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Abstract: Meanwhile the equation cannot be solved by arithmetic undoing and requires algebraic operations to be 
performed to simplify the equation to give a solution. This phenomenon is called ‘the didactic cut’. It relates to the 
observation that many students see the ‘equals’ sign as an operation, arising out of experience in arithmetic where an 
equation of the form is seen as a dynamic operation to perform the calculation, ‘three plus four makes 7’, so that an 
equation such as is seen as an operation which may possibly be solved by arithmetic ‘undoing’ rather than requiring 
algebraic manipulation (Kieran, 1981).  
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Introduction:  

The Historical Roots of Elementary Mathematics 
(Bunt, Jones, & Bedient, 1976) is very similar in style 
and information to Math through the Ages. Both books 
present information in short chapters specific to a main 
idea (e.g. Greek numeration systems). In addition, both 
books cover a wide range of topics that are broken 
down by date. However, The Historical Roots of 
Elementary Mathematics does not delve into the stories 
describing the people behind the discoveries. The four 
volume collection. The World of Mathematics 
(Newman, 1956) consists of individual articles 
compiled together in an effort to convey the 
"...diversity, the utility and the beauty of mathematics" 
(Newman, iii). Newman attempted to show the 
richness and range of mathematics. This collection 
spans ideas from the Rhind Papyrus to the "Statistics of 
Deadly Quarrels" (Newman, 1956). 

The World of Mathematics presents an amazingly 
broad view of the many applications of mathematics to 
the sciences. An Introduction to the History of Math 
(Eves, 1956) covers the same topics as several of the 
other books, in much the same manner. It traces the 
development of mathematics from numeration systems 
through to the development of calculus. It includes 
specific information of the individuals that developed 
many of the critical ideas in the history of mathematics. 
Boyer's (1968) A History of Mathematics is almost 
entirely about Greek mathematics. It covers ancient 
Greek mathematics to a degree that none of the other 
mentioned texts do. Perhaps one of the most valuable 
tools for a secondary teacher available is Historical 
Topics for the Mathematics Classroom (National 

Council for Teachers of Mathematics, 1989). This text 
consists of a series of "capsules" (short chapters). Each 
capsule gives a brief historical overview of a particular 
topic (e.g. Napier's Rods). The capsules are grouped by 
general topic (algebra, geometry, trigonometry, etc.). 
Specifically, this text provides a historical context to 
graphical approaches to equation solving. In addition, 
it provides a concise overview of the methods 
employed to solve quadratics and cubics.  

Various researchers (Vaiyavutjamai & Clements, 
2006) have illustrated that very little attention has been 
paid to quadratic equations in mathematics education 
literature, and there is scarce research regarding the 
teaching and learning of quadratic equations. A limited 
number of research studies focusing on quadratic 
equations have documented the techniques students 
engage in while solving quadratic equations (Bossé & 
Nandakumar, 2005), geometric approaches used by 
students for solving quadratic equations (Allaire & 
Bradley, 2001), students' understanding of and 
difficulties with solving quadratic equations 
(Kotsopoulos, 2007; Lima, 2008; Tall, Lima, & Healy, 
2014; Vaiyavutjamai, Ellerton, & Clements, 2005; 
Zakaria & Maat, 2010), the teaching and learning of 
quadratic equations in classrooms (Olteanu & 
Holmqvist, 2012; Vaiyavutjamai & Clements, 2006), 
comparing how quadratic equations are handled in 
mathematics textbooks in different countries (Saglam 
& Alacaci, 2012), and the application of the history of 
quadratic equations in teacher preparation programs to 
highlight prospective teachers' knowledge (Clark, 
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2012). In general, for most students, quadratic 
equations create challenges in various ways such as 
difficulties in algebraic procedures, (particularly in 
factoring quadratic equations), and an inability to apply 
meaning to the quadratics. Kotsopoulos (2007) 
suggests that recalling main multiplication facts 
directly influences a student's ability while engaged in 
factoring quadratics. Furthermore, since solving the 
quadratic equations by factorization requires students 
to find factors rapidly, factoring simple quadratics 
becomes quite a challenge, while non-simple ones (i.e., 
ax2 + bx + c where a ^ 1) become harder still. Factoring 
quadratics can be considerably complicated when the 
leading coefficient or the constant term has many pairs 
of factors (Bossé & Nandakumar, 2005). 
Overview of Methodology  

The nonlinear dispersive condition was 
thoroughly determined as of late in for a boson star, 
which alludes to a quantum mechanical arrangement of 
N bosons with relativistic scattering connecting 

through a gravitational alluring or appalling Coulomb 
potential. Indeed, by beginning from the N-body 
relativistic Schrodinger condition (supplanting −∆/2 in 

the Schrodinger equation ( ) 
what's more, picking the underlying wave capacity to 
portray a condensate where N bosons are all in a 
similar one-molecule state, in the mean-field limit N 
→∞, one can demonstrate that the time advancement of 
the one-molecule thickness is represented by the 
nonlinear relativistic Hartree condition (under a 
legitimate non-dimensionalization). 
Non Linear Equation For Boson Stars 

It is anything but difficult to demonstrate that the 
condition (1.8) concedes at any rate two significant 
saved amounts for example the mass of the framework 
N (ψ(·,t)):= kψ(·,t)k2 = Z 3 |ψ(x,t)|2 dx ≡Z |ψ0(x)|2 dx 
= 1, t ≥ 0,    (1.1) 

and the energy 
 

 

 dx 
          (1.1) 
 
The well-posedness of the underlying worth issue 

was widely examined in and references in that. Their 
outcomes can be abridged as: (I) there exists an all 
inclusive consistent λcr (additionally alluded to "as far 
as possible mass" in material science and with a lower 
bound λcr >4/π) to such an extent that, when λ >−λcr, 
the arrangement is comprehensively well-presented in 

∈the vitality space H1/2(R3) gave that V  L3(R3) ∩ 
L∞(R3); (ii) when λ ≤−λcr, the arrangement is locally 
well-presented; and (iii) when λ <−λcr, the 
arrangement will explode in limited time, which shows 
the "gravitational breakdown" of boson stars when the 
viable "mass" surpasses the basic esteem λcr. Another 
issue of interests is the presence and uniqueness of the 
ground state for which is characterized as the limit of 
the accompanying no curved minimization issue: 

Find

 
such that 

Eg:= E (φg) = min E (φ).  (1.2)  
If Vext (x) ≡ 0, it was shown that the ground state 

exists iff −λcr < λ <0 and any ground state is smooth, 
decays exponentially when |x|→∞, and is identical to 
its spherically symmetric rearrangement up to phase 
and translation. Moreover, it was proven recently in 

≪that, when λ <0 and |λ|  1, the spherical-symmetric 
ground state is unique up to phase and translation, and 
the author remarked there. 

That whether such uniqueness result can be 
stretched out to the entire scope of presence −λcr < λ 
<0 stays open. Along these lines, such basic esteem λcr 
assumes a significant job in exploring the ground states 
and elements of (1.8). One comment here is that 
dependent on numerical outcomes λcr ≈ 2.69 >8/π. For 
the Schro¨dinger–Poisson (or –Newton) equations, i.e. 
the pseudodifferential operator 

) is supplanted by −∆ as 
distinctive numerical techniques were introduced in the 
writing dependent on limited contrast discretization; 
see, e.g., However, these numerical strategies have a 
few challenges in discretizing the 3D relativistic 
Hartree condition productively and precisely because 
of the presence of the pseudo differential administrator. 
The principle point of this section is to structure 
productive and exact numerical techniques for 
processing the ground conditions of and the elements 
of the underlying worth issue. 

For this purpose, let β = 4πλ and 

, 
Then is re-written as the relativistic Schro¨dinger–Poisson (RSP) equation 
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,  (1.3) 
−∆VP (x,t) = |ψ|2, ∈x R3, xylem VP (x,t) = 0, t ≥ 0.    (1.4) 
| |→∞ 
With this formulation, the energy functional (1.1 is re-written as 

 dx 

  dx dx, t ≥ 0. 
 
So as to plan numerical techniques for processing 

the ground states, Sine pseudo unearthly technique is 
connected to defamed it. For processing the elements, 
again the issue is truncated into a container with 
homogeneous Dirichlet limit conditions and a period 
part sine pseudo unearthly technique is connected to 
discredited it. Specifically, when the potential and 
beginning information for elements are circularly 
symmetric, the issue crumples to a semi 1D issue. Like 
streamlined numerical strategies are planned by 
utilizing an appropriate difference in factors in the semi 
1D issue. 
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