Academia Arena

Websites: http://www.sciencepub.net/academia http://www.sciencepub.net

Emails: aarena@gmail.com editor@sciencepub.net

常炳功正确论爱因斯坦广义相对论吗 ----广义相对论危害是拔苗助长导致物理奄奄一息

常炳功

(美国纽约州立大学州南部医学中心教授)

Abstract: 广义相对论的主要危害,是拔苗助长,导致物理奄奄一息。 这拔苗助长之手,就是高等数学。一般人望尘莫及,研究生和博士生也被拔苗助长了,最后的学术生涯也是奄奄一息。而走脚踏实地的物理实验之路,很难走出已经有的范围。而走创新之路的,往往被认为这庄稼的苗不如被拔苗助长的苗高,被否定了。但是,拔苗助长之后的奄奄一息,必然有反弹,所以,现在是反弹的最好时候。虽然是最好时候,但是,反弹依然艰难。爱因斯坦,薛定谔,狄拉克等等之后,数学凌驾于物理之上,可以说是物理的悲哀。物理啊,物理,该觉醒了!!!! 你被人损害了根源,还感谢人家。正确的做法是拿来主义,而不是毕恭毕敬地唯听是从。

[常炳功. 常炳功正确论爱因斯坦广义相对论吗----广义相对论危害是拔苗助长导致物理奄奄一息. *Academ A rena* 2023;15(11):15-16]. ISSN 1553-992X (print); ISSN 2158-771X (online). http://www.sciencepub.net/academia. 05.doi:10.7537/marsaaj151123.05.

Keywords: 广义相对论: 危害: 拔苗助长: 物理: 高等数学: 爱因斯坦: 薛定谔: 狄拉克

广义相对论的主要危害,是拔苗助长,导致物理 奄奄一息。

这拔苗助长之手,就是高等数学。一般人望尘莫及,研究生和博士生也被拔苗助长了,最后的学术生涯也是奄奄一息。而走脚踏实地的物理实验之路,很难走出已经有的范围。而走创新之路的,往往被认为这庄稼的苗不如被拔苗助长的苗高,被否定了。

但是,拔苗助长之后的奄奄一息,必然有反弹, 所以,现在是反弹的最好时候。虽然是最好时候,但 是,反弹依然艰难。爱因斯坦,薛定谔,狄拉克等等 之后,数学凌驾于物理之上,可以说是物理的悲哀。 物理啊,物理,该觉醒了!!!!你被人损害了根源,还感谢人家。正确的做法是拿来主义,而不是毕 恭毕敬地唯听是从。

1.主要罪过,就是不能超光速。宇宙之中最快的速度是光速。当年,爱因斯坦还在,量子纠缠的超光速就已经存在,导致当时,乃至现在,人们都不愿提及超光速。现在发表论文,如果提及超光速,也要受到阻拦。

2.第二个罪过,就是广义相对论的几何化,导致 至今对暗物质和暗能量的研究云里雾里。

3.第三罪过,你要说他错了吧,还不行,因为他 有对的理由,但是,你要说他对吧,他对暗物质和暗 能量的计算一筹莫展。

你说,他对在什么地方?引力质量=惯性质量, 牛顿的引力势表达等等,还有数学家的支持。除了爱 因斯坦的几何化,他对的地方,几乎都是牛顿的原生 态。他不对的地方,都是他那些花枝招展的几何化 (不是几何数学有问题,而是几何化没有对应的物 理量:譬如,暗物质,暗能量等等)。这有一点狐假 虎威的意味。拿牛顿的内核撑腰,拿几何化吓唬我们。 更为可怕的是,他的数学的几何化,都是数学大师给 予的,还真的很可怕。拿整个数学界震撼物理界,是 第二个层面的狐假虎威。左手拿着牛顿,右手拿着数 学界,你害怕不害怕?是不是对的?我们看看左手, 再看看右手,都对呀!

其实,这数学界就是典型的拔苗助长。这个是最可怕的,但是,一般人往往发现不了,以为自己短时间内生长了很多,其不知,其实是把你的活力源泉破坏了,你还谢天谢地,以为自己真的成长了很多。

4.第四罪过,搞个人崇拜,至今有人把爱因斯坦 奉为神,以至于,凡是与他的理论相违背的地方,不 能发表。这严重阻碍了科学的发展。

这其实类似宗教的后期,就是坚决抵抗新思想的诞生。爱因斯坦的场方程式形式上看似简单,其实是一个非常复杂的二阶偏微分方程组。这个方程组包含几个独立的方程呢?可以简单算一下。一个四维二阶张量有16个元素。但是因为方程式中所有的张量都是对称的,因此只有十个独立分量。另外,里奇张量还必须服从四个毕安基恒等式的约束条件,所以只有六个独立分量。也就是说,爱因斯坦引力方程是一个包含六个独立非线性偏微分方程的方程组。这还不足以说明其复杂性。这个方程组包含一阶偏微分的平方(高度非线性)。如果把边界条件和初始

条件的复杂性加进来,任何数学家都只能望洋兴叹。

简言之, 爱因斯坦建立的这么一个极其复杂的 张量非线性偏微分方程组不仅不存在一个一般的解 析解,就连寻求这样的解析解的一般方法都没有。难 怪爱因斯坦建立了这个方程以后,自己都找不到解。 Newton 引力理论中描述势场的是一个标量方程。 Einstein 引力场方程是一个二阶张量方程,是包含 6 个独立微分方程的方程组; 其复杂性非常大, 其非线 性非常强。10 个独立的未知函数 gμυ, 描述 gμυ 随 时空变化的40个一阶导数、100个二阶导数,复杂 程度令人生畏。早就有人指出,这个 Einstein 引力场 方程"即使数学天才也无法求解"的。说穿了,是根本 无用的。

几何上, 把宇宙当成一个弯曲流形看是自然的, 就像地球是弯曲的一样。黎曼几何只是语言,广义相 对论真正的数学困难是爱因斯坦场方程,它是一个 弯曲空间上退化的双曲方程组,还没有现成的方程 理论用以解决场方程的 Cauchy 问题。我们最近正开 展这方面的研究,但确实不知道能走多远?已经知 道的场方程一些特解,都不具现实意义,比如 Schwarzschild 解表述真空(宇宙中没有任何星体)、 球对称、静态(宇宙不发生任何变化)的宇宙,Kerr 解表述真空、轴对称、稳态的宇宙。这些都不是真实 的宇宙。

要想得到真实宇宙的演化情况, 我们需要给出 符合实际的 Cauchy 初始三维流形以及其上符合实际 的各种初值,然后解退化双曲方程组的 Cauchy 问题

以得出真实宇宙的演化。你可以想象这样的问题数 学上有多难,现在就连数值方法都不知道如何做? 请指正。

References

- [1]. Google. http://www.google.com. 2023.
- [2]. Journal of American Science. http://www.jofamericanscience.org. 2023.
- Science [3]. Life Journal. http://www.lifesciencesite.com. 2023.
- [4]. http://www.sciencepub.net/nature/0501/10-0247mahongbao-eternal-ns.pdf.
- [5]. Ma H. The Nature of Time and Space. Nature and 2003;1(1):1-11. science doi:10.7537/marsnsj010103.01. http://www.sciencepub.net/nature/0101/01-ma.pdf.
- [6]. Marsland Press. http://www.sciencepub.net. 2023.
- [7]. National Center for Biotechnology Information, National Library U.S. of Medicine. http://www.ncbi.nlm.nih.gov/pubmed. 2023.
- [8]. Nature and Science. http://www.sciencepub.net/nature. 2023.
- [9]. Wikipedia. The free encyclopedia. http://en.wikipedia.org. 2023.
- [10]. ChatGPT | OpenAI. https://chat.openai.com. 2023.

(常炳功 2023 年 7 月 24 日)