Banach space X is said to be Rotund (R) if 

for every point of S(X) is an extreme point of B(X). 

A point )(XSx  is a locally uniformly 

rotund (LUR-point) if for any sequence )( nx in B(X) 

such that 2|||| 


xxLim n
n

, there holds 

 that 0|||| 


xxLim n
n

, if every point of 

S(X) is a LUR-point of B(X), then X is called locally 

uniformly rotund (LUR). It is known if X is LUR, 

then it is (R) and posses property (H). However 

converse of this last statement is not true in general. 

By, we shall denote the space of all real or complex 

sequences and the set of natural numbers will denote 

by = {0,1,2,…}. 

A linear topological space X over the real field 

 is said to be a  

Paranormed space if there is a sub additive 

function Xg :  such that 0)( g ,  

)()( xgxg   and for any sequence  

)( nx   in X  such that 0)( 


xxgLim n
n

, and any 

sequence )( n   in  such that 0|| 


n
n
Lim , 

we get 0)( 


xxgLim nn
n

  .For these geometric  

notions and their role in mathematics we refer 

to the monographs [1], [2], [3], [4], and [5]. Some of 
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these geometric properties were studied for orlicz 

spaces in [9], [10], [11], and [12]. 

For a real vector space X, a function 

],0[: X is called a modular, if it satisfies the 

following conditions:  

(i) 00)(  xx , Xx , 

(ii) )()( xx   , for all 

with 1 , 

(iii) )()()( yxyx    

, Xyx  , ;0,   1  . 

Further, the modular   is called convex if 

(iv) )()()( yxyx   ,

Xyx  , , ;0,   1  .By using the 

sequence space defined in [6], Altay and Başar [7] 

defined the sequence space 

)](),(),[( nnn qpa as )](),(),[( nnn qpa =









 






n

k

p

kk

n

n
nxqax

00

)(: . They also 

showed that the space )](),(),[( nnn qpa is a 

complete linear metric space paranormed 

by

M

n

p

k

n

k

kn

n

xqaxg

1

0 0

||)(





















  



 

also 

V.Karakaya and N.Şimşek [8] proved that this space 

is a Banach space and posses Kadec-Klee (H). 

The idea of difference sequence was first 

introduced by Kizmaz [14]. Write 1 kkk xxx  

for all k  and  :  be the difference 

operator defined by 

 


 01)( kkk xxx , with 01 x . 

We now introduce a generalized modular 

difference sequence space defined by weighted 

means  

Definition: let )(),( nn qa and )( np be sequences of 

positive real numbers we define the 

space  0  ,)(:))(),(),((   xxqpa nnn , 

where

nP

n

n

k

kkn xqax  


 











0 0

||)( .And the 

Luxemburg norm on the sequence space  

)](),(),[( nnn qpa is defined as follows: 









 1)(:0inf||||



x

x , 

 ))(),(),(( nnn qpax   . In the case 

when the sequence )( np is bounded we can simply 

write ))(),(),(( nnn qpa =









 






n

k

p

kk

n

n
nxqax

00

)(: . 

Throughout this paper, the sequence  ) ( np is 

considered to be bounded with 1np  n  and 

let Hpr
r

sup . For any bounded sequence of 

positive numbers )( kp , we have  

)|||(|2|| 1 kkk p

k

p

k

Hp

kk baba  
, 

where 1kp   k . 

Lemma (1): 

The functional  is convex modular 

on )](),(),[( nnn qpa . 

Proof: It can be proved with standard techniques in a 

similar way as in [5, 15] 

Lemma (2): 

For any )](),(),[( nnn qpax  , the functional 

)](),(),[(on  nnn qpa  satisfies the following 

properties: 

(i) If 0<r<1, then )(x
r

x
r H  








 and 

)()( xrrx   . 

(ii) If r>1, then 









r

x
rx H )( . 

(iii) If r≥1, then )()()( rxxrx   . 

Proof: It can be proved with standard techniques in a 

similar way as in [5, 15]. 

Lemma (3): 

For any )](),(),[( nnn qpax  , the following 

assertions are satisfied: 
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(i)  If 1|||| x , then ||||)( xx  , 

(ii) if 1|||| x , then ||||)( xx  , 

(iii) 1|||| x  if and only if 1)( x , 

(iv) if 10  r   and rx |||| , then
Hrx )( , 

(v) if 1r   and rx |||| , then
Hrx )( . 

Proof: It can be proved with standard techniques in a 

similar way as in [5, 15]. 

Lemma (4): 

Let )( nx  be a sequence in )](),(),[( nnn qpa , 

(i) if 1|||| 


n
n

xLim , then 1)( 


n
n

xLim , 

(ii) if 0)( 


n
n

xLim , then 0|||| 


n
n

xLim . 

Proof: 

(i) Suppose that 1|||| 


n
n

xLim .Then for any 

)1,0( there exists no such that 

  1||||1 nx  0nn  . By lemma (3), 

H

n

H x )1()()1(    implies that 

1)( 


n
n

xLim . 

(ii) If 0|||| 


n
n

xLim , then there is an )1,0( and 

a subsequence )(
knx such that 

 
H

nk
x ||||   k . This implies that 

0)( 
 kn

n
xLim and hence 0)( 


n

n
xLim . 

 

Main results 

Theorem (1):     nnn qpa ,),(  is a Banach 

space with respect to the Luxemburg   norm defined 

by

















 1:0inf||||




x
x . 

Proof: Let ,...2,1,0,))((  

 nkxx oknn  be a 

Cauchy sequence in     nnn qpa ,),(  according 

to the Luxemburg norm. Thus  )1,0(   no such 

that 
H

mn xx  ||||  0, nnm  . By the lemma 

3(i) we obtain. 

H

mn

mn xxxx   ||||)( ,     (1)                                                                                           

 0, nnm  . That is  

 
H

P

r

mn

r

k

kr

r

kxkxqa 







 



 0 0

|)()(|  

 0, nnm  . For fixed k we get that 

 |)()(| kxkx mn  and the sequence  

))(( kxn is a Cauchy sequence of real numbers. Let 

)()( kxLimkx n
n




, then from inequality (1), we 

can write 

H

P

r

r

k

nkn

r

kxkxqa 







 



 0 0

|)()(| , 

 0nn   . 

That is,   xxLimxx n
n

H

n 


 )(  . 

By the following calculations, 

rr
P

r

r

k

nk

r

k

nkr

P

r

r

k

kr kxqkxkxqakxqa   


 



 





























0 000 0

|)(||)()(||)(|

 













































   



 



 



0 00 0

1

|)(||)()(|2
r

P
r

k

nkr

P

r

r

k

nkr

H rr

kxqakxkxqa

 . 

we see that the sequence nx converges to  

 ))(( kxx     nnn qpa ,),(  .This completes 

the proof. 

. 

Theorem(2)  Let ))(()( pBxn  and 

)(()( pByn  . If 1
2








 



nn

n

yx
Lim  , then  

  0)()( 


kykxLim nn
n

 , for all k . 

Proof: See   [15Proposition 2.6] 

Theorem(3): Let 

)](),(),[(( nnnm qpaBx   , m . 
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If 1
2








 



xx
Lim n

n
  , then 

)()( kxkxLim n
n




, k . 

Proof: 

For each m  and k , let 



 






))()(sgn(

1

0)()(

0)()(

kxkmx
S

kxkxIf

kxkxIf

m

k

m

m

. 

Hence we have 






 


 2
1

xx
Lim m

m
  








 
 



 

nP

n

n

k

m
kn

kxkx
qa

0 0

|
2

)()(
|

nP

n

n

k

n

k

m

kkn
mm

kkn

kx
Sqa

kx
Sqa  



  








 




0 0 0 2

)(
.

2

)(
.

. (2) 

Let 
m

n = 



n

k

m

m

kkn kxSqa
0

)(.     

and
m

n = 



n

k

m

kkn kxSqa
0

)(.      

 nm, , 

then )(),(),[()(),( nnn

mm qpa and from (2) 

we have 

1
2








 



mm

m
Lim


  .From Theorem (4) we 

have 

  0


m

k

m

k
n
Lim   , k .       (3) 

 Now we shall prove 

that )()( kxkxLim m
m




, k . From (3) at 

0k    we have 

  0)0()0( 00 


m

m

m

m

m
xsxsLim .This implies 

that )0()0( xxLim m
m




. 

Assume that )()( kxkxLim m
m




, 1 nk . Then 

we have 

0))()(( 


kxkxsLim m

m

k
m

, for all 1 nk  

  





1

0

))()((
1

))()((
n

k

m

m

kk

m

n

m

n

n

mn

m

n kxkxsq
a

kxkxqs 

.                                   (4) 

It follows that from   (3) and (4) that  

0))()(( 


kxkxqsLim mn

m

n
m

.This implies 

)()( kxkxLim m
m




  ,  k .  

Theorem (4):  The space )](),(),[( nnn qpa   is 

LUR. 

Proof: 

Let )])(),(),[(()( nnnn qpaBx    

and )])(),(),[(( nnn qpaSx    be such that 

1||
2

|| 




xx
Lim n

n
.By lemma (4-i) we have 

1)
2

( 




xx
Lim n

m
  .Since 

  






rP
r

k

k

r

r kxqax )|)(|()(
00

 , then for 

0 , there exists 0r such that    

)2(3
)|)(|(

1
010








 H

P
r

k

k

rr

r
rkxqa


 .                                                                         

(5)          

Since 

rr P
r

k

k

r

r

r

P
r

k

nk

r

r

rn
n

kxqaxkxqaxLim )|)(|()()|)(|()(
0000

00














 

, and )()( kxkxLim n
n




 k ,  0n  such 

that 

 
)2(3

|))(|()|)(|(
1 001 00

H
rr

P
r

k

kr

P
r

k

nk

rr

r
rr kxqakxqa


  



 





(6)                                    

 0nn  , since )()( kxkxLim n
n




, since  is 

 Continuous operator Hence  0nn   we have 

 |)()(| kxkxn .As a result 0nn  , we 

get 
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3
)|)()(|(

00

0 




rP
r

k

nk

r

r

r kxkxqa .    (7) 

Then from (5), (6) and(7)it follows that  0nn  ,we 

have 

                                                                                                                    

rP

r

r

k

nkrn kxkxqaxx  


 











0 0

|)()(|)(

=  


 


1 000 0

0

)|)()(|()|)()(|(
rr

P
r

k

nkr

P
r

k

nk

r

r

r
rr kxkxqakxkxqa  































   







 

r
r

P

rr rr

r

k

kr

P
r

k

nkr

H kxqakxqa
1 1 000 0

|)(||)(|2
3



 

<























  



 1 00
)2(3

|)(|22
3 rr

H

P
r

k

kr

H

r

kxqa






333
. 

This shows that 0)( 


xxLim n
n

  . Hence by  

lemma 4 (ii), we have 0|||| 


xxLim n
n

 , the space 

)](),(),[( nnn qpa  is LUR. 

 

Theorem (5): The space     nnn qpa ,),(  is a 

complete linear metric space with respect to the 

paranorm defined by  

H
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






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
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  



 

. 

Proof: The proof of linearity of  

    nnn qpa ,),(  with respect to the coordinate 

wise addition and multiplication follows from the 

following inequalities which are satisfied for all 

    nnn qpayx ,),(,    
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(8), 

and }||,1max{|| Hpn    for any  . We 

now verify that g(x) is a paranorm over the 

space     nnn qpa ,),( .In fact, 

(i) 0)( g  (Clearly), 

(ii) )()( xgxg  ,     nnn qpax ,),(  ,  

(iii) )()()( ygxgyxg  ,

    nnn qpayx ,),(,   , follows from the 

inequality (8). 

(iv)Let )( mx  be any sequence in  

    nnn qpa ,),(    such that 

0)( 


xxgLim m
n

 ; let )( m be any sequence in 

 such that 

0|| 


m
m
Lim , since )( xxxx mm     

then we get )()()( xxgxgxg mm  . 

Hence )}({ mxg is bounded and we have 
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, this tends to zero as m . 

 The completence of the space     nnn qpa ,),(  

is a routine verification by using standard techniques 

as theorem (1). 
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