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Abstract: This paper suggests a 3D real-time monocular head pose tracker in which Active Appearance Models 
(AAM) are used to extract facial features. In order to improve texture model, two probabilistic approaches are 
proposed for principal component analysis in the presence of missing values and are evaluated. it is finally observed 
that applying Bayesian model results in improving model fitting. On the other hand, contrary to the common 
assumption in AAM, the gradient matrix must not suppose to be constant. In this investigation a method is suggested 
in which gradient matrix is adapted with new images during model fitting of video sequences as much as possible. 
In the next step, by means of suggested methods, operator’s head pose will be estimated by POSIT algorithm and by 
implementing this system on a People Bot robot, enhancement of the interaction between human and robot is 
presented in order to control the orientation of robot camera. 
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1 Introduction 

Most of the individuals’ behavioral data could be 
obtained by investigating their head pose. Ability to 
distinguish and track individuals’ head and facial 
characteristics are very useful and applied in video 
sequences, including human-robot interaction [1], 
Auto security system for drivers’ awareness [2], face 
identification systems and smart environments [3]. 

Nowadays, considering surveillance systems 
requirements, it is necessary for operators to interact 
with robots and other intelligent devices easily. Since 
individual’s head orients toward subjects which are 
interesting to them initially, head pose estimation acts 
as a filter by which the importance of each object is 
determined in the camera FOV (Field Of View). 

So far many researches have been done in the 
field of head pose estimation including a survey on this 
subject [4]. Dornaika and Raducano used a head pose 
estimation system on AIBO robot, [1], through online 
appearance models [5]. One limitation of their method 
is that recommended system is applicable solely by 
specific persons. 

In this paper 3D estimation of face orientation 
and position of individuals (6 DOF) and its application 
for facilitating human-robot interaction by means of a 
camera is investigated. In this manner, a 3D rigid face 

model is required in which Candide-3 face model [6] 
and POSIT algorithm [7] have been used. Since POSIT 
algorithm uses 3D coordinates of Candide-3 and its 
correspondent points in 2D images, in order to obtain 
2D points of the face in that image, Active Appearance 
Models [8] are used. 

AAM fitting is based on texture residual 
produced by the model. Therefore, it is expected that 
preparing a precise and perfect model of the face 
texture would be effective for model fitting 
improvement. So in this paper, two possible 
approaches are suggested for PCA, one with and the 
other without considering prior probability for 
parameters. 

Unlike the current assumption in Active 
Appearance Models fitting (constant Jacobian matrix), 
an approach is presented in order to update matrix 
relative to the current frame of video sequences. 

The research objective is facilitating robot 
surveillance and supervision system through operator’s 
head pose estimation. We will show more precisely 
that how robot camera direction could be controlled 
through head pose estimation. 

This paper is organized as follows: in section 2, 
Active Appearance Models are introduced. In the 3rd 
one probabilistic approaches for texture modeling are 
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described. In section 4, a method is suggested for 
updating Jacobian matrix and finally in section 5 head 
pose estimation system is described by means of 
POSIT algorithm and its implementation on PeopleBot 
robot. 
2 Active Appearance Models (AAM) 

Active appearance model [9] is a way to match 
statistical models of shape and texture to unseen 
images. In this model, introduced by Cootes et al 
(1998) [8], variation in shape and texture of face are 
captured from a series of representative training set 
and by combining them, Active Appearance Models 
are produced. 

AAM algorithm is an efficient method for model 
parameter estimation to make the model synthesized 
image similar to the target image as much as possible. 
To achieve appropriate statistical model, IMM 
database has been used, which contains 240 annotated 
face images [10]. 
2.1  Obtaining statistical model 

The representation used for a n-point shape is 
given by � = [��,… ,����,��,��,… ,����,��]

� . The 
shapes of training images are aligned by means of 
Procrustes Analysis method. Finally, shape model will 
be obtained by applying PCA [11] to the aligned data: 

 
�� ≈ �� + ���� (1) 

 
In which ��  is the mean shape, the orthonormal 

columns of �� represents modes resulted from shape 
statistical model and vector ��  is shape parameters. 
Shape mode numbers are selected so that 95% of the 
variance in the training set will be explained. Since the 
precise amount of shape � is specified in training set, 
vectors ��  relevant to database shapes are shown by 
�����	and calculated as followed: 

 
����� = ��

�(� − �) (2)

 
Since the object shape is not enough to obtain 

complete model of appearance, it is also required to 
model the object texture (pixel intensities) in the 
image. The texture is obtained by texture mapping 
from the triangular 2-D mesh covering the face in the 
input image to the reference shape -mean shape image 
with given resolution- using a piecewise affine warp. 

With � gray scale sampled pixel from the object 
image, texture is displayed as � = [g�,g�,… ,g�]

�. In 
order to decrease light and contrast effects, zero-mean 
unit-variance normalization is used for texture vector 
(Figure 1). By applying PCA to normalized textures, 
texture model would be as: 

 
�� ≈ �� + ���� (3) 

In which ��  is an approximation of normalized 
texture vector �, orthonormal columns of Matrix �� 
represents modes resulted from texture statistical 
model and tg-dimensional vector ��  is texture 

parameters. Similar to shape model, number of texture 
modes are selected to explain 95% of the variation in 
training set. Vectors ��  relevant to database images 

are displayed by �����  and is calculated as bellow: 

 
����� = ��

�(� − �) (4) 

In order to remove correlations between model 
parameters of the shape and texture, principal 
component analysis method for the 3rd time was 
applied to data of: 

 

�� = �
��������
������

� = �
����

�(�� − ��)

��
�(�� − ��)

� (5) 

 
In which i displays ith image of database and �� 

is diagonal matrix of weights which is used to 
compensate unit difference between shape (pixel) and 
texture (intensity). Again we retain enough modes to 
explain 95% of total combined variance. The average 
of RMS changes in vector �  per unit change in 
elements of �����  gives the weight �� for the relevant 

element. 
Since averages of both �����  and �����  vectors 

are zero, vectors � -concatenated vector of these two 
vectors- as a resultant has an average equal to zero. 
Applying PCA for the 3rd time, we obtain the 
combined model � ≈ ��� . With regard to linear 
nature of the model, an AAM instance could be 
created including shape data (�) and texture data (�), 
according to the following equation by appearance 
parameters �: 

 
�� = � + ����

������	 
�� = �� + ������ 

(6) 

In which ��(�����)∗��
= �

���	��∗��

���	��∗��

�  and �� ≤

�� + ��. 

2.2 Model training 
If we combine appearance parameter, �, with 2D 

pose parameters ( � ) in tp-dimensional vector � =
[��|��]� , we can make synthesized image of face in 
any part of image plane. Active Appearance Model 
fitting is followed by updating vector � to minimize 
error between model texture and target image texture 
(texture residual) according to the following relation: 

 

argmin
�,�

�(�)� = argmin
�,�

������� − �������	 (7) 
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Consider an estimation of parameters as � =
�∗ + �� in which �� is parameter displacement from 
true solution, �∗. If we present texture residual vector 
resulted from � by �(�), according to Eq (7), objective 
of Active Appearance Models is parameter 
modification by ��  to minimize |�(� + ��)|� . It is 
assumed that in Active Appearance Models �� could 
be predicted linearly from residual vector by �� =
�	�� . By use of first order Taylor expansion for 
texture residual around � Eq (8) would be obtained: 

 
�(� + ��)= �(�)+ �	�� (8) 

Where ��×��
=

��(�)

��
 is the Jacobian matrix. By 

deviating Eq (8), setting it to zero and comparing it 

with �� = �	�� , Regression matrix, � , will be 
calculated as followed: 

 
� = (���)���� = �� (9)

 
In which ��  is Jacobian matrix pseudo-inverse. 

For calculating Jacobian matrix from training set, we 
displace model parameters from ����  by ��� 

systematically. Vectors ���  and the corresponding 
residual �� = �(���� + ���), would be stored in the 

columns of ��  and ��  respectively. Jacobian matrix 
then will be calculated as follows [12]: 

 

   
Input image Texture mapping to reference shape Texture normalization 

Figure 1. Example of image warping and texture normalization 
 

��(�)

��
= argmin

�
�|�� − ���|�

�

�
→ 

� = ��	���(��	���)�� 
= ��	��� 

(10)

 
2.3 Model fitting 

Fitting process of AAM algorithm (Algorithm 1) 
begins with initial estimate for model parameters (��), 
then by following a series of iterative steps the model 

would be fitted to the target image. While there is no 
information about vector ��  quantity (such as first 
frame in video sequences), we can estimate it by 
�� = [�	|	��]

�, in which Adaboost face detection [13] 
is used for locating face in the image (��). Figure 2 
shows a successful fitting example of Active 
Appearance Models. 

 
Algorithm 1. AAM fitting 

1: initialize: set � = ��, iteration =1 
2: while iteration < Maxiteration and error � = |�|� is improving: 
3: use � to compute the residual,�(�), and corresponding error � = |�|�. 
4: predict the displacement �� = �	� 
5: set � = 1 
6: update the model parameters �′ = � − �	�� 
7: calculate the new residual vector �′(�′), and corresponding error �′ = |�′| 
8: if �′ < 	� then 
9: set � = �′, � = �′, � = �′  
10: else 
11: Try � = 1.5,� = 0.5,� = 0.25,� = 0.125  
12: end if  
13: iteration=iteration + 1 
14: end while 
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Original Final 5th  1st 

Figure 2. successful fitting of Active Appearance Models applied for unseen images 
 

Table 1. Mean and standard deviation (SD) of point to point error regarding existence or nonexistence of mouth area 
pixels in image warping. � is number of sampled pixels and size (�) is number of elements in vector � 

 � 
size 
(�) 

��� = 0 
��� = 0 

��� = + 8 
��� = 0 

��� = − 8 
��� = 0 

��� = 0 
��� = +8 

��� = 0 
��� = −8 

Overall 
average 

mean SD mean SD mean SD mean SD mean SD mean SD 
warping all parts 
of face 

1917 83 5.944 2.828 6.020 2.604 6.111 3.102 6.304 3.416 5.861 2.639 6.048 2.918 

Eliminate mouth 
in texture warping 

1835 80 5.821 2.700 5.734 2.542 6.013 2.974 6.020 2.933 5.697 2.288 5.857 2.687 

 
In order to investigate mapping effects on various 

parts of the face to the reference shape, two cases 
regarding existence or nonexistence of mouth area 
pixels in image warping were compared with each 
other. In both cases same training images were used to 
obtain Regression matrix �  and AAM fitting was 
executed 5 times for each of the cases. Each time, we 
started with different initial point by displacing the 
model systematically as ± 5% width and length of the 
mean shape image (±8 pixels) in the horizontal and 
vertical direction respectively. Remaining model 
parameters (appearance parameters �) were set to zero 
in initialization. After each convergence we recorded 
the mean and standard deviation (SD) of point to point 
distance error -the distance between each model point 
and their corresponding manually determined ground 
truth location in pixel- in order to obtain a metric for 
AAM fitting. 

Results are shown in Table 1, and indicate that 
eliminating mouth area from texture mapping not only 
decreases number of sampled pixels (which leads to 
increase image warping speed), but also enhances 
system accuracy. Reason for this would be mouth 
interior area pixels insert misleading information 
particularly during changing facial expressions (such 
as revealing teeth while laughing, mouth opening 
during yawning) which leads to model fitting failure. 
3  Probabilistic PCA for texture modeling 

In order to make a richer model of texture, better 
capability of dealing with the large variation in texture 
and obtaining the texture model even in the presence 

of missing values in the training data Probabilistic 
PCA with missing data is proposed in this paper. 

Since the convex nature of human face shape, the 
texture warping should be a straight full procedure but 
across several 3D pose variations, which occlusion 
occurs, background pixels appear in the texture. Using 
proposed method we can remove these pixels from 
texture and gain the texture model. For this purpose, if 
any triangle of the face transfers background pixels to 
the texture, all pixels of that triangle are considered as 
missing values (Figure 3). 

  

  
Training Texture in 

Classic PCA 
Training Texture in 
Probabilistic PCA 

Figure 3. Example of background pixels omission. 
Upper row illustrates the input image and lower row 
shows the relevant training texture.  
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In this paper two probabilistic approaches are 
suggested; one without considering any prior 
probabilities for parameters (PPCA) and the other with 
considering prior probability for them (Variational 
Bayesian PCA) which provides a good foundation for 
handling of missing values. 
3.1 PPCA without any prior probabilities for 
model parameters 

Probabilistic PCA is suggested by Bishop & 
Tipping [14] through which it is possible to find out an 
EM algorithm for Principal Component Analysis and 
apply the same for missing values. PPCA is in fact an 

example of Linear-Gaussian model because all 
conditional & marginal distributions are in Gaussian 
form. Such a probabilistic model is formulated by 
introducing latent variables, ��, which corresponds to 

principal-component subspace. After that a Gaussian 
prior distribution �����  over the latent variables, 

together with a Gaussian conditional distribution 
�(�|��), for the observed variables � conditioned on 

the value of the latent variables, is defined as follows 
[15]: 

 

����� =  ������,�	� (11)

������,��,��,�
�� = �(�|��	�� + 	��,σ

��) (12)

 

  

 

  

  

 

  
Reconstructed texture from 
probabilistic PCA 

Input texture  
Reconstructed texture from 
classic PCA 

Input texture 

Probabilistic PCA  Classic PCA 
Figure 4. A comparison between reconstructed texture by PPCA and classic PCA 

 
Where �  is a linear function of tg-dimensional 

vector �� , �*tg matrix �� and �-dimensional vector 

�� . Matrix �  shows the unitary matrix. In order to 

calculate the amount of tg, we assume that all data are 
observed and none of which is missing. Then we may 
calculate this amount in a way to explain 95% of 
observed data variance. The other parameter of this 
model is the Scalar σ�  explaining the variance of 
conditional distribution. Note that there is no loss of 
generality in assuming a zero mean, unit covariance 
Gaussian for the latent distribution in Eq (11) because 
a more general Gaussian distribution would finally 

resulted in an equivalent probabilistic model [15]. We 
may consider this probabilistic model from a 
generative viewpoint in which a noise term is 
considered as follows: 
� = ���� + �� + � (13)

In which �(�)= �(�|0,���). If we display the 
set of texture vectors {��,��,… ,��} for N images of 
database with �  and the set of corresponding latent 

variables of {��
(�)
,��

(�)
,… ,��

(�)
} with ��, the marginal 

distribution can be written as bellow: 

 

������,��,�
�� = ������	������,��,��,�

��	��� (14)

=������
(�)� � �����|��(�)�	

� ��
(�)

+ ��
(�)
,����

�

�|��	∈�

	���
(�)

�

���
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Where indice � represents � th image of training 

set. ��� and ��
(�)

 are the ith element of vectors ��  and 

�� respectively. ��(�)�
 is the column vector including ith 

row of matrix �� . Symbol �|��	∈ �  shows set of 

indices �  in which ���  is observed. By using EM 
algorithm one can find the maximum likelihood 
estimates of model parameters. At E step of the 
algorithm it is necessary to obtain posterior 

distribution of latent variables, �(��|�,��,��.�
�), 

(where �  is the set of observed data). Since all 
distributions are based upon linear Gaussian form, 

posterior distribution of latent variables ��
(�)
	has also 

Gaussian distribution as ∏ �(��
(�)|���

(�),Σ��

(�))�
��� . In 

the E step we evaluate: 

 
 

���
(�) = �� + �

1

��
��(�)�

��(�)�	
�

�

�|��∈�

�

��

 (15) 

�
��
(�)���

(�)� = ���

(�) 

= ���
(�) 1

��
	� (��� − ��

(�))��(�)�

�

�|��∈�

	 
(16) 

 
At M step we compute the equations: 
 

��(�)�
= 

� � ���

(�)	���

(�)� + ���
(�)

�

�|��∈�

�

��

× � ���

(�)(��� − ��
(�))

�

�|��∈�

 
(17) 

��
(�)

=
1

��|��∈�

	 � (��� − ��(�)�	
� ���

(�)
)

�

�|��	∈	�

 (18) 

�� =
1

��
	� � ����� − ��(�)�	

� ���

(�)− ��
(�)�

�

+ ��(�)�	
� ���

(�)��(�)�
�

�

�|��∈�

�

���

 (19) 

 
 
In which ��|��∈�  is number of indices n for 

which ��� is observed and ��  is the total number of 
the observed ���. Continue E & M steps until model 
parameters do not change significantly within 
iterations. If necessary we may transfer model 
parameters especially columns of matrix ��  to be 
orthonormal. By using the probabilistic PCA all 
database texture vectors � can be reconstructed even 
in the presence of missing data in the texture by taking 
the expectation of Eq (13) with respect to the posterior 
distribution of latent variables and noise � as follows: 

 

��� = ���,������
(�)

+ �� + �� 

= �����

(�)
+ �� 

(20)

 
In which Eq (16), (17) and (18) are used in order 

to compute ���

(�)
, ��,�� . When some of the texture 

values are lost in PPCA, it is possible for the model to 
reconstruct them as much as possible. Figure 4 
illustrates a comparison between reconstructed textures 
by PPCA with classic PCA. 

However PPCA can overfit; this will arise when a 
great volume of information is lost for a special data. 
In this situation, not only the model cannot estimate 
any missing data, but also it may change the observed 
data significantly at the time of reconstruction (Figure 
5). 
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Original image Input texture 
Reconstructed texture from 

probabilistic PCA 
Figure 5. An example of overfitting while lots of data is missing 

 
3.1.1 Results 

By replacing ���

(�)
 instead of �����  mentioned in 

Eq (4) and applying classic PCA to the combined 
vectors �  -Eq (5)- Active Appearance Models are 
created. However, in Eq (6) instead of � & �� , 	�� 

and �� are used respectively as mentioned in Eq (20). 

In order to evaluate model fitting, we performed 
relevant experiments same as Table 1 for the proposed 
probabilistic model. Results are shown in Table 2. 
Comparing Table 2 with Table 1 indicates that using 
PPCA for texture modeling may cause better fitting. 
Nevertheless, it seems that solving the overfitting 
problem may cause better results. Therefore we may 
consider Bayesian Probabilistic model in which prior 
probabilities are considered for the model parameters.  
3.2 . Variational Bayesian PCA 

Variational PCA in case of fully observed data 
first introduced by Bishop [16]. Here we discuss the 
problem when some of the data values are missing. In 
a variational Bayesian PCA (variational PCA) model 
parameters ��  and 	��  also have prior probabilities 

and accompanied by ��  are considered as latent 

variables. 
 

����|��
�� = �(��|0,��

��) (21) 

� ��������

� � =��(��:�
|0,����

� �)

��

���

 (22) 

 
Where ��:�

 represents kth column of matrix ��. 

According to the above-mentioned equation the model 
considers same prior probability for all elements 
positioned in the same column of matrix ��. In order 

to compute tg again we may assume that all data is 
observed and none of which is missing. Then it will be 
calculated in a way to explain %95 of observed data 
variance.  

Considering prior probability for model 
parameters causes to cope with the overfitting 
problem. Since working with true posterior distribution 
of latent variables and taking the required expectation 
terms with respect to this posterior is intractable (this 
may occur due to high dimension of latent variables or 

their complex form), approximation schemes could be 
applied for solving this problem. Here we turn to a 
family of approximation techniques called variational 
inference [15]. If we show all latent variables of model 
by � = {��,��,��} and observed variables with � , 
the objective of Bayesian method is finding an 
estimation for posterior distribution �(�|�)  and 
marginal distribution �(�) . The relevant 
approximation of Bayesian method is to restrict the 
functional form of posterior distribution �(�)  by 
assuming that it factorizes over the components 
variables {��} so that: 

 

�(�)=���(��)

�

���

= �����������(��) (23) 

 
Note that no further assumptions are applied 

regarding distribution �(�) and no restriction for the 
functional forms of distributions ��(��) is considered. 
It is possible to decompose the log marginal 
probability for each arbitrary distribution �(�)  as 
follows [15]: 

 
ln �(�)= 	ℒ(�)+ ��(�(�)||�(�|�)) (24) 

 
Where: 
 

ℒ(�)= ��(�)ln �
�(�,�)

�(�)
�	�� (25) 

��(�||�)=	− ��(�)ln�
�(�|�)

�(�)
�	�� (26) 

 
The term KL (q||p) is named as Kullback-Leibler 

divergence. Since Kullback-Leibler divergence 
satisfies ��(�||�)≥ 0, therefore it follows from Eq 
(24) that ℒ(�)≤ ln�(�) . In other words, ℒ(�) 
provides a lower bound on log marginal distribution. 
As a result the optimization problem will be presented 
by maximizing the lower bound with respect to the 
distribution �(�), which is equivalent to minimizing 
the KL divergence.  
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Table 2. Mean and standard deviation of point to point distance error for AAM model fitting when texture model is 
obtained through PPCA. size (�) represents number of elements in vector �. 

 
Size 
(�) 

��� = 0 
��� = 0 

��� = +8 
��� = 0 

��� = −8 
��� = 0 

��� = 0 
��� = +8 

��� = 0 
��� = −8 

Overall 
average 

mean SD mean SD mean SD mean SD mean SD mean std 
Probabilistic PCA 
without any prior 
probabilities for model 
parameters 

79 5.749 2.666 5.701 2.500 5.858 2.871 5.770 2.901 5.614 2.333 5.738 2.654 

 
Thus the general expression for the optimal solution ��

∗(��) is given by [15]: 

 
ln ��

∗(��)= ����[ln�(�,�)]+ ����� (27) 
 

In which, ����[. ] denotes an expectation with respect to all distributions ������ for � ≠ �. Following is the joint 
distribution of latent and observed variables: 

 

� ��,����,	��
�,����

� �=� �����,��,��,�
�,	��

�,����

� � ����� 

× ����|��
�����������

� � 

= ����|��
��� ��������

� � 

(28)   

×��(��
(�)) � �(���|

�

�|��	∈�

��(�)�	
� ��

(�)+ ��
(�),���)

�

���

 

 

Where ��� and ��
(�)

 are the ith element of random 

vectors ��  and ��  respectively. ��(�)�
 is the random 

column vector including ith row of random matrix ��. 

� is the set of indeces �,� corresponding to observed 
values ���. According to Eq (27) & (28), together with 
the explicit forms for the various p (.) distributions, we 
obtain the following results for the posterior 
distributions of ��

∗(��): 

 

�∗���� =��∗���
(�)�

�

���

 

=�����
(�)|���

(�),���
(�)�

�

���

 

(29) 

�∗���� =��∗ ���(�)�
�

�

���

 

=�����(�)�
|���

(�)
,���

(�)�

�

���

 

(30) 

�∗���� = � �������
,���� 

=�����
(�)|���

(�),���
(�)
�

�

���

 
(31) 

 
All aforementioned parameters of distributions 

are obtained via following equations: 

���

(�)
=

1

��
���
(�) � ���

(�)
(��� − ���

(�)
)

�

�|��∈�

 (32) 
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  (35) 
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���

(�) =
���
(�)

��
� ���� − ���

(�)����

(�)	�

�

�|��∈�

 (36) 

���
(�)

=
����

�

�� + ��
�	��|��∈�

 (37) 

 

Where ����	�������

� �
��

�  is a diagonal tg*tg 

matrix whose kth diagonal element is 1/����

� . In order 

to find deterministic parameters of � =
��,��

�,����

� 	we may use EM algorithm. As mentioned 

before, latent variables in variational Bayesian PCA 

are: � = ���,��,��� . Therefore at E step of EM 

algorithm by using posterior distribution �(�|�,����) 

and Eq (32) to (37), ���

(�)، ���
(�)، ���

(�) ، ���

(�)، ���

��� و (�)
(�)

 

will be computed. Then we may update all parameters 
at M step by following equations: 
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��
� =

1

�
�(���

(�)�
+ ���

(�)
)

�

���

 (39) 

����

� =
1

�
	�����

(�,�) + ���(���)�

�

���

 (40) 

 
In which ���(���) is the kth element on the 

diagonal ���

(�) . We should continue Eq (32) to (40) till 

there are no significant changes in model parameters. 
We may transfer model parameters especially columns 

of matrix ���
����  in a way to be orthonormal, if 

needed. In order to reconstruct texture vectors of 
training set according to the variational PCA, we may 
take the expectation of Eq (13) with respect to the 
posterior distribution of latent variables � =
���,��,��� and noise � as follows: 

 

��� = ���	,��,��,�
�����

(�)+ �� + �� = ��
����

(�)+ ���
 (41) 

 

Where ��
�  is m*tg matrix whose rows are ���

(�)�
. Introducing prior probability for ��,�� acts as a regulator in 

order to overcome the overfitting problem. For instance, Figure 6 shows the reconstructed texture of Figure 5 by the 
use of Variational PCA. 

 

   
Original image Input texture Reconstructed texture from Bayesian PCA 

Figure 6. Reconstruction of texture in variational Bayesian PCA 
 

3.2.1 Results 

Upon inserting of ���

(�) instead of �����  in Eq (4) 

and then applying third classic PCA to the combined 
vectors � -Eq (5)- we may create Active Appearance 
Models. The results of AAM fitting in which 
variational PCA has been used for texture modeling 
are shown in Table 3. Upon comparing Table 3 with 
Tables 1 & 2, it is obvious that using variational PCA 

for texture modeling, not only increases fitting 
accuracy of the model, but also reduces the number of 
vector p elements which may cause an increase in the 
speed of computing Eq (6). 
4 Updating the Jacobian Matrix 

Active appearance model fitting is based on 
finding model parameters which minimize texture 
residual between model and target image. Jacobian 
matrix shows that how texture residual varies when 
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model parameters change. Since determining Jacobian 
matrix requires numerous computations in classic 
AAM, this matrix would be calculated once during 
training and then it is assumed to be fixed around the 
optimum value of model parameters in test (fitting) 
period. 

In this paper a method is presented to update 
Jacobian matrix while tracking video sequence. Such 
models are considered as adaptive Active Appearance 
Models. Various methods have been presented so far 
[16], [17]. The proposed method is similar to Cootes 
[17], but final results and also the method for obtaining 
equations are different.  

In order to update Jacobian matrix during model 
fitting, partitioned matrix property is used. For this 
purpose after any successful model fitting we displace 
parameters from the final model parameters, �, by ���

′  

and denote the corresponding texture residual as ��
′ . 

Δ��, Δ��  are defined as following partitioned matrix: 

 

Δ�� = �Δ���� | ��′
����∗�

 

Δ�� = �Δ���� | ��
′ �
�∗�

	 
(42)

 
In which Δ��, Δ�� are the previous step matrices 

(Δ����, Δ����) which ��′
�
 and ��

′  columns have been 

added to the end of each matrix respectively. We can 
rewrite the Eq (10) as follows: 

 

�� = Δ��	Δ��
� = Δ��	Δ��

�	��
�� (43) 

 
where �� = Δ��	Δ��

�  is a tp*tp matrix. By 

applying multiplication property in partitioned 
matrices and use of Sherman-Morrison formula, ��

��
 is 

calculated as: 

��
�� = ����� + ��′

�
��′

�

�
�
��

 

= ����
�� ����∗��	–

��′
�
��′

�

�
	����	

��

1 + ��′
�

�
����	
�� ��′

�

� 
(44) 

 

Considering Δ����
� = Δ����

� 	����
��  and again using partitioned matrix properties, Δ��

� is calculated as: 

 

Δ��
� =
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  (45) 

 
Finally Jacobian matrix is calculated for jth updating as bellow: 
 

�� = �Δ���� | ��
′ �	Δ��

� 

=	���� ����∗��	–
��′

�
��′

�

�
	����	

��

1 + ��′
�

�
����	
�� ��′

�

� +
��

′��′
�

�
	����	

��

1 + ��′
�

�
����	
�� ��′

�

 
(46)

 
Since �� is symmetric, the inverse of it is symmetric, too. ��  vector is defined as: 

 

�� = ��
��	��′

�
→ ��

� = ��′
�

�
	��

��	 (47)

 
 

Table 3. Mean and standard deviation of point to point distance error for AAM model fitting when texture model is 
obtained through the variational Bayesian PCA. size (�) represents number of elements in vector �. 

 
Size 
(�) 

��� = 0 
��� = 0 

��� = +8 
��� = 0 

��� = −8 
��� = 0 

��� = 0 
��� = +8 

��� = 0 
��� = −8 

Overall average 

mean SD mean SD mean SD mean SD mean SD mean std 
variational PCA 51 5.709 2.815 5.602 2.372 5.782 2.862 6.018 2.745 5.469 2.080 5.716 2.575 
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To prevent numerical instabilities coefficient 

� = 1/(� + ���′
�
�
�

)	is used, in which � is small [17]. 

Since obtaining inverse of matrix ��  is a time-

consuming process from calculation point of view, its 

inverse could be calculated once in training period, and 
then it can be updated by using Sherman-Morrison 
formula. Using Eq (47) and applying regulating 
coefficient, �, following equations will be obtained: 

 

��
�� = ����	

�� +
���	��

�

1 + ���
���′

�

 (48) 

�� = ���� ����∗��	–
�	��′

�
��

�

1 + ���
���′

�

� +
�	��

′	��
�

1 + ���
���′

�

 (49) 

 
The steps of updating Regression matrix are described in Algorithm 2. 
 

Algorithm 2. Algorithm of updating regression matrix 

1: 
set �� = ��,��

�� = (Δ��	Δ��
�)�� for j=0,  

where Jacobian matrix, ��, and ��� are computed from training set 

2: Use Algorithm 1 in order to fit AAM to target image. Obtain final model parameters, ������ . 

3: repeat 

4:  displace ������  by ��′
�
. 

5:  compute �� by using Eq (47), (48), (49) 

6:  j=j+1 

7: 
until desired number of displacement occurs  
(we used 6 displacements vector ��′

�
 in our experiment). 

8: compute Matrix �� = ��
� 

9: go to step 2 in order to fit AAM with new Regression matrix R to the next frame.  
 
The most significant difference of suggested 

method from Cootes’ is that in their method a 
minimized criterion function has been used for 
calculating Jacobian matrix updating equations instead 
of partitioned matrix. He also initialized ��  with 
unitary matrix while suggested method in this paper 
used �� = Δ��	Δ��  for initialization which Δ��  is 
obtained from the training set. Moreover, they update 

the Jacobian during fitting procedure of AAM, yet we 
update it after each successful fitting of AAM. 

The less the texture residual error (� = |�|� =

������� − �������
�

) is after converging fitting to 
target image, the more the similarity is between the 
model produced by AAM and the target image. Figure 
7 shows final texture residual error in a video sequence 
with 200 frames for classic (basic) and adaptive AAM. 

 
 

  
Error of frames 1 to 100 
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Error of frames 100 to 200 

Figure 7. Texture residual error. The solid blue curve and the dotted red curves correspond to the Adaptive and 
Classic AAM respectively. 

 
As it is observed in Figure 7, in adaptive form the 

amount of error has been decreased compared with the 
classic form particularly for frames 100 to 200. Figure 
8 shows an example of model fitting for frame 192 
from this video sequence. 

 

  
Classic AAM Adaptive AAM 
Figure 8. Frame 192 of the sequence depicted in 
Figure 7 

 
5 Application of head pose estimation for 
Human-Robot Interaction (HRI) 

Nowadays there is a close relationship between 
robots and human-beings, thus for better interaction 
with robots, instead of using traditional items (joystick, 
GUI and etc.), more user-friendly interfaces between 
these two are needed through which natural ways of 
human communication (Head pose, Hand and body 
gesture and even lip reading) are used. Head pose has a 
great role in HRI systems because it could be used as a 
rich source of information. For instance, being able to 
estimate 3-D head pose in real time, we can get a clue 
about the user’s intentions [1]. 

This part of the research is about finding the 6 
DOF pose of the face using proposed modified 

adaptive Active Appearance Model. In order to obtain 
AAM model we used variational PCA for texture 
modeling as mentioned in section 3.2. 

POSIT algorithm [7] is used in this research for 
3D estimation of head pose. For this purpose, we need 
a 3D rigid model of the face which is obtained from 
Candide-3 3D model [6]. In fact, Candide-3 is a 
parameterized face mask with 113 3D vertices. Since 
the face shape of IMM database consists of 58 points, 
in order to match these points with candide-3 points 
we used some kind of interpolation. Figure 9 shows 
some examples of head pose estimation by using 
POSIT algorithm and Candide-3 model. 

 

  

  
Figure 9. Estimation of head pose by using POSIT 
method and corresponding OpenGL model 

 
Our application is intended to show how to move 

robot camera by changing of head orientation. We 
used Active Media’s People Bot robot in our 
experiments. The System input includes video 
sequences which capture operator’s face from a fixed 
camera. Then the major 2D points of face are obtained 
by the proposed adaptive Active Appearance Model. 
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The operator’s 3D head pose is estimated in real time 
by using POSIT algorithm and Candide-3 model. 
Finally pitch & roll angles are sent to the robot camera 
using a wireless network. Robot camera orientation is 
updated online according to the desired direction 
imposed by the user’s head pose (Figure 10). In order 
to accelerate the speed of data transfer, robot camera 
video signal is forwarded from robot (server) to the 
operator’s computer (client) by an additional wireless 
audio/video transmitter. Following figure illustrates 
this system on a schematic basis. 
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Figure 10. Dataflow to control orientation of robot 
camera by head pose estimation 
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Figure 11. Examples of operator head pose Imitating. The 3 DOF rotational pose is represented by OpenGL model 

 
 
Figure 11 illustrates the results of imitating 

operator’s head pose by robot camera. The proposed 
HRI system is applicable in Telepresence. Meaning 
that operator and robot could be far from each other. 
So the operator is able to inspect robot environment 
without any presence in the place and just by changing 
his head direction. It is specifically important for 
rescue robots sent to areas affected by earthquakes or 
fires. For obstacle avoidance all range finder devices 
of the robot (IR, Sonar, Laser, bump sensors) have 
been used. 

 
6 Conclusion 

In this paper three major factors are described. 
First, we present two probabilistic methods for texture 
modeling in Active Appearance Models with further 
comparisons. As it was obvious, variational PCA 
method was better than classic AAM in accuracy and 
speed of calculations.  

Then an adaptive model was presented for 
updating gradient matrix in AAM. Finally we used the 
mentioned method as an application for head pose 
estimation. 

One of the advantages of this method is that the 
operator does not need to be in place for further 
inspection which may cause a reduction in any 
damages at high-risks areas to do the same by a robot. 
Since one of the major weak points of statistical 
models is their sensitivity to imaging conditions, 
therefore one of our future works is using Active 
Appearance Models in presence of cluttered 
background. 
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