Structure and Some Geometric Properties of Generalized Cesáro Type Spaces Defined by Weighted Means

N. Faried and A.A. Bakery
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt awad_bakery@yahoo.com

Abstract: In this paper, we extend the Class of Cesáro sequence spaces $\operatorname{Ces}\left[\left(p_{n}\right),\left(q_{n}\right)\right]$, introduced by Khan and Rahman to a generalized Cesáro type spaces $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ defined by weighted means $\left(a_{n}\right),\left(q_{n}\right)$ and of positive real number powers $\left(p_{n}\right)$ with $\inf _{n} p_{n}>0$. We define a modular functional on this generalized Cesáro sequence space and show that it is a complete paranomed space, and when equipped with the Luxemburg norm is a Banach space, possessing H-property, is not rotund and therefore not locally uniformly rotund. [Journal of American Science. 2010;6(10):7-12]. (ISSN: 1545-1003).

Keywords: Generalized Cesáro sequence space, H-property, R-property, Convex modular, paranorm, Luxemburg norm, locally uniformly rotund.

Introduction

Let $(\mathrm{X},\|\|$.$) be a real Banach space and let$ $B(X)$ (respe. $S(X)$) be the closed unit ball (resp. unit sphere) of X.

A point $x_{0} \in S(X)$ is called an H-point of $\mathrm{B}(\mathrm{X})$ if for any sequence $\left(x_{n}\right), x_{n} \in B(X)$ such that $\left\|x_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$, the weak convergence of x_{n} to $x_{0}\left(\right.$ write $\left.x_{n} \xrightarrow{W} x_{0}\right)$ implies that $\left\|x_{n}-x_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

If every point of $S(X)$ is an H-point of $B(X)$; then X is said to have H -property (Kadec-Klee). A point $x \in S(X)$ is called an extreme point of $\mathrm{B}(\mathrm{X})$, if for any $y, z \in S(X)$, the equality $\mathrm{x}=\frac{y+z}{2}$ implies $\mathrm{y}=\mathrm{z}$.

A Banach space X is said to be Rotund (R) if for every point of $S(X)$ is an extreme point of $B(X)$. A point $x \in S(X)$ is called a locally uniformly rotund (LUR)-point, if for any sequence $\left(x_{n}\right)$ in $\mathrm{B}(\mathrm{X})$ such that $\left\|x_{n}+x\right\| \rightarrow 2$ as $\mathrm{n} \rightarrow \infty$, there holds
that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. If every point of $\mathrm{S}(\mathrm{X})$ is a LUR-point of $B(X)$, then the space X is called locally uniformly rotund (LUR). It is known that if X is LUR, then it is rotund (R) and possesses property (H). However the converse of this last statement is not true in general. By ω, we denote the space of all real or complex sequences and by $\mathbb{N}=\{0,1,2, \ldots\}$.

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a sub additive function $g: X \rightarrow \mathbb{R}$ such that

$$
g(\theta)=0, \quad g(-x)=g(x) \text { and for any }
$$

sequence $\left(x_{n}\right)$ in X such that
$g\left(x_{n}-x\right) \xrightarrow{n-\infty} 0$, and any sequence $\left(\alpha_{n}\right)$ in \mathbb{R} such that $\left|\alpha_{n}-\alpha\right| \xrightarrow{n-\infty} 0$, we get $g\left(\alpha_{n} x_{n}-\alpha x\right) \xrightarrow{n-\infty} 0$.

For these geometric notions and their role in mathematics we refer to the monographs [1], [2], [3], [4], and [5]. Some of these geometric properties were studied for orlicz spaces in [9], [10], [11], and [12].
In [5], Sanhan and Suantai investigated some geometrical properties
of $\operatorname{Ces}\left(\left(p_{n}\right)\right)$ defined by
$\operatorname{Ces}\left(\left(p_{n}\right)\right)=$
$\left\{x \in \omega: \sum_{n=0}^{\infty}\left(\frac{1}{n+1} \sum_{k=2^{n}}^{2^{n+1}-1}\left|x_{k}\right|\right)^{p_{n}}<\infty\right\}$, for any
bounded sequence $\left(p_{n}\right)$ of positive real numbers, with $\inf _{n} p_{n}>0$.

In [6] Khan and Rahman, generalized the space $\operatorname{Ces}\left(\left(p_{n}\right)\right)$ by defining the space $\operatorname{Ces}\left(\left(p_{n}\right),\left(q_{n}\right)\right)$, for positive sequences $\left(p_{n}\right),\left(q_{n}\right)$ of real numbers, with $\inf _{n} p_{n}>0$ by $\operatorname{Ces}\left(\left(p_{n}\right),\left(q_{n}\right)\right)=$
$\left\{x \in \omega: \sum_{n=0}^{\infty}\left(\frac{1}{Q_{2^{n}}} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{p_{n}}<\infty\right\}$,
where $Q_{2^{n}}=q_{2^{n}}+q_{2^{n}+1}+\ldots .+q_{2^{n+1}-1}$.
Moreover they showed that $\operatorname{Ces}\left(\left(p_{n}\right),\left(q_{n}\right)\right)$ is a paranomed space by the paranorm
$g(x)=\left[\sum_{n=0}^{\infty}\left(\frac{1}{Q_{2^{n}}} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{p_{n}}<\infty\right]^{\frac{1}{M}}$, where $M=\max \{1, H\}$, and $H=\sup _{n} P_{n}<\infty$.

For a real vector space X, a function $\sigma: X \rightarrow[0, \infty]$ is called modular, if it satisfies the following conditions:
(i) $\sigma(x)=0 \Leftrightarrow x=0, \forall x \in X$
(ii) $\sigma(\lambda x)=\sigma(x)$, for all $\lambda \in \mathbb{R}$ with $|\lambda|=1$,
(iii) $\sigma(\lambda x+\beta y) \leq \sigma(x)+\sigma(y), \forall x, y \in X$, $\forall \lambda, \beta \geq 0 ; \lambda+\beta=1$.

Further, the modular σ is called convex if (iv)
$\sigma(\lambda x+\beta y) \leq \lambda \sigma(x)+\beta \sigma(y), \forall x, y \in X$, $\forall \lambda, \beta \geq 0 ; \lambda+\beta=1$.

We now introduce a generalized modular sequence space defined by weighted means.

Definition: let $\left(a_{n}\right),\left(q_{n}\right)$ and $\left(p_{n}\right)$ be sequences of positive real numbers with $\inf _{n} p_{n}>0$, we
generalize the space $\operatorname{Ces}\left(\left(p_{n}\right),\left(q_{n}\right)\right)$ by defining
$\operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)=\{x \in \omega: \sigma(\lambda x)<\infty$, for some $\lambda>0\}$
, where $\sigma(x)=\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{p_{n}}$. In the case
when the sequence $\left(p_{n}\right)$ is bounded we can simply write
$\operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)=$
$\left\{x \in \omega: \sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{p_{n}}<\infty\right\}$.
The Luxemburg norm on the sequence space
$\operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)$ is defined for any
$x \in \operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)$ by:
$\|x\|=\inf \left\{\lambda>0: \sigma\left(\frac{x}{\lambda}\right) \leq 1\right\}$.

Remarks:

(1) Taking
$a_{n}=\frac{1}{n+1} ; q_{n}=1, \forall n \in \mathbb{N}$.
then $\operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)=\operatorname{Ces}\left(p_{n}\right)$.
(2)Taking $a_{n}=\frac{1}{Q_{2^{n}}}$,
where $Q_{2^{n}}=q_{2^{n}}+q_{2^{n}+1}+\ldots .+q_{2^{n+1}-1}$, then
$\operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)=\operatorname{Ces}\left(\left(p_{n}\right),\left(q_{n}\right)\right)$ studied by Khan and Rahman [13].
(3)Taking $a_{n}=\frac{1}{n+1}, q_{n}=1, p_{n}=p, \forall n \in \mathbb{N}$, then $\operatorname{Ces}\left(\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right)=\operatorname{Ces} p \quad$ studied by Lim [8].

Throughout this paper, the sequence $\left(p_{n}\right)$ is considered to be bounded with $\inf _{n} p_{n}>0$, and let $M=\max \{1, H\}, H=\sup p_{n}$.

For any bounded sequence of positive numbers $\left(p_{k}\right)$, we have
$\left|a_{k}+b_{k}\right|^{p_{k}} \leq 2^{\max \left(p_{k}, 1\right)-1}\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right) \leq 2^{M-1}\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)$, where $a_{k}, b_{k} \in \mathbb{R}$.

Lemma (1):

The functional σ is convex modular
on $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$.
Proof: Let $x, y \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$. It is obvious that;
(i) $\sigma(x)=0 \Leftrightarrow x=0$,
(ii) $\sigma(\lambda x)=\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|\lambda x_{\mathrm{k}}\right|\right)^{P_{n}}=$
$\sum_{n=0}^{\infty}|\lambda|^{P_{n}}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{\mathrm{k}}\right|\right)^{P_{n}}=\sigma(x)$,
$\forall \lambda:|\lambda|=1$
(iii) Using the convexity of the function $t \longrightarrow|t|^{P_{k}}, \forall k \in \mathbb{N}$, we get
$\sigma(\lambda x+\beta y)=\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|\lambda x_{\mathrm{k}}+\beta y_{k}\right|\right)^{P_{n}} \leq$
$\left.\leq \sum_{n=0}^{\infty}\left[\lambda\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{\mathrm{k}}\right|\right)+\beta\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|y_{k}\right|\right)\right)\right]^{P_{n}}$
$=\lambda \sigma(x)+\beta \sigma(y)$,
for $\lambda, \beta \geq 0$ with $\lambda+\beta=1$.
Lemma (2): For any $x \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$, the functional σ on $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ satisfies the following properties:
(i) If $0<\mathrm{r}<1$, then $r^{H} \sigma\left(\frac{x}{r}\right) \leq \sigma(x)$
and $\sigma(r x) \leq r \sigma(x)$,
(ii) if $\mathrm{r}>1$, then $\sigma(x) \leq r^{H} \sigma\left(\frac{x}{r}\right)$,
(iii) if $\mathrm{r} \geq 1$, then $\sigma(x) \leq r \sigma(x) \leq \sigma(r x)$.

Proof: (i) For $0<r<1$, we get
$\sigma(x)=\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{P_{n}}$
$=\sum_{n=0}^{\infty} r^{P_{n}}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|\frac{x_{k}}{r}\right|\right)^{P_{n}} \geq r^{H} \sigma\left(\frac{x}{r}\right)$.
(ii) For $\mathrm{r}>1$, we get
$\sigma(x)=\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{P_{n}}=$
$\sum_{n=0}^{\infty}\left(a_{n} r \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|\frac{x_{k}}{r}\right|\right)^{P_{n}}$
$\leq r^{H} \sum_{n=0}^{\infty}\left(a \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|\frac{x_{k}}{r}\right|\right)^{P_{n}} \leq r^{H} \sigma\left(\frac{x}{r}\right)$.
(iii) It is clear that (iii) is satisfied by the convexity of σ.

Lemma (3): For any $x \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$, the following assertions are satisfied:
(i) If $\|x\|<1$, then $\sigma(x) \leq\|x\|$,
(ii) if $\|x\|>1$, then $\sigma(x) \geq\|x\|$,
(iii) $\|x\|=1$ if and only if $\sigma(x)=1$,
(iv) if $0<r<1$ and $\|x\|>r$, then $\sigma(x)>r^{H}$,
(v) if $r \geq 1$ and $\|x\|<r$, then $\sigma(x)<r^{H}$.

Proof : It can be proved with standard techniques in a similar way as in $[5,13]$.

Lemma(4):Let $\quad\left(x_{n}\right)$ be a sequence in $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$,
(i) if $\operatorname{Lim}_{n \rightarrow \infty}\left\|x_{n}\right\|=1$, then $\operatorname{Lim}_{n \rightarrow \infty} \sigma\left(x_{n}\right)=1$,
(ii) if $\operatorname{Lim}_{n \rightarrow \infty} \sigma\left(x_{n}\right)=0$, then $\operatorname{Lim}_{n \rightarrow \infty}\left\|x_{n}\right\|=0$.

Proof:(i) Suppose that $\operatorname{Lim}_{n \rightarrow \infty}\left\|x_{n}\right\|=1$. Then for any $\varepsilon \in(0,1)$ there exists n_{o} such that
$1-\varepsilon<\left\|x_{n}\right\|<1+\varepsilon \forall \quad n \geq n_{0}$. By lemma (3), $(1-\varepsilon)^{H}<\sigma\left(x_{n}\right)<(1+\varepsilon)^{H}$ implies that
$\operatorname{Lim}_{n \rightarrow \infty} \sigma\left(x_{n}\right)=1$.
(ii) If $\operatorname{Lim}_{n \rightarrow \infty}\left\|x_{n}\right\| \neq 0$, then there is an $\varepsilon \in(0,1)$ and a subsequence $\left(x_{n_{k}}\right)$ such that $\left\|x_{n_{k}}\right\|>\varepsilon^{H} \forall k \in \mathbb{N}$. This implies that $\operatorname{Lim}_{n \rightarrow \infty} \sigma\left(x_{n_{k}}\right) \neq 0$ and
Hence $\operatorname{Lim}_{n \rightarrow \infty} \sigma\left(x_{n}\right) \neq 0$.
$\operatorname{Lemma}(\mathbf{5}): \operatorname{Let} x, x_{n} \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$,
$\forall n \in \mathbb{N}$.If $\sigma\left(x_{n}\right) \rightarrow \sigma(x)$ as $n \rightarrow \infty$ and $x_{n}(i) \rightarrow x(i)$ as $n \rightarrow \infty \forall i \in \mathbb{N}$, then $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Proof:
Since, $\sigma(x)=\sum_{r=0}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}|x(k)|\right)^{P_{r}}<\infty$, then for $\varepsilon>0$, there exists $r_{0} \in \mathbb{N}$ such tha

$$
\begin{equation*}
\sum_{r=r_{0}+1}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}|x(k)|\right)^{P_{r}}<\frac{\varepsilon}{3\left(2^{M+1}\right)}, \tag{1}
\end{equation*}
$$

Since
$\sigma\left(x_{n}\right)-\sum_{r=0}^{r_{0}}\left(a_{r} \sum_{k=2^{r^{r}}}^{2^{r+1}-1} q_{k} \mid x_{n}(k)\right)^{P_{r}} \rightarrow \sigma(x)-\sum_{r=0}^{r_{0}}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k} \mid x(k)\right)^{P_{r}}$ as $n \rightarrow \infty$ and $x_{n}(k) \rightarrow x(k)$ as $n \rightarrow \infty$,
$\forall k \in \mathbb{N}$, there exists $r_{0} \in \mathbb{N}$ such that $\forall r \geq r_{0}$
$\left|\sum_{r=r_{0}+1}^{\infty}\left(a \sum_{k=r^{r^{2}}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)\right|\right)^{P_{r}}-\sum_{r=r_{0}+1}^{\infty}\left(a a_{r} \sum_{k=r^{2}}^{2^{r+1}-1} q_{k}|x(k)|\right)^{P_{r}}\right|<\frac{\varepsilon}{3\left(2^{M}\right)}$. (2)
Since $\quad x_{n}(k) \rightarrow x(k) \quad$ as $\quad n \rightarrow \infty$ then \quad for every $n \geq n_{0}$ we get $\left|x_{n}(k)-x(k)\right|<\varepsilon$
for some n_{0}. As a result we get
$\sum_{r=0}^{r_{0}}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)-x(k)\right|\right)^{P_{r}}<\frac{\varepsilon}{3}$
$\forall n \geq n_{0}$.
From (1), (2) and (3) it follows that for $n \geq n_{0}$, we have

$$
\begin{aligned}
& \sigma\left(x_{n}-x\right)=\sum_{r=0}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)-x(k)\right|\right)^{P_{r}}= \\
& \sum_{r=0}^{r_{0}}\left(a_{r} \sum_{k=2^{r^{\prime}}}^{2^{r+1}-1} q_{k} \mid x_{n}(k)-x(k)\right)^{P_{r}}+\sum_{r=r_{0}+1}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)-x(k)\right|\right)^{P_{r}} \\
& <\frac{\varepsilon}{3}+2^{M}\left[\sum_{r=r_{0}+1}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)\right|\right)^{P_{r}}+\sum_{r=r_{0}+1}^{\infty}\left(a_{r} \sum_{k=2^{r^{2}}}^{2^{r+1}-1} q_{k}|x(k)|\right)^{P_{r}}\right] \\
& <\frac{\varepsilon}{3}+2^{M}\left[2 \sum_{r=r_{0}+1}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}|x(k)|\right)^{P_{r}}+\frac{\varepsilon}{3\left(2^{M}\right)}\right] \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

This shows that $\operatorname{Lim}_{n \rightarrow \infty} \sigma\left(x_{n}-x\right)=0$ and by lemma 4 (ii), we get $\operatorname{Lim}_{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$.

Main results

Theorem (1): $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ is a Banach space with respect to the Luxemburg norm defined by $\|x\|=\inf \left\{\rho>0: \sigma\left(\frac{x}{\rho}\right) \leq 1\right\}$.

Proof: Let $x_{n}=\left(x_{n}(k)\right)_{k=1}^{\infty}, n=0,1,2, \ldots$ be a Cauchy sequence in $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ according to the Luxemburg norm. Thus $\forall \varepsilon \in(0,1)$ $\exists \mathrm{n}_{0}$ such that $\left\|x_{n}-x_{m}\right\|<\varepsilon^{M} \forall m, n \geq n_{0}$. By Lemma 3(i) we obtain

$$
\begin{equation*}
\sigma\left(x_{n}-x_{m}\right)<\left\|x_{n}-x_{m}\right\|<\varepsilon^{M} \quad \forall m, n \geq n_{0} . \tag{4}
\end{equation*}
$$

That is $\sum_{r=0}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)-x_{m}(k)\right|\right)^{P_{r}}<\varepsilon^{M}$ $\forall m, n \geq n_{0}$. For any k we get $\left|x_{n}(k)-x_{m}(k)\right|<\varepsilon \forall m, n \geq n_{0}, \quad$ and \quad the sequence $\left(x_{n}(k)\right)$ is a Cauchy sequence of real
numbers. Let $x(k)=\operatorname{Lim}_{n \rightarrow \infty} x_{n}(k)$, then from inequality (4), we can write
$\sum_{r=0}^{\infty}\left(a_{n} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)-x(k)\right|\right)^{P_{r}}<\varepsilon^{M}$,
$\forall n \geq n_{0}$. That is, $\sigma\left(x_{n}-x\right)<\varepsilon^{M} \Rightarrow x_{n} \rightarrow x$ as $n \rightarrow \infty$.

By the following calculations,
$\sum_{r=0}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}|x(k)|\right)^{P_{r}}=\sum_{r=0}^{\infty}\left(a_{r}\left(\sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x(k)-x_{n}(k)\right|+\sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)\right|\right)\right)^{P_{r}}$
$\leq 2\left[\left(\sum_{r=0}^{M-1}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x(k)-x_{n}(k)\right|\right)^{P_{r}}\right)+\sum_{r=0}^{\infty}\left(a_{r} \sum_{k=2^{r}}^{2^{r+1}-1} q_{k}\left|x_{n}(k)\right|\right)^{P_{r}}\right]$
$<\varepsilon$,
we see that the sequence x_{n} converges to
$x=(x(k)) \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$. This
completes the proof.
Theorem(2):The space $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ has the property Kadec-Klee (H-property).
Proof. Let $\quad x \in S\left(\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]\right)$ $\operatorname{and} x \in B\left(\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]\right) \forall n \in \mathbb{N}$ such that $\left\|x_{n}\right\| \rightarrow 1$ and $x_{n} \xrightarrow{W} x$ as $n \rightarrow \infty$. From Lemma 3(iii), and Lemma 4(i) we get $\sigma(x)=1$ and that $\sigma\left(x_{n}\right) \rightarrow \sigma(x)$ as $n \rightarrow \infty$. Since
$x_{n} \xrightarrow{W} x$ and the ${ }^{\text {th }} i$-coordinate mapping Π_{i} : $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right] \rightarrow \mathbb{R}$ defined by $\Pi_{i}(x)=x_{i}$ is a continuous linear functional, it follows that $x_{n}(i) \rightarrow x(i)$ as $n \rightarrow \infty$ for all $i \in \mathbb{N}$. Thus we obtain by Lemma 5 that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Theorem (3) The space $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ is not rotund, and so is not LUR.

Proof: It is sufficient to give a counter example. Choosing
$x=\left(\frac{1}{a_{0} q_{1} \sqrt[p_{0}]{2}}, 0, \frac{1}{a_{1} q_{3} \sqrt[p_{1}]{2}}, 0,0,0, \ldots ..\right)$ and
$y=\left(\frac{1}{a_{0} q_{1} \sqrt[p_{0}]{2}}, \frac{1}{a_{1} q_{2} \sqrt[p_{1}]{2}}, 0,0,0, \ldots ..\right)$, we see that
$x, y \in S\left(\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]\right)$, and their
midpoint $(\mathrm{x}+\mathrm{y}) / 2 \in S\left(\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]\right)$. This shows that $(\mathrm{x}+\mathrm{y}) / 2$ while belonging to
$S\left(\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]\right)$, is not an extreme point for $B\left(\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]\right)$.

Corollary

(1) $\operatorname{Ces}(p)$ is not rotund, see [5].
(2) $\operatorname{Ces}\left[\left(p_{n}\right),\left(q_{n}\right)\right]$ is not rotund, see [13].

Finally, we get the following:
Theorem (4): The space $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ is a complete linear metric space with respect to the paranorm defined by

$$
g(x)=\left[\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{p_{n}}\right]^{\frac{1}{M}} .
$$

Proof: The proof of linearity of
$\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ with respect to the coordinate wise addition and multiplication follows from the following inequalities which are satisfied for all $x, y \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$
$\left[\sum_{n=0}^{\infty}\left(a_{n}^{2^{n+1}-1} \sum_{k=2^{n}} q_{k}\left|x_{k}+y_{k}\right|\right)^{p_{n}}\right]^{\frac{1}{M}} \leq\left[\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n^{n}}}^{2^{n+1}-1} q_{k}\left|x_{k}\right|\right)^{p_{n}}\right]^{\frac{1}{M}}+\left[\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|y_{k}\right|\right)^{p_{n}}\right]^{\frac{1}{M}}$
(5), and $|\alpha|^{p_{n}} \leq \max \left\{1,|\alpha|^{M}\right\} \quad$ for any $\alpha \in \mathbb{R}$.

We now verify that $\mathrm{g}(\mathrm{x})$ is a paranorm over the space $\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$. In fact,
(i) $g(\theta)=0 \quad$ (obvious)
(ii) $g(-x)=g(x), \forall x \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$
(iii) $g(x+y) \leq g(x)+g(y)$,
$\forall x, y \in \operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$, follows from the inequality (5).
(iv) Let $\left(x_{m}\right)$ be any sequence in
$\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ such
that $g\left(x_{m}-x\right) \xrightarrow{m-\infty} 0$; let $\left(\alpha_{m}\right)$ be any
sequence in \mathbb{R} such that $\left|\alpha_{m}-\alpha\right| \xrightarrow{m-\infty} 0$, since $x_{m}=x+\left(x_{m}-x\right)$ then we get

$$
g\left(x_{m}\right) \leq g(x)+g\left(x_{m}-x\right) . \text { Hence }\left\{g\left(x_{m}\right)\right\} \text { is }
$$ bounded and we have

$$
\begin{aligned}
& g\left(\alpha_{m} x_{m}-\alpha x\right)=\left[\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k}\left|\alpha_{m} x_{m}(k)-\alpha x(k)\right|\right)^{p_{n}}\right]^{\frac{1}{M}} \\
& =\left[\sum_{n=0}^{\infty}\left(a_{n} \sum_{k=2^{n}}^{2^{n+1}-1} q_{k} \mid\left(\alpha_{m}-\alpha\right)\left(x_{m}(k)\right)+\alpha\left(x_{m}(k)-x(k)\right)\right)^{p_{n}}\right]^{\frac{1}{M}},
\end{aligned}
$$

this tends to zero as $m \rightarrow \infty$.
The completeness of the space
$\operatorname{Ces}\left[\left(a_{n}\right),\left(p_{n}\right),\left(q_{n}\right)\right]$ is a routine verification by
using standard techniques as theorem (1).

Corresponding author

N. Faried

Department of Mathematics, Faculty of Science, Ain
Shams University, Cairo, Egypt
n_faried@hotmail.com

References

1. S.T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 356 (1996).
2. Y.A. Cui and H. Hudzik, On the BanachSaks and weak Banach-Saks properties of some Banach sequence spaces, Act. Sci. Math. (Szeged), 65(1999), 179-187.
3. J. Diestel, Geometry of Banach spacesSelected Topics, Springer-Verlag, (1984).
4. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
5. W. Sanhan and S. Suantai, Some geometric properties of Cesaro sequence space, Kyung-pook Math. J., 43(2003), 1971-197.
6. F.M. Khan and M.F. Rahman, Infinite matrices and Cesaro sequence spaces, Analysis Mathematica, 23(1997), 3-11.
7. K.P. Lim, Matrix transformation on certain sequence spaces, Tamkang J. of Math., 8, No. 2(1977), 213-220.
8. K.P. Lim, Matrix transformation in the Cesaro sequence spaces, Kyungpook Math. J., 14(1974), 221-227.
9. Y.A. Cui, H. Hudzik and C. Meng, On some local geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Sci. Math. Hungarica, 80(1-2)(1998), 143-154.
10. R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme points in Orlicz spaces, Canad. J. Math. Bull, 44(1992), 505-515.
11. H. Hudzik, Orlicz spaces without strongly extreme points and without H-point, Canad. Math. Bull, 35(1992), 1-5.
12. H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr, 186(1997), 167-185.
13. N. Simsek and V. Karakaya, Structure and some geometric properties of generalized Cesaro sequence space, Int. J. Contemp. Math. Sciebces, vol. 3, 2008, no. 8, 389-399.
