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Abstract: The Dirichlet distribution is a generalization of the Beta distribution. This research deals with the 
estimation of scale parameter for Dirichlet distribution with known shapes. We examined three methods to estimate 
the parameters of Dirichlet distribution which are Maximum Likelihood Estimator, Method of Moment Estimator 
and Quasi- Likelihood Estimator. The performance of these methods were compared at different sample sizes using 
Bias, Mean Square Error, Mean Absolute Error and Variance criteria, an extensive simulation study was carried out 
on the basis of the selected criterion using statistical software packages as well as the application of the criterion to 
real life data, all these were done to obtain the most efficient method. The simulation study and analysis revealed 
that Quasi- Likelihood Estimator perform better in terms of bias while Method of Moment Estimator is better than 
the other two methods in terms of variance; the Maximum Likelihood Estimation was the best estimation method in 
terms of the Mean square Error and Mean Absolute Error; while Quasi- Likelihood Estimation method was the best 
estimation method with real life data. 
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1. Introduction 

In Bayesian Statistics, the Dirichlet distribution 
is a popular conjugate prior for multinomial 
distribution. The Dirichlet distribution has a number of 
applications in various fields. Samuel S. Wilk (1962), 
gave an example, where he applied the Dirichlet 
distribution in deriving the distribution of order 
statistics. Again Kenneth Lange (1995), also used the 
Dirichlet distribution in biology to demonstrate and to 
compute forensic match probabilities from several 
distinct populations. In addition, Brad N (2009), used 
the Dirichlet distribution to model a player`s abilities 
in Major League Baseball. It is shown that the 
Dirichlet distribution can be used to model consumer 
behavior Gerald et al (1984). Dirichlet Distribution 
can be extended to various fields of study such as 
biology, astronomy, text mining and so on. The 
Dirichlet Distribution (DD) is usually employed as a 
conjugate prior for the multinomial modeling and 
Bayesian analysis of complete contingency tables 
(Agresti (2002)). Gupta and Richards (1987, 1991, and 
1992) extended the Dirichlet Distribution to the 
Liouville distribution. Fang, Kotz and Ng (1990) gave 
an extensive exposition of the Liouville family and its 
ramifications.  

The problem of estimating the parameters which 
determine a mixture has been the subject of diverse 
studies (Redner and Walker 1984). During the last two 

decades, the method of maximum likelihood (ML) 
(Bishop. C.M.1995) and (Rao. P. 1987) has become 
the most common approach to this problem. Of the 
variety of the iterative methods which has been 
subjected as an alternative to optimize the parameters 
of a mixture, the one most likely used is the 
expectation maximization (EM). EM was originally 
proposed by Dempster et al 1977 for estimating the 
maximum likelihood estimator (MLE) of stochastic 
models. This algorithm gives an iterative procedure 
and the practical form is usually simple and easy to 
implement. The EM algorithm can be viewed as an 
approximation of the Fisher scoring method (Ikeda. S. 
(2000). In this research we showed that the Dirichlet 
distribution can be a very good choice for modeling 
data, MLE was used to estimate the parameters of the 
Dirichlet Mixture Model alongside with EM 
algorithm. This mixture decomposition algorithm 
incorporates a penalty term in the objective function to 
find the number of components required to model the 
data. This algorithm suffers some set back: the need to 
specify the number of components each time, which 
will be determine by selected criterion functions such 
as AIC, BIC, MDL which has been in existence to 
validate the model and justify the more efficient one.  
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This research centered on studying how the 
different estimators of the unknown parameters of a 
Dirichlet distribution can behave for different sample 
sizes. Here, we are mainly comparing the Maximum 
Likelihood Estimator, Method of Moment Estimator 
and Quasi- Likelihood Estimator with respect to 
efficiency, bias, mean absolute error and variance 
using extensive simulation techniques as well as 
application of the estimation methods to real life data 
set. 

 
2. Literature Review 

The Dirichlet model describes patterns of repeat 
purchases of brands within a product category. It 
models simultaneously the counts of the number of 
purchases of each brand over a period of time, so that 
it describes purchase frequency and brand choice at 
the same time. It assumes that consumers have an 
experience of the product category, so that they are not 
influenced by previous purchase and marketing 
strategies; for this reason, consumer characteristics 
and marketing-mix instruments are not included in the 
model. As the market is assumed to be stationary, 
these effects are already incorporated in each brand 
market share which influences other brand 
performance indexes calculated by the model. The 
market is also assumed to be unsegmented. The theory 
and development of the model is fully described in 
Ehrenberg (1972). Goodhardt, Ehrenberg and 
Chatfield (1984), summarise the situation by stating 
that the Dirichlet model makes explicit that there are 
simple, general and rather precise regularities in a 
substantial area of human behaviour where this has not 
always been expected. In setting the context for this 
particular approach to the modeling of consumer 
behaviour viz. the largely explanatory models of 
consumer behaviour, Ehrenberg (1988) claims that it 
describes how consumers behave, rather than why, and 
takes into account only those factors necessary for an 
adequate description. 

Many aspects of buyer behaviour can be 
predicted simply from the penetration and the average 
purchase frequency of the item, and even these two 
variables are interrelated (Ehrenberg, 1988, pg. ii). 
The Dirichlet model integrates the reported 
regularities, and predicts many aggregate brand 
performance measures. These measures are the 
distribution of purchases for a brand, the proportion of 
a brand's buyers buying that brand only, and the 
proportion of people purchasing a brand, given that 
they have previously purchased that brand. When 
these predictions are compared with observed figures, 
Ehrenberg claims that it is not unreasonable to expect 
to obtain correlations in the order of 0.9 and 
sometimes much higher, (Ehrenberg 1975, Ehrenberg 
and Bound 1993).  

Applications and theory can be used to provide 
norms for examining brand performance, or diagnostic 
information for the "health" of a brand. In addition, the 
Dirichlet model can provide interpretative norms for 
evaluating situations where some trend in sales has 
occurred, say after a promotion or advertising scheme. 
Ehrenberg also claims that the Dirichlet model 
provides valuable insights into the nature and 
implications of brand-loyalty (e.g., Ehrenberg and 
Uncles 1995; Ehrenberg and Uncles 1999). The use of 
likelihood theory to estimate the parameters of the 
Dirichlet model, providing an alternative to the 
standard procedure based on the method of zeros and 
ones and on marginal moments (Rungie 2003b). In 
order to write the likelihood function, the data should 
be in the form of joint frequencies, like those 
contained in a contingency table with n-rows, 
representing the number of consumers, and g columns, 
for the number of brands. Alternatively, the iterative 
procedures based on the approach that computations 
are easy to use, and require only aggregated data as 
input, as access to original panel data is not necessary 
as proposed by Goodhardt, Ehrenberg and Chatfield 
(1984). Raw panel data cannot always be used since 
panel operators who measure sales and household 
consumption provide information only in some 
aggregate format such as market share, penetration, 
and average purchase rate with reference to the 
various brands (Wright et al. 2002). In these situations, 
the only way to estimate the Dirichlet model is to use 
the traditional method. Dirichlet modeling continues to 
be a successful and influential approach, and is 
increasingly being used to provide norms against 
which brand performance can be interpreted ( Uncles 
et al. 1995; Bhattacharya 1997; Ehrenberg et al. 2000). 
Dirichlet model is useful for the provision of norms 
for stationary markets, to supply baselines for 
interpreting change (i.e., non-stationary situations) 
without having to match the results against a control 
sample, to help strategic decision-making, and to 
understand the nature of markets. 

There are diverse ways of applying the 
distribution, where the Dirichlet has proved to be 
particularly useful is in modeling the distribution of 
words in text documents [9]. If we have a dictionary 
containing k possible words, then a particular 
document can be represented by a probability mass 
function [pmf] of length k- produced by normalizing 
the empirical frequency of its words. A group of 
documents produces a collection of pmfs, and we can 
fit a Dirichlet distribution to capture the variability of 
these pmfs. 

 
3. Methodology 

Deriving the Dirichlet Distribution 
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Let �� be a random variable from the Gamma distribution �(��, 1), � = 1,… , �,  and let ��,… , ��	 be 

independent. The joint pdf of ��,… , �� is  
 

 
 
Let 

�� =
��

�� + �� +⋯+��
, � = 1,2,… , � − 1 

and  
�� = �� + �� +⋯+��. 

By using the change of variables technique, this transformation maps � = {(��,… , ��): 0 < �� < ∞, � =
1, … , �}  onto � = {(��,… , ����, ��): �� > 0, � = 1, … , � − 1, 0 < �� < ∞, �� + ⋯+ ���� < 1}. The inverse 
functions are�� = ��	��, �� = ����,… , ���� = ������,�� = ��(1 − �� −⋯− ����). Hence, the Jacobian is 
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By integrating out ��,	the joint pdf of	��, … , ���� is  

�(��,… , ����) = 	
�� +⋯+ ��

Г(��)…Г(��)
��
���� … ����

������(1 − �� − ⋯− ����)
����, 

where �� > 0, �� +⋯+ ���� < 1, � = 1, … , � − 1. The joint pdf of the random variables ��, … , ����	is known 
as the pdf of the Dirichlet distribution with parameters ��,… , ��.	Furthermore, it is clear that ��  has a Gamma 
distribution G	(∑ ��

�
��� , 1) and �� is independent of ��, … , ����. Robert V Hogg and Allen T Craig.1970. 

3.1. Moment generating function  
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In step (a), we apply the multinomial theorem  
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(�� + �� +⋯+ ��)
� = ∑

�!

��!��!…��!
������⋯�����

∏ ��
���

���   (4) 

for any positive integer � and any non-negative integer �. 
3.2 Maximum Likelihood Estimation 
The ML estimation method concerns choosing parameters to maximize the joint density function of the sample 

(likelihood function). Therefore, we consider  
max� �(�

�|�)   (5) 
with constraints ∑ �(�) = 1�

���  and �(�) > 0  for � = 1,2, … ,�. We can consider �(�)  as prior probabilities 

under these constraints. Now suppose we have a sample that contains �  random vectors ��
�,  which are i.i.d., 

� = 1,… , �. We maximize the following function with respect to � and Λ 

ϕ�x�,Θ,Λ� =���

�

���

�������Θ���(�)

�

���

� + Λ�1 −��(�)

�

���

� + ����(�) ln��(�)�

�

���

�						(6) 

The first term of equation 8 is the log-likelihood function. Λ is the Lagrange multiplier in the second term. In 
the last term of eq. 8, we use an entropy-based criterion. Also, μ is the ratio of the first term to the last term in of 
each iteration t	by Nizar Bouguila, Djemel Ziou, and Jean Vaillancourt (2004) 

μ(t) =
∑ ���∑ �������

��Θ���
���(�)�

��� ��
���

�∑ ����(�)��	(����(�)�
��� �	

,   (7)  

In order to optimize (8), we need to solve the following equations:  
�

�Θ
�(��,Θ,Λ) = 0 

�

�Λ
�(��,Θ,Λ) = 0 

It is shown that the estimator of the prior probability p	(j) is 

p(j)��� =
∑ �����
��� �����,Θ������(�)

��������	�(�)�����

���∑ �(�)���������(�)�����
���

, � = 1,2,… ,�.   (8) 

Note that μ is defined by (4.3) and �(�|��
�,Θ�) is the posterior probability where 

������
�,Θ�� =

����
�,Θ���(�)

����
�,Θ�

, � = 1,… , �, � = 1,2,… ,�.   (9) 

Now we want to estimate the parameters ��
�, � = 1,2,… ,�. The Fisher scoring method is used to find these 

estimates. Denote ��� as one element of the parameter vector ��
� for each component � = 1,2,… ,�. The derivative 

of �(��,Θ,Λ) with respect to ��� is  
�

����
�(��,Θ,Λ) = ∑ �(�|��

�,�
��� ��

�)	(ln ���) + �� ����� − ������0�∑ ������
�, ��

��,�
��� 	  (10) 

� = 1,… , �, � = 1,… ,�,	 
where ψ(. ) is the Digamma function. However, ���  can become negative during iterations. In order to keep ��� 

strictly positive, set��� = ����. ��� is any real number. Then, the derivative of �(��,Θ,Λ) with respect to ��� is 
�

����
�(��,Θ,Λ) = ���[∑ ������

�, ��
��(ln���)

�
��� +	 [������ − ������]∑ �(�|��

�, ��
�)],�

���    (11) 

� = 1, … , �, � = 1, … ,�. 
By using the iterative scheme of the Fisher scoring method, we obtain  
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⎝
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⋮
�
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⎠
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���

	(12) 

� = 1,… ,�.  
Note that the variance-covariance matrix is obtained by the inverse of the Fisher information matrix I and  

I = −� �
��

����������
�(��,Θ,Λ)�.   (13) 

 
4. Analysis And Results 

In this chapter, the results of the simulation study 
on the basis of the entire criterion at different sample 

sizes are presented and Performance of parameter 
estimation method in terms of Bias as the sample size 
and parameter dimension varies was discussed. 
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Table 1: Results of the Bias at different alpha level as sample size varies are presented below: 

Alpha N QLE MLE MOM 
_1 = 0.15  10 0.2328 0.3125 0.0994 

  20 0.1013 0.1848 0.1 
  30 0.067 0.151 0.1 

_2 = 0.30  40 0.0524 0.1371 0.0999 
  50 0.0401 0.1247 0.1 
  75 0.0286 0.1136 0.1 

_3 = 0.45  100 0.0219 0.1074 0.1 
  250 0.01 0.0964 0.1001 
 
Alpha N QLE MLE MOM 

_1 = 0.45  10 0.4683 0.4771 1.1 
  20 0.2223 0.2324 1.1 
  30 0.1521 0.1638 1.1 

_2 = 0.75  40 0.1072 0.1195 1.1 
  50 0.0853 0.0977 1.1 
  75 0.0615 0.0743 1.1 

_3 = 0.90  100 0.0442 0.0567 1.1 
  250 0.0235 0.0362 1.0999 

 
Alpha N QLE MLE MOM 

_1 = 0.90  10 0.6564 0.6576 1.889 
  20 0.3141 0.3152 1.889 
  30 0.185 0.1862 1.888 

_2 = 0.99  40 0.1462 0.1476 1.8891 
  50 0.1264 0.1277 1.8891 
  75 0.0862 0.0876 1.8891 

_3 = 0.999  100 0.0638 0.0652 1.889 
  250 0.0324 0.0339 1.889 
 

Based on the above table, it was observed that 
the level of alpha the Quasi-likelihood estimator 
(QLE) has the least value of Bias as the sample size 

increases and performs better compared with the 
Method of Moment and Maximum likelihood 
estimator. 

 
Table 2: Results of the Variance at different alpha level as sample size varies are presented  

Alpha N QLE MLE MOM 
_1  = 0.15 10 0.108 0.1167 0.0325 

  20 0.0355 0.0379 0.0158 
  30 0.0187 0.02 0.0103 

_2 = 0.30  40 0.0139 0.0148 0.0082 
  50 0.0108 0.0116 0.0065 
  75 0.0063 0.0067 0.0041 

_3 = 0.45  100 0.0048 0.0051 0.0033 
  250 0.0018 0.0019 0.0013 
 
 
Alpha N QLE MLE MOM 

_1 = 0.45  10 0.4132 0.4128 0.0207 
  20 0.144 0.1444 0.0101 
  30 0.0863 0.0858 0.0071 

_2 = 0.75  40 0.0565 0.0563 0.0051 
  50 0.043 0.0426 0.004 
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  75 0.0279 0.0277 0.0028 
_3 = 0.90  100 0.0201 0.0199 0.0021 

  250 0.0076 0.0075 0.0008 
 

Alpha N QLE MLE MOM 
_1 = 0.90  10 0.6887 0.6885 0.0173 

  20 0.2398 0.2396 0.0086 
  30 0.1286 0.1285 0.0056 

_2 = 0.99  40 0.0926 0.0925 0.0043 
  50 0.0772 0.0772 0.0034 
  75 0.05 0.0498 0.0023 

_3 = 0.999  100 0.0353 0.0353 0.0018 
  250 0.0134 0.0134 0.0006 
 

Based on the above table and appendix 2, it was 
observed that the performance of parameter estimation 
method in terms of Variance, as the sample size 

increases Method of Moment performs better 
compared with the Quasi-likelihood estimator and 
Maximum likelihood estimator. 

 
Table 3: Results of the Mean Absolute Error (MAE) at different alpha level as sample sizes varies are presented 
below  
Alpha N QLE MLE MOM 

_1 = 0.15  10 0.3652 0.3982 0.2668 
  20 0.2171 0.2484 0.1915 
  30 0.1671 0.2003 0.1633 

_2 = 0.30  40 0.1438 0.1792 0.1512 
  50 0.1262 0.1626 0.1396 
  75 0.0995 0.1396 0.1233 

_3 = 0.45  100 0.0873 0.1292 0.1181 
  250 0.052 0.104 0.1043 
 
Alpha n QLE MLE MOM 

_1 = 0.90  10 1.0665 1.0665 1.8917 
  20 0.6602 0.6601 1.889 
  30 0.4866 0.4865 1.889 

_2 = 0.99  40 0.4212 0.4211 1.8891 
  50 0.3827 0.3825 1.8891 
  75 0.3059 0.3057 1.8891 

_3 = 0.999  100 0.2622 0.2622 1.889 
  250 0.1588 0.1588 1.889 

 
Alpha n QLE MLE MOM 

_1 =  0.45 10 0.7774 0.7778 1.1001 
  20 0.486 0.4859 1.1 
  30 0.3818 0.3815 1.1 

_2 = 0.75  40 0.3138 0.3147 1.1 
  50 0.2748 0.2748 1.1 
  75 0.2216 0.2225 1.1 

_3 = 0.90  100 0.186 0.1863 1.1 
  250 0.1157 0.1168 1.0999 

 
Performance of parameter estimation method in 

terms of Mean Absolute Error (MAE) as the sample 
size increases, Maximum likelihood estimator 

performs better than Quasi-likelihood estimator and 
Method of moment as shown in table 3. 
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Table 4: Results of the Mean Square Error (MSE) at different alpha level as sample sizes varies are presented 
below 
Alpha N QLE MLE MOM 

_1 = 0.15  10 0.1335 0.1569 0.0375 
  20 0.0401 0.0503 0.0199 
  30 0.0207 0.0281 0.0144 

_2 = 0.30  40 0.0152 0.0214 0.0122 
  50 0.0115 0.017 0.0105 
  75 0.0066 0.0112 0.0081 

_3 = 0.45  100 0.0051 0.0091 0.0071 
  250 0.0018 0.0051 0.0052 

 
Alpha N QLE MLE MOM 

_1 = 0.45  10 0.4945 0.4969 0.4532 
  20 0.1624 0.1633 0.4421 
  30 0.095 0.0957 0.439 

_2 = 0.75  40 0.0608 0.0615 0.4371 
  50 0.0457 0.0461 0.4363 
  75 0.0293 0.0298 0.435 

_3 = 0.90  100 0.0207 0.021 0.445 
  250 0.0078 0.008 0.4328 
 
Alpha n QLE MLE MOM 

_1 = 0.90  10 0.8341 0.8342 1.2088 
  20 0.273 0.273 1.2005 
  30 0.1401 0.1401 1.1976 

_2 = 0.99  40 0.0999 0.0999 1.1961 
  50 0.0827 0.0827 1.1953 
  75 0.0525 0.0525 1.1944 

_3 = 0.999  100 0.0367 0.0367 1.1938 
  250 0.0137 0.0137 1.1927 

 
Performance of parameter estimation method in 

terms of Mean Square Error (MSE) as the sample size 
increases the Quasi- likelihood estimator and 
Maximum likelihood estimator performs better as 
compare to Method of Moment. as shown in table 4. 

Conclusively, the best method for each criterion 
was based on the modal class for the entire criterion as 
summarized in table 5 below 

 
Table 5: Shows the Count of Quasi- likelihood estimator, Maximum likelihood estimator and Method of Moment 
using Bias, Variance, Mean absolute error and Mean square error.  
Count Best Method 
Criterion QLE MLE MOM  
Bias 77 0 2 QLE 
MSE 57 35 11 QLE 
MAE 34 48 6 MLE 
VAR 4 11 66 MOM 

 
 
GRAPHICAL RERESENTATION OF THE CRITERION 
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Fig 1: The graph above shows the Bias of the estimator of QLE, MLE, MOM at different sample sizes. 

 
 
The graph shows the Bias of the estimator of 

QLE, MLE, MOM at different sample sizes. Judging 
by the bias criterion, the Quasi Likelihood method 

(QLE) was the best for the lower and medium level of 
alpha, but for the higher level of alpha, Method of 
moment performs better. 

 
 
 
 

 
Fig 2: The graph above shows the Variance of the estimator of QLE, MLE, MOM at different sample sizes. 
 
 
 
The graph shows the Variance of the estimator 

of QLE, MLE, MOM at different sample sizes. From 
the graph, Method of moment consistently performed 

better across the alpha (parameter) level which implies 
that the method of Moment is the best method.  
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Fig 3: The graph above shows the Mean Absolute Error (MAE) of the estimator of QLE, MLE, MOM at different 
sample sizes. 
 
 
 

 
The graph shows the Mean Absolute Error 

(MAE) of the estimator of QLE, MLE, MOM at 
different sample sizes. The Quasi Likelihood method 
(QLE) outperformed the other methods for lower level 
of alpha but as the alpha level increases (medium level 

and above) the Maximum Likelihood method (MLE) 
and the QLE has just a slight difference in their 
estimates. Out of the three methods considered, the 
method of Moment consistently gives the higher 
estimate of Mean Absolute Error. 

 
 
 
 

 
Fig 4: The graph above shows the Mean Square Error (MSE) of the estimator of QLE, MLE, MOM at different 
sample sizes. 

 
 
The graph shows the Mean Square Error (MSE) 

of the estimator of QLE, MLE, MOM at different 
sample sizes. QLE method was the best for lower level 
of alpha, but as for the medium and higher level of 
alpha the QLE and the MLE does not give a 

significant different estimate. While on the other hand, 
the MOM gives a consistently higher estimate of 
Mean square error. 
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Fitting Dirichlet Model to Data Containing Selected Agricultural Products in Nigeria (2008-2017) 
 

Table 6: Parameter Estimation (QLE) 
Coefficients Estimate Std. Error 

1 0.2260442 0.1438496 

2 0.1729296 0.1390305 

 3 0.2410169 0.1453349 
 

From the table above, we obtained the estimates of the mean and standard error of Millet, millet rice, Sorghum. 
The parameter estimate of millet rice is more efficient due to its lowest standard error as compared to others.  

 
Table 7: Parameter Estimation (MLE) 

Coefficients Estimate Std. Error 

1 0.03325620 0.455928 

2 0.02179287 0.401919 

 3 0.03987597 0.471691 
 
From the table above, we obtained the estimates of the mean and standard error of Millet, millet rice, Sorghum. 

The parameter estimate of millet rice is more efficient due to its lowest standard error as compared to others. 
 

Table 8: Parameter Estimation (MOM) 
Coefficients Estimate Std. Error 

1 0.04000534 0.4591688 

2 0.01302276 0.309861 

 3 0.05461017 0.4750334 
 
 
 
From the table above, we obtained the estimates 

of the mean and standard error of Millet, millet rice, 
Sorghum. The parameter estimate of millet rice is 
more efficient due to its lowest standard error as 
compared to others. 

Conclusively, the quasi-likelihood estimator 
performs the best as compared to others. 

 
 

5. Conclusion  
The Dirichlet distribution is a multivariate 

generalization of the Beta distribution. In this research, 
we introduced three methods of estimation for 
Dirichlet distribution which are maximum likelihood 
estimator (MLE), Method of Moment (MOM) and 
Quasi-likelihood estimator. This was done in other to 
obtain the most efficient method. An extensive 
simulation study was carried out on the basis of 
selected criterion (Bias, Variance, Mean absolute error 
and Mean square error) considering various sample 
sizes, also the methods were subjected to real life data. 
The performance of these methods were compared at 
different sample sizes it shows that the Quasi- 
likelihood estimator performs better in terms of Bias, 
than the other methods, while Method of Moment 
performs better in terms of Variance, than the other 
methods. Maximum likelihood estimator performs 

better in terms of Mean Absolute Error (MAE) and 
(MSE) than the other methods. The real life result 
shows that Quasi-likelihood estimator performs better 
as compared to Method of moment and Maximum 
likelihood estimator, also the Bayes factor of Dirichlet 
distribution gives 57.95215, which implies a very 
strong evidence of the Goodness of fits. Hence, The 
Dirichlet distribution is efficient based on what we 
have done with higher precision and more adequacies 
in the estimate of the model, also the estimate of the 
model should be used in taking any prospective 
decision and can be reliable if large samples is 
involved. 
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