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Abstract: Lunar and Mars landing is a crucial part of any exploration mission. Its importance is manifested by the 
considerable interest in the past couple of decades. Solution of lunar descent can be either numerical or analytical. 
Numerical solutions are iterative and computationally demanding and some of them might not be suitable for on-
board implementation. On the other hand, analytical solutions are not complex and much more attractive for the 
same purposes. All the present analytical solutions schemes are two dimensional considering only altitude and down 
range to describe the reference trajectories of a lunar descent. The main contribution of this paper is the development 
of a complete 3-dimensional analytical solution for the reference trajectory which is crucial for a precise landing of a 
lunar spacecraft. Comparisons are made by simulated responses between numerical and analytical solutions. Detail 
mathematical derivations are presented in this paper as well.  
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1. Introduction 

Lunar and Mars landing is a crucial part of 
any exploration mission. Its importance is manifested 
by the considerable interest in the past couple of 
decades [1-9]. For a lunar lander, it is essential that 
the landing on the lunar surface is vertical and soft. A 
scheme to fulfill this requirement is the gravity-turn 
descent that has been used for both lunar and Mars 
probes [1, 2, 10-13]. In this descent technique, the 
lander thrust vector is maintained opposite to the 
instantaneous velocity vector along the descent path 
[14]. The great benefit of gravity-turn descent is that 
the landing is assured to be vertical and the guidance 
law is close to fuel optimum [3] 

Lunar guidance takes a horizontally 
oriented spacecraft from orbital speeds, hundreds of 
kilometers from the desired landing point, to a very 
low speed and an almost vertical orientation. 
Guidance schemes for lunar landing date back to the 
Apollo era [4, 5]. The Apollo lunar descent guidance 
schemes worked well to meet the criteria of the 
1960s. However, they cannot fulfill the demanding 
goals of future lunar exploration that encompasses 
the desire to easily and cheaply explore several 
locations on the moon. 

In conventional gravity-turn descent 
guidance law, the solution of spacecraft equations of 
motion is numerical and iterative. Due to complexity, 
a numerical solution limits real time implementation. 
Therefore, it is impartial to seek an analytical 
solution. An analytical targeting solution can 

generate multi-dimensional trajectories on-the-fly and 
easily re-target the spacecraft to another landing site. 
At the end of the last century, a 2-dimensional 
analytical solution was developed for lunar landing 
mission [14] and [3]. The same 2-dimensional 
concept is proposed in [15] based on an analytical 
solutions to the equations for down range and altitude 
but excluding cross range distance. However, in the 
literature and up to date there is no result for a full 
analytical 3-dimensional spacecraft reference 
trajectory that includes cross range, altitude and 
down range distance. This gap in the literature is 
filled by the present paper. The main contribution of 
this paper is the development of a complete 3-
dimensional analytical solution for the reference 
trajectory which is crucial for a precise landing of a 
lunar spacecraft. 

 An advantage of numerical solutions is 
the ability to accommodate constraints in the state 
and control variables inherent in planetary landing 
optimal control problems. This advantage is offset by 
the fact that numerical solutions are iterative, 
computationally expensive and not suitable for on-
board implementation. Nevertheless, some authors 
proposed solving an on-board nonlinear optimization 
problem [16]. Other authors tried to overcome the 
computational burden by solving a related problem 
that does not minimize fuel use [17]. However, the 
applicability of nonlinear optimization approaches to 
on-board implementation is limited. This is due to the 
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fact that with such techniques it is not possible to a 
have a priori knowledge of the required number of 
iteration needed to find a feasible trajectory and there 
is no guarantee of achieving the global optimum. 
Nevertheless, recent advances in convex optimization 
may remedy the problem. The applicability of such 
techniques for on-board implementation made 
feasible by advances in computing power, modern 
algorithms and new coding techniques that exploits 
the structure of the given problem [18]. One of these 
approaches is described in [19] where approximate 
solutions to the minimum-fuel powered-descent 
guidance are formulated as a second order cone 
program (SOCP). This optimization problem can be 
solved in polynomial time using interior-point-
method algorithms [20-22]. For any given accuracy, 
the global optimum can be found with a priori upper 
bound on the required number of iteration needed to 
achieve the optimum. The limitation of the approach 
in [19] is that it assumes a feasible solution exists. 
This limitation is eliminated in [12] to handle the 
case when there is no feasible trajectory to the target 
exists. This approach is extended even further in [23] 
where lossless convexifications are used when the 
problem has non-convex control constraints. 
Extensive comparisons of the convex optimization 
approach to alternative approaches are given in [12, 
23, 24]. One last remark is that advances in 
computing power are not quickly implemented in the 
very expensive space hardened microprocessors. The 
state of the art on-board processor is still the 
RAD750TM space hardened microprocessor [25, 26] 
that is identical in architecture, function, and 
operation to the commercial IBM PowerPC750TM 
microprocessor. It is only 400 Dhrystone 2.1 MIPS at 
200 MHz which far behind in performance when 
compared with the present desktop microprocessors. 

This paper is structured as follows. Section 2 
describes the 3-dimensional equation of motion for a 
spacecraft lunar descent including the used 
preliminary postulation. 3-dimensional numerical 
solutions are presented in Section 3. 3-dimensional 
analytical solutions to the equations for speed, time, 
vertical range, downrange, and cross range distance 
as a function of velocity vector pitch angle are 
presented in Section 4. Descent parameter 
specifications used in the simulation are mentioned at 
the end of this Section as well. Simulation results are 
shown in Section 5 for both numerical and analytical 
solutions. Section 6 represents a complete 
comparison of the analytical and numerical solutions 
for the 3-dimensional trajectory responses for 
spacecraft descent on a lunar surface. Finally Section 
7 contains the conclusion. 
 
 

2. 3-Dimensional state equations 
A lunar descent schematic diagram is shown 

in Figure 1 where the local vertical local horizontal 
(LVLH) reference frame is denoted by L. The figure 
also shows the relationship of the maneuver frame, 
denoted by M ,to the LVLH unit vectors. 
  

 
Figure 1. Schematic diagram of lunar descent 
 

The fundamental three dimensional 
equations of motion describing a spacecraft landing 
on a uniform sphere-shaped lunar body [1] are 
divided into two parts. The first part describes the 
spacecraft dynamics and is given by the following 
equations: 
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Where u is the magnitude of the spacecraft 

velocity vector, gl is the lunar gravitational 
acceleration, N is the ratio of thrust F to the vehicle 
mass m, α is the pitch angle of the vehicle velocity 
vector relative to the local vertical, β is the thrust 
vector angle relative to the opposite of the velocity 
vector, y is the altitude of the spacecraft from lunar 
surface, yl is the lunar radius, ψ is the cross range 
angle and ϕ is the thrust roll angle. 

The second part describes the kinematics 
and is given by the following equations: 
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where x and c are the horizontal span and cross range 
distance.  
 
2.1.  Preliminary postulation 
  The right hand sides of the spacecraft 
governing equations are reduced to functions of the 
velocity vector pitch angle α. To do this we make 
some reasonable assumptions regarding thrust to 
mass ratio, thrust vector angle and lunar gravitational 
acceleration force. To generate an ideal descent 
trajectory, it is rational to assume constant values for 
N (i.e., F/m) and gl and to set β to zero. These are not 
restricting assumptions since in the case of constant 
thrust acceleration, m will not be constant and thus 
F/m will be varying but the error will be removed by 
the real time guidance algorithm. With these 
assumptions, equations (1) to (3) reduce to:  
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Therefore, ψ (t) is constant. Since landing must take 
place close to the lunar surface, consequently it is a 

reasonable practical assumption that lyy  which 

implies that   1 ll yyy . Using this in equations 
(5) and (6) gives:  
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3.  3-D numerical solution 

To find a numerical solution during the 
powered descend phase, the above equations need to 
be simplified and rearranged in a format suitable for a 
numerical solver. We derive below the equations for 
speed u, time t, down-range x, altitude y and cross 
range c as a function of a single variable; namely the 
velocity vector pitch angle α. Using equations (7) and 
(8), the equation for speed u is derived as follows: 
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Using equations (8) and (12), the descent time tD can 
be obtained by integrating the following equation 
expressed as a function of α: 
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Similarly, the equation for altitude can be rewritten 
as: 
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Now substituting the values from equation (4) gives: 
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where u can be replaced from equation (13). Similar 
procedure can be followed to express the horizontal 
span as a function of the velocity vector pitch angle 
α.  
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Using equation (10) gives: 
)(x )(cossin  Dtu 

          (19) 
A similar procedure is applied to derive the following 
equation for the cross range: 
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4.  3-D analytical descent solution 

Here we derive a 3-dimensional full 
analytical solution for the lunar descent problem. We 
make the reasonable practical assumption that the 
lunar surface for this problem can be considered as a 
plane surface. That is yl → ∞ so that equation (7) 
now reduces to: 
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This reduced equation is used to obtain a single, 
distinguishable differential equation with α as the 
self-regulating variable. From the above we have: 
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Now Eq. (23) can be integrated to obtain the descent 
speed u as a function of velocity vector pitch angle α 
as [1,3]:  
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where, u0 and α0 are initial values for speed and 
velocity vector pitch angle respectively.  
Differentiating Eq. (24): 
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 Using the above value of the speed u, we can obtain 
the solution for time, altitude, down range and cross 
range. First, the descent time is given as: 
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Using equations (8) and (25) gives:  
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Similarly, the altitude is given as:  
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Using equations (4), (21) and (25) gives:  
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Using equations (10) and (21), the down range 
distance is given as: 
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Using equations (25) gives: 
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Similarly, using equations (11) and (21), the cross 
range distance is given as: 
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Using equations (25) gives:  
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4.1.  Descent constraints 
  To compare the analytical and numerical 
solutions, parameters have to be specified. These 
specifications are shown in Table 1. 

 
 
Table 1.  Lunar descent specification 
Lunar descent specification  

Lunar gravitational acceleration (gl)  1.623 [m/s 2]  

Thrust to mass ratio (N )  4 [N/kg]  

Initial lander speed (u0)  1688 [m/s]  

Initial velocity vector pitch angle (α0)  90 [deg]  

Initial altitude for powered descent  100 [km]  
  
 
5.  Simulation results 
  As can be seen from the previously derived 
equations, the cross range angle ψ has no effect on 
speeds, time and altitude. As such, the trajectory 
responses for descent speeds, time and altitude are 
plotted in Figure 2 as function of the velocity vector 
pitch angle α. For comparison, both the analytical and 
the numerical solutions are shown. The full 
integrated numerical solution is considered as an 
ideal solution and a benchmark for lunar descent 
trajectory and it is used to evaluate any other 
solution. However, it is to be noted that this method 
is complex, iterative and needs a long time to execute 
and thus not suitable for real time precise landing 
application. We will demonstrate that our analytical 
solution is close to this ideal numerical solution. 

 From Figure 2, speed and time responses for both the 
numerical and analytical solution are almost similar. 
However, there is a deference in the altitude response 
as shown in Figure 2(d). From the figure, as the 
velocity vector pitch angle approaches zero, the 
analytical solution, reaches closer to the surface than 
that of the numerical solution. This means that the 
analytical solution takes the spacecraft at lower 
altitude to initiate terminal descent. 
  One of the contributions of this paper is the 
emphasis of non-zero cross range angle for precise 
lunar landing which was overlooked in the past. 
Cross range angle is a major factor influencing the 
cross range distance. A simulation is performed for 
both the numerical and the analytical solutions where 
the cross range angle is varied to show its impact on 
the cross range distance. It is observed that when the 
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cross range angle is maintained at zero degree, the 
lunar landing spacecraft does not perform any cross 
range travel. When the cross range angle is varied 
between 0 and 25 degrees, the cross range travel is 
more than 150 [km]. When the cross range angle is 
varied between 0 and 5 degrees, the cross range 
travel is within 32.5 [km]. Similarly when the cross 
range angle is varied between 0 and 0.5 degrees, the 
cross range travel is more than 3 [km]. Figure 3 
shows some sample plots.  
  The cross range angle is an important factor 
for precise lunar landing mission. In previous 
investigations, 2-D lunar descent trajectories are 

designed considering only the altitude and down 
range distance. In these investigations, the 
assumption of zero cross range angle is made 
[3,15,27]. With such assumption, the cross range 
travel will be zero. Thus the important cross range 
distance parameter is overlooked. But as can be seen 
from figure 3, the trajectory is very sensitive to the 
cross range angle. A small cross range angle of 0.1 
degrees can result in more than 600 m cross range 
travel and if the angle is 0.5 degrees, the landing 
spacecraft moves more than 3 [km] from the line of 
down range.  

 
(a) Horizontal speed          

         (b) Vertical speed

 
(c) Time         (d) Altitude 
 
Figure 2. Comparison of numerical solution to analytical solution: Speed, Time and Altitude 
 
  The above analysis proves that the 3-D 
analysis, including cross range angle, is instrumental 
in trajectory design for precise lunar landing missions 

which was absent in conventional 2-D trajectory 
designs. Moreover, it is not only the cross range 
distance that is affected by changes of the cross range 
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angle. The down range distance is also influenced. 
Figures 4 shows the simulation results for down 
range response of both numerical and analytical 
solutions as a function of velocity vector pitch angle 
α. The figure shows that an increase in the cross 
range angle will result in a decrease of the down 
range distance. As a result, the lunar landing 
spacecraft will travel a shorter distance than required. 
A cross range angle increase of up to 25 degrees will 
result in down range distance decreases of more than 
30 [km] as shown in Figure 4. 

It is already mentioned that the analytical 
solutions are introduced to reduce the complexity of 
the numerical solution. The above simulation results 

for cross range and down range responses show that 
there is only a very small deviation between the 
numerical and analytical solutions. The analytical 
solution of lunar descent motion equation is much 
more suitable for real-time precise landing 
application and the small errors of cross range and 
down range can be eliminated by using real-time 
guidance scheme during the descent. 
 
6.  3-Dimensional response 
  Section 3 and 4 described a detailed 3-
dimensional mathematical modeling of a lunar 
landing mission. Numerical and analytical solutions 
are derived and a computer simulation is performed.  

 
Figure 3. Cross range response  

 
 
Figure 4. Down range response 
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Figure 5 shows the trajectories for both the 
numerical and analytical solutions. In the simulation, 
the constant values shown in Table 1 are used for 
lunar gravitational acceleration gl, thrust to mass ratio 
N, initial vehicle speed u0and initial velocity vector 
pitch angle α0. Simulation is performed for deferent 
values of cross range angle. It is observed that 
altitude is not affected at all by changing the cross 
range angle. On the other hand, down range and cross 

range distances are affected by changes in the values 
of cross range angle.  

The simulation shows that the trajectories of 
the less complex analytical solution are always 
following the response of ideal but complex 
numerical solution. As shown in Figure 5, the altitude 
of analytical solution is maintained 40 km lower than 
the numerical solution. This low altitude flight path 
may assist the lunar landing spacecraft to activate 
terrain based navigation devices for hazard avoidance 
and safe landing. 

 
Table 2. Elapse time comparison using laboratory desktop computing [second]. 
Numerical solution 3D analytical solution 

4.22 0.03 

 
Table 3.  Simulated elapse time comparisons for on-board computer [second]. 
Numerical solution 3D analytical solution 

56.25 0.40 

 
 
 

            
 
(a) Crossing angle = 5 degree      (b) Crossing angle = 20 degree 
 
Figure 5. 3-dimensional flight path comparison between numerical and analytical solution for deferent crossing 
angle 
 

To better understand the complexity of the 
numerical solution, we compare the execution time of 
both the numerical solution and the analytical 
solution. Table 2 shows the execution time of both 
schemes when a dual core 2.66 GHz computer is 
used as a computational platform. This old desktop 
computer is 13.33 times faster than the current 
available on-board computer which is only 200 MHz 
[25,26]. Table 3 shows a simulated executing time of 
the on-board flight computer. According to this 
elapsed time analysis, the proposed 3-dimensional 
analytical solution has an execution time that is 
significantly less than that for the fully integrated 
numerical solution. The analytical solution is more 

than 140 times faster than the complete numerical 
solution. 
 
7.  Conclusion 

In this paper, a full 3-dimensional numerical 
and analytical solutions are derived for lunar descent 
and compared in a simulation study. This is the first 
time in the literature that a complete analytical 3-
dimensional solution is derived as compared to the 
frequently adopted simplifying assumption of a 2-
dimensional trajectories. Simulation results show that 
the numerical and analytical solutions are almost 
similar except for the altitude. This low altitude flight 
path of the analytical solution may assist the lunar 
landing spacecraft to activate terrain based navigation 
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accessories for hazard avoidance and safe landing. In 
the proposed scheme, the availability of the descent 
velocities, time, altitude, down range and cross range 
as a function of the velocity vector pitch angle can be 
utilized to reduce the computational burden on real-
time lunar descent guidance algorithms for future 
precise landing missions. 
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