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Abstract: This paper presents a study of the Magnetohydrodynamic flow of non-Newtonian incompressible fluid 
obeying (Walters' liquid) model with mass and heat transfer over an infinite porous horizontal stretching sheet under 
radiation, heat generation (absorption) and chemical reaction. The governing differential equations which describe 
the motion of the problem are converted into dimensionless formulas by using a similarity transformation method 
and solved analytically by using The Kummer’s function. The parameters of viscoelastic dissipation, internal heat 
generation /absorption, constant magnetic field, radiation, chemical reaction and permeability of the porous medium 
are included and discussed numerically in the governing equations of momentum, energy and concentration. The 
effects of the elasticity, porosity, heat, radiation, reaction effect and magnetic interaction parameters with Eckert, 
Prandtl and Schmidt numbers on the velocity, temperature (in the two cases PST and PHF) and concentration 
distributions have been discussed and illustrated graphically. [Journal of American Science 2010;6(9):126-136]. 
(ISSN: 1545-1003). 
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1. Introduction 

Boundary layer behavior over a moving 
continuous solid surface is an important type of flow 
occurring in a number of engineering processes. To 
be more specific, heat treated materials traveling 
between a feed roll and a wind-up roll, aerodynamic 
extrusion of plastic sheets, glass fiber and paper 
production, cooling of an infinite metallic plate in a 
cooling path, manufacturing of polymeric sheets are 
examples for practical applications of continuous 
moving flat surfaces. Since the pioneering work of 
Sakiadis [1], various aspects of the problem have 
been investigated by many authors. Mass transfer’s 
analyses at the stretched sheet were enclosed in their 
studies by Erickson et al. [2] and relevant 
experimental results were reported by Tsou et al. [3] 
regarding several aspects for the flow and heat 
transfer boundary layer problems in a continuously 
moving sheet. Crane [4] and Gupta [5] have analyzed 
the stretching problem with constant surface 
temperature while Soundalgekar [6] investigated the 
Stokes problem for a viscoelastic fluid. This flow was 
examined by Siddappa and Khapate [7] for a special 
class of non-Newtonian fluids Known as second-
order fluids which are viscoelastic in nature. 
Rajagopal et al. [8] independently examined the same 
flow as in Ref. [7] and obtained similarity solutions 
of the boundary equations numerically for the case of 

small viscoelastic parameter. K1. It is shown that 
skin-friction decreases with increase in K1. Dandapat 
and Gupta [9] examined the same problem with heat 
transfer. In Ref. [9], an exact analytical solution of 
the non-linear equation governing this self-similar 
flow which is consistent with the numerical results in 
Ref. [8] is given and the solutions for the temperature 
for various values of K1 are presented. Later, Cortell 
[10] extended the work of Dandapat and Gupta [9] to 
study the heat transfer in an incompressible second-
order fluid caused by a stretching sheet with a view to 
examining the influence of the viscoelastic parameter 
on that flow. It is found that temperature distribution 
depends on K1, in accordance with the results in Ref. 
[9]. 

In the case of fluids of differential type (see 
Ref. [11]), the equations of motion are in general one 
order higher than the Navier–Stokes equations and, in 
general, need additional boundary conditions to 
determine the solution completely. These important 
issues were studied in detail by Rajagopal [11,12] 
and Rajagopal and Gupta [13]. The effects of heat 
generation/absorption become important in view of 
various physical problems (see Vajravelu and 
Hadjinicolaou [14]) and those effects have been 
assumed to be constant, space-dependent or 
temperaturedependent (Vajravelu and Hadjinicolaou 
[15]). Even, very recently, the mixed convection 
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boundary layer flow of a Newtonian, electrically 
conducting fluid over an inclined continuously 
stretching sheet with power–law temperature 
variation in the presence of magnetic field, internal 
heat generation/absorption and wall suction/injection 
is analyzed by Abo-Eldahab and El Aziz [16]. In the 
present research, we extend the problem investigated 
in Ref. [16] to viscoelastic fluid flows. Furthermore, 
Char [17] studied MHD flow of a viscoelastic fluid 
over a stretching sheet, however, only the thermal 
diffusion is considered in the energy equation; later, 
Sarma and Rao [18], Vajravelu and Roper [19] and 
Cortell [20,21] analyzed the effects of work due to 
deformation in such an equation. Another effect 
which bears great importance on heat transfer is the 
viscous dissipation. The determination of the 
temperature distribution when the internal friction is 
not negligible is of utmost significance in different 
industrial fields, such as chemical and food 
processing, oil exploitation and bio-engineering. 
Consequently, the effects of viscous dissipation are 
also included in the energy equation. 

On the other hand, the effect of radiation on 
viscoelastic boundary-layer flow and heat transfer 
problems can be quite significant at high operating 
temperature. In view of this, viscoelastic flow and 
heat transfer over a flat plate with constant suction, 
thermal radiation and without viscous dissipation 
were studied by Raptis and Perdikis [22]. Viscous 
dissipation and radiation were considered by Raptis 
[23] and the effect of radiation was also included in 
Ref. [24] and in Ref. [25]. Very recently, researches 
in these fields have been conducted by many 
investigators [26–30]; however, the effects of work 
due to deformation on viscoelastic flows and heat 
transfer in the presence of radiation, viscous 
dissipation and non-uniform heat source/sink have 
not been studied in recent years. In the present paper 
a proper sign for the normal stress modulus (i.e., 

1 0  ) is used and, as we will see in Section 3, 

the effects of viscous dissipation, uniform transverse 
magnetic field, internal heat generation/absorption 
and thermal radiation are included in the energy 
equation. This last effect has been enclosed in this 
study by employing the Rosseland approximation 
[31]. Furthermore, we augment the boundary 
conditions to the flow problem and then, momentum 
and heat transfer in an incompressible and 
thermodynamically compatible second order fluid, 
which is termed as second grade fluid (see Ref. [20]), 
past a stretching sheet, are analyzed. 

This paper runs as follows. In Section 2, we 
shall consider the mathematical analysis of the flow 
and some exact solutions of the boundary layer 
second grade fluid flow over a linearly stretching 

continuous surface; in Section 3 we shall examine the 
thermal problem when all the effects cited above are 
included in the energy equation for two cases of 
boundary heating: (a) prescribed surface temperature 
(PST case) and (b) prescribed heat flux (PHF case); 
In Section 4, we shall solve the concentration 
equation with a chemical reaction of order one apply 
on the fluid flow; furthermore, similar solutions are 
obtained for both stream function and temperature 
and the influence on the numerical results of those 
additional effects above-mentioned will also be 
discussed. 
 
2. Flow analysis 

An incompressible homogeneous fluid of 
second order 
has a constitutive equation given by [32],[33]: 

2
1 1 2 2 1 .p     = -T I A A A          (1) 

Here T  is the stress tensor, p the pressure, I  the 

coefficient of viscosity, 1 2,   are the normal stress 

module and 1A  and 2A  are defined as 

( ( Tgrad ) + grad )1A v v            (2) 

( ( T
2 1 1 1

d
grad )+ grad )

dt
     
 

A A A v v A   (3) 

Here v  denotes the velocity field and d/dt is the 
material time derivative. Some assumptions 
concerning the sign of a1 in the model (1) will be 
necessary. For thermodynamic reasons (see Ref. 
[34]), the material parameter a1 must be positive. If 
the fluid of second order modeled by Eq. (1) is to be 
compatible with thermodynamics and is to satisfy the 
Clausius–Duhem inequality for all motions and the 
assumption that the specific Helmholtz free energy of 
the fluid is a minimum when it is locally at rest, then 

1 1 20 , 0 , 0 .                (4) 

The constitutive equation given by Eq. (1) is capable 
of modeling a non-Newtonian fluid which possesses 

viscoelastic ( 10 ;   ) properties. In our 

analysis we assume that the fluid is 

thermodynamically compatible ( 1  ); we 

consider the flow of an incompressible second grade 
fluid past a flat and impermeable sheet coinciding 
with the plane y = 0, the flow being confined to y > 0. 
Two equal and opposite forces are applied along the 
x-axis so that the wall is stretched keeping the origin 
fixed. The steady two-dimensional boundary layer 
equations for this fluid, in the usual notation, are: 
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The continuity Equation  

0
u v

x y

 
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             (5) 

The momentum Equation 
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The Energy Equation 
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       (7) 

The concentration Equation 

 
2

12

C C C
u v D k C C

x y y 
  

   
  

          (8) 

It should be also mentioned that the continuous and 
momentum Equations (5) and (6) are very well 
described in the papers by Harris [35] and Sadeghy 
and Sharifi [36], whereas Equation (7) can be found 
in the book by Bejan [37], see also Ref.[38]. The 
oundary conditions of Eqs. (5) and (6) are 

 
1

0, ,w w

m
y u u x v v

m
         

 
    (9) 

, 0 , 0
u

y u
y


  


        (10) 

where x and y are the Cartesian coordinates along 

and normal to the plate, respectively, u and v are 

the velocity components along x and y  axes, 

respectively,   is the Kinematic viscosity, T is the 
fluid temperature,   is the mass density of the fluid, 

D  is the molecular diffusivity, C is the mass 
concentration of the species of the flow,   is the 

electric conductivity, Q  is the volumetric rate of 

heat generation/absorption, pC  is the specific heat at 

constant pressure, yB is the uniform magnetic field 

which distributed by the flow, pk  is the permeability 

of the fluid, 1k  is the reaction rate coefficient, rq is 

the radiation heat flux, oK  is the thermal 

conductivity,   and m are constants, T  is the 

temperature of ambient fluid and C  is the 

concentration of ambient fluid. 
  

In the boundary condition Equation (9), it 
should be noted that 1m   corresponds to suction 

( 0wv  ), where 1m   corresponds to blowing 

( 0wv  ). In the case when the parameter 1m   

corresponds to suction ( 0wv  ), the stretching 

sheet is impermeable. In this study, set all of 
parameter 1m  simplified the problem. The 

second boundary condition Eq. (10) is the augmented 
condition since the flow is in an unbounded domain, 
which has been discussed by Garg and Rajagobal 
[39]. A similarity solution for the velocity will be 
obtained if one introduces a set of transformations, 
such that  

   ' &u x f v f       and     

y



            (11) 

further more, the velocity components in terms of 

velocity function  ,x y  are defined as  

   , , ,u v x y x f
y x

     
  
 

  (12) 

equations (11) and (12) satisfies the continuity 
equation (5), substituting (12) into (6), we have 

2 2' '' ''' (2 ' ''' '''' '' ) 'f f f f K f f f f f M f       (13) 

with  

1
nM M k            (14) 

where 1K 
  is the viscoelastic parameter, 

2
yB

nM

   is the magnetic parameter and pk

k


  

is the porosity parameter. The corresponding 
boundary conditions become  

0 , ' 1 0f f at            (15) 

' 0 , '' 0f f as            (16) 

Then the solution of the momentum equation (13) is 

 1
( ) 1f e 


            (17) 

which satisfied the boundary conditions (15) and 
(16), substituting (17) into (11) we get the velocity 
components takes the form  

 & 1u xe v e 


 
        (18) 
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where,        

  (1 ) (1 )M K           (19) 

 
3. Solution of heat transfer equation  

The governing boundary layer equation with 
temperature dependent heat generation (absorption), 
constant magnetic field and Radiation is given by Eq. 
(7), by using Rosseland approximation the radiation 
heat flux has given by 

* 4

*

4

3r

T
q

k y

 



         (20) 

where * *and k respectively, the Stephan-

Boltzmann constant and mean absorption coefficient. 
Further, we assume that the temperature difference 

within the flow is such that 4T  may be expand in a 

Taylor series. Hence, expanding 4T  about T  and 

neglecting higher order terms we get  
4 3 44 3T T T T             (21) 

Now using Equations (20) and (21), Equation (7) 
becomes 
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
  



  (22) 

The thermal boundary conditions depend on the type 
of heating process under consideration. 
Here we consider two different heating processes, 
namely: PST and PHF.   
 
3.1. Case A: prescribed surface temperature (PST) 
 In the PST case se define non-dimensional 
temperature variable as 

 
w

T T

T T
  







          (23) 

In order to deal with non-isothermal stretching 
boundary in PST case we consider the boundary 
conditions on temperature as 

2

0w o

x
T T T A at y

     
 

        (24) 

T T as y          (25) 

where wT  is the temperature of the wall, oA  is a 

constant whose value depends on the properties of the 
fluid and   is a characteristic length. Now, by using 
the transformations given by equations (11) and (23) 

in the equation (22). This leads to the non-
dimensional form of temperature equation as follows. 

 
2 2

3 4
''( ) '( ) 2 ' ( )

3

( '') ( ')

r

r r

C n C

N
f f

P N

E f M E f

      
 

    
 
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                             (26) 

where 
*

34
oK K

r T
N

 
  is the radiation parameter, 

p

o

C

r KP
  is the Prandtl number, 

2 2

o pc A CE    is the 

Eckert number and 
p

Q
C    is the heat source/sink 

parameter. By using the dimensionless variable of 
Eq. (23) in Eqs. (24) and (25) we get the 
corresponding dimensionless boundary conditions as 

   0 1 0and             (27) 

Further, using the equation (17) in equation (26) we 
get 
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1
''( ) 1 '( ) 2 ( )

( )C n

a e e

E M e

 



      




 



    

 
            (28) 

where,     
3 4

3
r

r r

N
a

P N

 
  
 

         (29) 

Defining new variables 

2

1
e

a



            (30)            

Using the transformation given by equation (30) in 
equation (28), we derive the governing equation for 
the temperature in the form 

 
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''( ) 1 '( ) 2 ( )

C n
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E a M
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  

          
   



  

              (31) 
with the corresponding boundary conditions as 

 2

1
1 0 0and

a
 


    

 
        (32) 

 
The equations (31) and (32) constitute a non-
homogenous boundary value problem.  Denoting the 
solution of the homogenous part of equation (31) by 

 C   
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i.e  
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and further introduce the transformation 

   C
     , we obtain the confluent hyper- 

geometric equation of the form 

   1
''( ) 1 '( ) 4 ( ) 0

2o o ob a b                 

       (34) 
where   

2
o oa b 

 , 
2

1
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a
  and  2 2 4o o ob a a          (35) 

the solution of equation (34) is    

  4
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2
o o

o
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M b      

 
        (36) 

where M is the Kummer’s function (Abramowitz and 
Stegun [40]) and it is defined by  
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then the solution of Eq. (33) as follows 
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the particular integral solution of the equation (31) is  
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Hence, the solution of equation (31) is  
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now using the boundary conditions of equation (32) 
and changing the variable to   we obtain the 

solution of Eq. (28) in the following form of 
confluent hyper-geometric function 
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where      
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The dimensionless wall temperature gradient  ' 0  

is obtained as  
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       (43) 

The Dimensional local heat flux wq is defined as 
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3.2. Case B: Prescribed power law heat flux (PHF) 
 In the PHF case se define non-dimensional 
temperature variable as 
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in order to deal with non-isothermal stretching 
boundary in PHF case we consider the boundary 
conditions on temperature as 
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T T as y          (47) 

where oE  is a constant whose value depends on the 

properties of the fluid and   is a characteristic 
length. Now, by using the transformations given by 
equations (11) and (45) in the equation (22). This 
leads to the non-dimensional form of temperature 
equation as follows. 
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   
        (48) 

By using the dimensionless variable of Eq. (45) in 
Equations (46) and (47) we get the corresponding 
dimensionless boundary conditions as 

' 1 0
dg

g at
d



             (49) 

0g as            (50) 

further, using the equation (17) in equation (48) we 
get 

   
' 2 2

1
''( ) 1 '( ) 2 ( )

( )C n

a g e g e g

E M e

 



   




 



    

 
            (51) 

where, '
CE  is the scaled Eckert number for PHF 

case.  
Defining new variables 
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oa e               (52)            

Using the transformation given by equation (52) in 
equation (51), we derive the governing equation for 
the temperature in the form 

 

 
'

2

''( ) 1 '( ) 2 ( )o
o

C
n

o

a
g a g g

E
M

a

    


 

 
      

 



   (53) 

with the corresponding boundary conditions as 

'( ) & (0) 0og a a g            (54) 

The analytical solution of equation (53), subject to 
the corresponding boundary conditions of equation 
(54), is obtained in the following form of confluent 
hypergeometric function of the similarity variable  . 

 
   

     

2'

1 2 ' 2,1 ,

2 1,2 , 2,1 ,
o o

o o o o o

g A e

A e M b ae

a M b a M b a



 



 

    



 

 

   

         

  

       (55) 

where   
 

  
' 2

'
4 2

C n o

r o

E M a
A

P a








 
          (56) 

The expression for dimensionless wall temperature is 
obtained as  

 
   

     

0 '

1 2 ' 2,1 ,

2 1,2 , 2,1 ,
o o

o o o o o

g A

A M b a

a M b a M b a

 
    

 

   
         

  

             (57) 
 
4. Solution of mass transfer equation 

We define a dimensionless concentration 

    as  

 ( )wC C C C               (58) 

with the Boundary conditions as follows 

0w oC C C A x at y
         (59) 

C C as y          (60) 

where wC and C  are the concentration at the 

wall and infinity respectively and oA  is constant, at 

1  which is the case in Ref. [41] .To solve the 
mass transfer equation (8), substituting equations 
(11), (12) and (58) into the equation (8) and the 
boundary conditions (59) and (60), we have 

     '' ' ( ') 0C CS f S f            (61) 

where C DS   is the Schmidt Number and 1k
   

is the chemistry reaction parameter.  
the corresponding boundary conditions are  

1 0at   and  

0 as             (62) 

Substituting from equation (17) in equation (60), we 
get 

       '' 1 ' ( ) 0C
C

S
e S e        


        

       (63) 
we transform equations (60) and (61), using the 

relationship 1a e     with 1 2
CS

a


 , to yield  

       1
1'' 1 ' ( ) 0

a
a

       


          

       (64) 
and  

   1 0 0a and              (65) 

the solution, after further transforming the above 
equation into standard Kummer’s equation, is given 
by 

 
   

 

1 1
1

1 1 12

1
1 1 1 1

1
2 , 1 ,

2
1

2 , 1 ,
2

a b M a b b

a M a b b a

 
 




                
 

   

       (66) 
or, in terms of  , as 

   1 1

1 1
1 11

2

1 1
1 1

, 1 ,
2

,1 ,
2

a b

a b
M b a e

e
a b

M b a






 




 

         
         

  

              (67) 

where     1 1 1 4b a a            (68) 

it is important to find the mass transfer rate wJ , after 

obtaining the concentration field, as 

   0 '(0)w

C
J D DAx

y
  


 


      (69) 

where the concentration gradient at the sheet is  
 

   
 

1 1 1
1 1

1 1

1 ,2 ,1
'(0)

2 ,1 ,

a M b a
a b

M b a

 
 


  

  
  

 

       (70) 
Where  
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 1 1

2

a b
 

 
  
 

          (71) 

 
5. Results and Discussion  

The Magnetohydrodynamic flow of non-
Newtonian viscoelastic fluid with heat and mass 
transfer over infinite porous horizontal stretching 
sheet under radiation, heat generation / absorption 
and chemical reaction is governed by nine 
parameters, namely, K  the viscoelastic parameter, 

nM  the magnetic parameter,   the heat parameter, 

k  the porosity parameter, rN  the radiation 

parameter,   the chemical reaction parameter , CE  

the Eckert number, rP  the Prandtl number and cS  

the Schmidt number. An insight into the effects of 
these parameters of the flow field can be obtained by 
the study of the velocity components, temperature 
and mass concentration distributions. The 

components of the velocity   '( )f and f   

have been plotted against the dimension   for 

several sets of the values of the parameters 

, nK M and k . Fig. (1) Show that the velocity 

components decrease with an increases in the 

magnetic parameter nM . In Fig. (2), the variation of 

the velocity components   '( )f and f   with 

k  (the porosity parameter) seen and show that the 
velocity components increase with an increases of 
k . Fig. (3) Show that the velocity components 
decrease with an increases in the viscoelastic 
parameter K .  In the Figures (4), (5), (8) and (10) 
presents the variation of the dimensionless 

Temperature     in PST case with the viscoelastic 

parameter K , the porosity parameter k , the Eckert 

number CE  and the heat parameter   respectively 

for constant the other parameters can be seen, Figures 

(4), (5), (8) and (10) show that     increase with 

an increase of these parameters. But the Figures (6), 
(7) and (9) illustrate the effects of the magnetic 

parameter nM , the Prandtl number rP  and the 

radiation parameter rN  on the dimensionless 

temperature    . From these Figures, it can be 

observed that the effects of nM , rP  and rN  

decrease the temperature distribution    . Figures 

(11), (12) and (15) present the dimensionless mass 

concentration profiles     for selected values of 

the parameters nM  the magnetic interaction 

parameter, K the viscoelastic parameter and   the 

chemical reaction parameter respectively with fixed 
the other parameters. It is shown that the 
dimensionless mass concentration at a given point in 
the fluid is increase with increase the parameters 

nM , K and  . From figures (13) and (14) one sees 

that the effect of the porosity parameter k and the 

Schmidt number CS  are to increase the 

dimensionless mass concentration     of the fluid 

flow. 

 
 
 

 
 

 
 
 
 

 

Fig. (1): The components of the velocity distribution 
for varies values of the Magnetic parameter Mn 

Fig. (2): The components of the velocity distribution for 
varies values of the porosity parameter k 
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Fig. (3): The components of the velocity distribution 
for varies values of the viscoelastic parameter K 

Fig. (4): Temperature distribution for varies values of 
the viscoelastic parameter K 

Fig. (5): Temperature distribution for varies values of 
the porosity parameter k 

Fig. (6): Temperature distribution for varies values of 
the magnetic parameter Mn 

Fig. (7): Temperature distribution for varies values of 
the Prandtl Number Pr 

Fig. (8): Temperature distribution for varies values of 
the Eckert Number EC 
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Fig. (9): Temperature distribution for varies values of 
the radiation parameter Nr 

Fig. (10): Temperature distribution for varies values of 
the heat parameter β 

Fig. (11): Concentration distribution for varies Values of  
         the magnetic parameter Mn 

Fig. (12): Concentration distribution for varies Values 
of the viscoelastic parameter K 

Fig. (13): Concentration distribution for varies Values of 
the porosity parameter k 

Fig. (14): Concentration distribution for varies 
Values of the Schmidt Number SC 
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