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Abstract: An endoreversible Dual heat engine model is established and used to investigate the influence of the 
variable specific heat ratio of the working fluid on the performance of the cycle. The net work output and thermal 
efficiency of the cycle are derived and optimized with respect to the specific heat ratio of the working fluid. The 
results shows that that if compression ratio is less than certain value, the increase of specific heat ratio of the 
working fluid makes the net work output bigger; on the contrary, if compression ratio exceeds certain value, the 
increase of specific heat ratio of the working fluid makes the net work output less. The thermal efficiency increases 
with the increase of specific heat ratio of the working fluid throughout the compression ratio range. One can see that 
the maximum net work output, the working range of the cycle and the optimal compression ratio corresponding to 
maximum net work output decrease when specific heat ratio of the working fluid increases. However, the effects of 
the specific heat ratio of the working fluid on the performance of the cycle are obvious and they should be 
considered in practice cycle analysis. The results obtained in this paper may provide guidance for the performance 
evaluation and improvement of real reciprocating heat engines. [Journal of American Science 2009;5(5):175-180]. 
(ISSN: 1545-1003). 
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1. Introduction 

Traditional thermodynamics is a theory about 
equilibrium states and about limits on process variables 
for transformations from one equilibrium state to 
another. In order to obtain more realistic limits to the 
performance of real processes, thermodynamics is 
extended to finite-time thermodynamics to deal with 
processes which have explicit time or rate dependencies 
(Bejan 1996; Aragon-Gonzalez et al. 2006; Zhao and 
Chen, 2006; Parlak et al., 2008). Thus, significant 
achievements have ensued since finite-time 
thermodynamics was developed in order to analyze and 
optimize the performances of real heat-engines (Chen et 
al., 1998; Aragon-Gonzalez et al., 2000; Chen et al., 
2004). Blank and Wu (1994) analyzed the effect of 
combustion on the performance of an endoreversible 
dual cycle. Lin et al. (1999) derived the relations 
between the net power and the efficiency for the Dual 
cycle with due consideration of the heat-transfer losses. 
Wang et al. (2002) modeled Dual cycle with 
friction-like term loss during a finite time and studied 
the effect of friction-like term loss on cycle performance. 
Sahin et al. (2002a, 2002b) optimized the performance 
of a new combined power cycle based on power density 
analysis of the dual cycle and made a comparative 
performance analysis of an endoreversible dual cycle 

under a maximum ecological function and maximum 
power conditions. Hou (2004) studied the effect of heat 
transfer through a cylinder wall on the performance of 
the dual cycle. Chen et al. (2004) determined the 
characteristics of net work and efficiency for Dual cycle 
with heat transfers and friction losses. It is found that 
there are optimal values of the cut-off ratio at which the 
net work output and efficiency attain their maxima. 
Parlak et al. (2004) optimized the performance of an 
irreversible Dual cycle: the predicted behavior was 
corroborated by experimental results. Ust et al. (2005) 
performed an ecological performance analysis for an 
irreversible Dual cycle by employing the new 
thermo-ecological criterion as the objective function. 
Parlak et al. (2005) optimized the performance of 
irreversible Dual cycle, gave the experimental results, 
and compared the performance of Dual and Diesel 
cycles under the maximum power output. Parlak and 
Sahin (2006) defined the internal irreversibility by using 
entropy production, and analyzed the effect of the 
internal irreversibility on the performance of 
irreversible Dual cycle. Zhao et al. (2007) defined the 
internal irreversibility by using compression and 
expansion efficiencies and analyzed the performance of 
Dual cycle. The above work was done without 
considering the variable specific heats of working fluid, 
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so Ghatak and Chakraborty (2007) and Chen et al. 
(2006) analyzed the effect of variable specific heats and 
heat transfer loss on the performance of the dual cycle 
when variable specific heats of working fluid are linear 
functions of its temperature. Furthermore, Ge et al. 
(2009) analyzed the performance of an air standard 
Dual cycle with nonlinear relation between the specific 
heats of working fluid and its temperature, by using 
finite-time thermodynamics. 

All of the above mentioned research, the specific 
heats at constant pressure and volume of working fluid 
are assumed to be constants or functions of temperature 
alone and have the linear and or the non-linear forms. 
But when calculating the chemical heat released in 
combustion at each instant of time for internal 
combustion engine, the specific heat ratio is generally 
modeled as a linear function of mean charge 
temperature (Gatowski et al., 1984; Ebrahimi, 2006). 
The model has been widely used and the phenomena 
that it takes into account are well knows (Klein, 2004). 
However, since the specific heat ratio has a great 
influence on the heat release peak and on the shape of 
the heat release curve (Brunt, 1998), many researchers 
have elaborated different mathematical equations to 
describe the dependence of specific heat ratio from 
temperature (Gatowski et al., 1984; Brunt, 1998; Egnell, 
1998; Klein, 2004; Klein and Erikson, 2004; Ceviz and 
Kaymaz, 2005). It should be mentioned here that the 
most important thermodynamic property used in the 
heat release calculations for engines is the specific heat 
ratio (Ceviz and Kaymaz, 2005). So, Ebrahimi (2009) 
modeled the dual cycle with considerations the variable 
specific heat ratio during a finite time and only studied 
the effect of cut-off ratio on cycle performance. 
Therefore, the objective of this study is to examine the 
effect of variable specific heat ratio on the net work 
output and the thermal efficiency of air standard Dual 
cycle. 

 
2. Thermodynamic analysis 

The temperature entropy diagram of a Dual heat 
engine is shown in figure 1. The compression process is 
an isentropic process (1 ); the heat additions are an 
isochoric process ( ) and an isobaric process 
( 3 ); the expansion process is an isentropic process 
( ) and the heat rejection is an isochoric process 
( 5 1 ). 
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As mentioned above, it can be supposed that the 
specific heat ratio of the working fluid is function of 

temperature alone and has the following linear form: 
        (1) γ = γ −o
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absolute temperature. γ o 1k
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where M  is the molar number of the working fluid 
which is function of engine speed. and airR pc

1→

 are 
molar gas constant and molar specific heat at constant 
pressure for the working fluid, respectively. 

The heat rejected by the working fluid during the 
process ( 5 ) is 
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where  is the molar specific heat at constant volume 
for the working fluid. 
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Figure 1. Diagram for the air standard Dual cycle 
 
According to references (Ge et al., 2008a; 

Al-Sarkhi, 2007), the equation for a reversible adiabatic 
process with variable specific heat ratio can be written 
as follows: 

−− = + +      (4) 
From Eq. (4), we get the following equation 
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160000 . 1 128 .B J mol KThe compression, , and cut-off, cr β , ratios are 
defined as 

1 2cr V V=          (6) 
and  

4 3 4 3V V T Tβ = =        (7) 
Therefore, the equations for processes ( 1 ) and 
( ) are shown, respectively, by the following: 
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The energy transferred to the working fluid during 
combustion is given by the following linear relation 
(Zhao and Chen, 2007; Chen et al., 2008). 

( 2 4inQ A B T T= − +          (10) 

where A  and  are two constants related to 
combustion and heat transfer which are function of 
engine speed. From equation (10), it can be seen that 

contained two parts: the first part is 

B

inQ A , the released 
heat by combustion per second, and the second part is 
the heat leak loss per second, . ( )4leakQ B T2T= +

Thus, the net work output of the Dual cycle engine 
can be written as 
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The thermal efficiency of the Dual cycle engine is 
expressed by 
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When the values of c , r β  and  are given, 2T  
can be obtained from Eq. (8) and 3T  c  be found from 
Eq. (7), then, substituting Eq. (2) into Eq. (10) yields 4T , 
and th  last, 5T can b worked out using Eq. (9). 
Substituting 1T , 2T , 3 , 4  and 5T  in  Eqs. (11) 
and (12), respectively, the net work output and thermal 
efficiency of the Dual cycle engine can be obtained. 
Therefore, the relations between the net work output, 
the thermal efficiency and the compression ratio can be 
derived. 
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3. Results and discussion 
The following constants and parameter values have 
been used in this exercise: 1 300T K= , 

, 1
1 0.00003 0.00009k K −= − 1.31 1.41γ = −o , 

A J mol− −= 1.1, =  and β −=

2T 3T 4T 5T

2T 3T 4

5T

5 4T≥
2 3T≥

 
(Chen et al., 2006; Ghatak and Chakraborty, 2007; Ge et 
al., 2007; Ebrahimi, 2009). Using the above constants 
and range of parameters, the characteristic curves of the 
net work output and efficiency, varying with the 
pressure ratio, and the net work output versus efficiency 
can be plotted. 
The variations in the temperatures , ,  and  
with the compression ratio are shown in figure 2. It is 
found that ,  and T  increase with the increase 
of compression ratio, and  decreases with the 
increase of compression ratio. In figure 2, there are two 
special states: one is the state withT , the another 
is the state withT . In the two special states, the 
cycle cannot work.  
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Figure 2. The temperature versus compression ratio for
1.1β

Figures. 3-6 display the influence of the parameters 
=  

γ o 1 and k  related to the variable specific heat ratio of 
the working fluid on the Dual cycle performance with 
considerations of heat transfer. From these figures, it 
can be found that γ o 1k and  play a key role on the 
work output and the thermal efficiency. It should be 
noted that the heat added and the heat rejected by the 
working fluid decrease with increases of γ o

1k
, while 

increase with increasing . (see Eqs. (2) and (3)). It can 
be seen that the effect of γ o 1k

1k

 is more than that of  
on the net work output and thermal efficiency. It should 
be mentioned here that for a fixed , a larger γ o  

http://www.americanscience.org                                            editor@americanscience.org 177



Effects of specific heat ratio on performance of an endoreversible Dual cycle Rahim Ebrahimi 

corresponds to a greater value of the specific heat ratio 
and for a given γ o , a larger  corresponds to a lower 
value of the specific heat ratio. It can also be found 
from these figures that the net work output versus 
compression ratio characteristic is approximately 
parabolic like curves. In other words, the net work 
output increases with increasing compression ratio, 

reach their maximum values and then decreases with 
further increase in compression ratio. But, the thermal 
efficiency increases with increasing compression ratio. 
It is also clearly seen that the effects of 

1k

γ o 1k and  on 
the work output and thermal efficiency are related to 
compression ratio. They reflect the performance 
characteristics of an endoreversible Dual cycle engine. 
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It can also be found from the figures 3 and 4 that if 
compression ratio is less than certain value, the increase 
(decrease) of γ o  ( k ) will make the net work output 
bigger, due to the increase in the ratio of the heat added 
to the heat rejected. In contrast, if compression ratio 
exceeds certain value, the increase (decrease) of 

1

γ o

1k
 

( ) will make the net work output less, because of 
decrease in the ratio of the heat added to the heat 
rejected. One can see that the maximum net work output, 
the working range of the cycle and the optimal 
compression ratio corresponding to maximum net work 
output decrease (increase) about 13.7% (4.5%) and 67% 
(33%), 50.5% (21.4%) when γ o 1k ( ) increases 
(increases) 7.6% (200%). This is due to the fact that the 
ratio of heat added to heat rejected increases (decreases) 
with increasing γ o  ( k ) in this case. It should be noted 
here that both the heat added and the heat rejected by 
the working fluid decrease with increasing 

1

γ o

1k

 (see Eq. 

(4)), and increase with increase of  (see Eq. (5)). 
Referring to Figures 5 and 6, it can be seen that the 
efficiency increases with the increase of γ o

1k
 and the 

decrease of  throughout the compression ratio range. 
On average, the thermal efficiency increases (decreases) 
by about 23% (6.2%) when γ o  ( ) increases 
(increases) 7.6% (200%) over a range of compression 
ratios from 1.1 to 19.8.  

1k

 
4. Conclusion 

In this paper, the effects of specific heat ratio of the 
working fluid on the performance of an endoreversible 
Dual cycle during the finite time are investigated. The 
analytical formulas of work output versus compression 
ratio and thermal efficiency versus compression ratio of 
the cycle are derived. The effects of variable specific 
heat ratio of working fluid on the performance of the 
cycle are analyzed. The results obtained herein show 

Figure 3. Effect of γ o

(

 on the variation of the net 
work per cycle (per unit mass of gas) with 
compression ratio )1

1 0.00006k K −=

1kFigure 4. Effect of  on the variation of the net 
work per cycle (per unit mass of gas) with 
compression ratio  ( )1.41γ =o 
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that the effects of variable specific heat ratio of working 
fluid on the work output and thermal efficiency of the 
cycle are significant and should be considered in the 
design of practical Diesel engines. The detailed effect 

analyses are shown by one numerical example. The 
results can provide significant guidance for the 
performance evaluation and improvement of real Dual 
engines. 
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