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Abstract: The investigation of extreme events is extremely relevant for a range of disciplines in mathematical, natural, 
and social sciences and engineering. Understanding the large fluctuations of the system of interest is of great 
importance from a theoretical point of view, but also when it comes to assessing the risk associated with low 
probability and high impact events. In many cases, in order to gauge preparedness and resilience properly, one would 
like to be able to quantify the return times for events of different intensity and take suitable measures for preventing 
the expected impacts. Prominent examples are weather and climate extremes, which can have a huge impact on human 
society and natural ecosystems. The present uncertainty in the future projections of extremes makes their study even 
more urgent and crucial. 
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Introduction:  

Statistical Convergence, was published almost 
fifty years ago, has flatter the domain of recent 
research. Unlike mathematicians studied 
characteristics of statistical convergence and applied 
this notion in numerous extent such as measure theory, 
trigonometric series, approximation theory, locally 
compact spaces, and Banach spaces, etc. The present 
thesis emphasis on certain results studied by Ferenc 
Mo´ricz in his two research researches i.e., "Statistical 
Convergence of Sequences and Series of Complex 
Numbers with applications in Fourier Analysis and 
summability " and in "Statistical Limit of Lebesgue 
Measurable functions with ∞ with applications in 
Fourier Analysis and summability". The perception of 
conjunction has been generalized in various ways 
through different methods such as summability and 
also a method in which one moves from a sequence to 
functions. In 1932 earlies, Banach coined the first 
generalization of it and named as "almost 
convergence". Later it was studied by Lorentz in 1948 
[1].  

The most recent generalization of the classical 
convergence i.e., a new type of conjunction named as 
Statistical Convergence had been originated first via 
Henry Fast [3] in 1951. He characterizes this 
hypothesis to Hugo Steinhaus [2]. Actually, it was 
Antoni Zygmund [20] who evince the results, 
prepositions and assertion on Statistical Convergence 
in a Monograph in 1935. Antoni Zygmund in 1935 
demonstrated in his book "Trigonometric Series" 

where instead of Statistical convergence he proposes 
the term "almost convergence" which was later proved 
by Steinhaus and Fast ([4] and [3]).  

Then, Henry Fast [3] in 1951 developed the 
notion analogous to Statistical Convergence, Lacunary 
Statistical Convergence and λ Statistical Convergence 
and it was reintroduced by Schoenberg [11] in 1959. 
Since then the several research related to the concept 
have been published explaining the notion of 
convergence and is applications. The objective of the 
study is to discuss the fundamentals and results along 
with various extensions which have been subsequently 
formulated [12].  

A sequence (xn) in a Banach space X is said to be 
statistically convergent to a vector L if for any ε > 0 the 
subset {n: kxn − Lk > ε} has density 0. Statistical 
convergence is a summability method introduced by 
Zygmund [4] in the context of Fourier series 
convergence. Since then, a theory has been developed 
with deep and beautiful results [5] by different authors, 
and moreover at the present time this theory does not 
present any symptoms of abatement. The theory has 
important applications in several branches of Applied 
Mathematics (see the recent monograph by Mursaleen 
[3]). It is well known that there are results that 
characterize properties of Banach spaces through 
convergence types. For instance, Kolk [4] was one of 
the pioneering contributors. Connor, Ganichev and 
Kadets [5] obtained important results that relate the 
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statistical convergence to classical properties of 
Banach spaces. 
 
Review of Literature: 

The Fibonacci sequence was firstly used in the 
theory of sequence spaces by Kara and Başarır [5]. 
Afterward, Kara [6] defined the Fibonacci difference 
matrix F̂ by using the Fibonacci sequence (fn) for n ∈ 
{0, 1, …} and introduced the new sequence spaces 
related to the matrix domain of F̂. 

Following [7] and [8], high quality papers have 
been produced on the Fibonacci matrix by many 
mathematicians [9]. 

In this paper, by combining the definitions of 
Fibonacci sequence and statistical convergence, we 
obtain a new concept of statistical convergence, which 
will be called Fibonacci type statistical convergence. 
We examine some basic properties of new statistical 
convergence defined by Fibonacci sequences. 
Henceforth, we get an analogue of the classical 
Korovkin theorem by using the concept of Fibonacci 
type statistical convergence. 

Estimation frequently requires iterative 
procedures: the more iterations, the more accurate 
estimates. But when are estimates accurate enough? 
When can iteration cease? My the rule has become 
"Convergence is reached when more iterations do not 
change my interpretation of the estimates". 

There is a trade-off between accuracy and speed. 
Greater accuracy requires more iterations - more time 
and computer resources. The specification of 
estimation accuracy is a compromise. Frequently, 
squeezing that last bit of inaccuracy out of estimates 
only affects the least significant digits of printed 
output, has no noticeable effect on model-data fit, and 
does not alter interpretation. Three numerical 
convergence rules are often employed: 

1) Estimates are pronounced "accurate enough" 
when a predetermined "maximum" number of 
iterations have been performed. 

2) Estimates are deemed converged when no 
estimate changes more than a small pre-set "tolerance" 
value during an iteration. 

3) Estimates have converged when there is less 
residual difference between the observed data and that 
expected than can actually be observed. 

Be wary! In a recent analysis of responses to a set 
of math tests, linked in block diagonal matrix form, I 
set these three convergence criteria to reasonable 
values. The computer program BIGSTEPS ran 
smoothly. All appeared well. The outcome is shown in 
Figure 1. As most of us would expected, both the 2995 
children and the 1031 math items appear close to 
normally distributed. The children were from 9 grades, 
so the spread of 7 logits across the examinees could be 
right. 

A question arose, however, when I went back and 
inspected the linking design. Children in the lower and 
higher grades had been deliberately over-sampled in 
order to get good child measures and item calibrations 
at the extremes. Yet this bias towards the extremes 
does not appear in Figure 1! 

After eliminating other theories for this 
unexpected result, suspicion focussed on the analysis 
itself. Perhaps the familiar values for the convergence 
criteria were not stringent enough in this case. 
Accordingly, the criteria were made more stringent, 
and estimates were again obtained. The initial run used 
50 iterations. The revised run, 263 iterations. Now both 
the child and item distributions are clearly bimodal. 
The range of child abilities is about 9 logits, an increase 
of 2 logits. This result makes much better sense. 

Establishing convergence is more than a 
statistical nicety. It can have profound substantive 
implications. 

From this inequality, it seems that the sequence 
(xk) is statistically convergent of order α to one, and it 
belongs to the set S α (g) where α > 1 2. We state in 
advance that from the example that is given above, we 
obtain the inclusion c (g) ⊂ S α (g) that strictly holds 
where α = 1. This means that a sequence that is not 
ordinary convergent in paranormed space can be 
statistically convergent of order α in this space. 
Furthermore, from this example, it seems that some 
sequences that are unbounded divergent can be 
statistically summable of order α in paranormed 
spaces. 

The concept of statistical convergence has 
applications in different fields of mathematics such as 
number theory, statistics and probability theory, 
approximation theory, optimization, probability theory 
and fuzzy set theory. In this paper, the concepts of 
statistical convergence, strongly p-Cesàro summability 
and statistically Cauchy sequence of order α in 
paranormed spaces are introduced. Some topological 
properties of these concepts in paranormed spaces are 
investigated. Relations between statistical convergence 
of order α and strongly p-Cesàro summable of order α 
in paranormed spaces are considered in Theorem 8, 
Corollary 1, Theorem 9, and examples are given for 
clear understanding. These definitions and results 
provide new tools to deal with the convergence 
problems of sequences occurring in many branches of 
science which are given above. We state that the 
concept of paranorm is a generalization of absolute 
value. Hence, the introduced constructions and 
obtained results in this paper open new directions for 
further research. It would be interesting to develop 
connections between statistical convergence of order α 
in paranormed spaces and many branches of science. 
Funding: This research received no external funding. 
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The relationships between the various modes of 
convergence can be summarized in the diagram below. 
A solid line means that convergence in the mode at the 
tail of the arrow implies convergence in the mode at the 
head. A dashed line means that convergence in the 
mode at the tail of the arrow implies the existence of a 
subsequence that converges in the mode at the head of 
the arrow. (The idea for this kind of diagram came 
from Elements of Integration by Robert Bartle, 1966). 

First, consider the functions [0, 1], [0, 1/2], [1/2, 
1], [0, 1/3], [1/3, 2/3], etc. The sequence fn converges to 
0 in measure and in Lp. However, there is no x for 
which fn (x) converges to 0 (fn (x) = 1 infinitely often) 
and so fn converges neither almost everywhere nor 
almost uniformly. Note that in this case Ω = [0, 1] is a 
finite measure space, and the constant function 1 is an 
Lp bound on the sequence. 

Next, consider the functions fn = n [1/n, 2/n]. The 
sequence fn converges pointwise to 0 everywhere. It 
converges almost uniformly and converges in measure. 
However, the Lp norm of fn is 1 for all n and so no 
subsequence converges to 0 in Lp norm. Note again Ω = 
[0, 1] is a finite measure space in this example. 

Let A be a subset of positive integers. We 
consider the interval [1, n] and select an integer in this 
interval, randomly. Then the ratio of the number of 
elements of A in [1, n] to the total number of elements 
in [1, n] belongs to A, probably. For n → ∞, if this 
probability exists, that is, this probability tends to some 
limit, then this limit is used as the asymptotic density of 
the set A. Let us mention that the asymptotic density is 
a kind of probability of choosing a number from the set 
A. Now, we give some definitions and properties of 
asymptotic density. The set of positive integers will be 
denoted by ℤ+. Let A and B be subsets of ℤ+. If the 
symmetric difference AΔB is finite, then we can say A 
is asymptotically equal to B and denote A ∼ B. 
Freedman and Sember introduced the concept of a 
lower asymptotic density and defined the concept of 
convergence in density, in [1]. 

The study of statistical convergence was initiated 
by Fast [2]. Schoenberg [3] studied statistical 
convergence as a summability method and listed some 
of the elementary properties of statistical convergence. 
Both of these mathematicians mentioned that if a 
bounded sequence is statistically convergent to L, then 
it is Cesàro summable to L. Statistical convergence 
also arises as an example of ‘convergence in density’ 
as introduced by Buck [4]. In [5], Zygmund called this 
concept ‘almost convergence’ and established the 
relation between statistical convergence and strong 
summability. The idea of statistical convergence has 

been studied in different branches of mathematics such 
as number theory [6], trigonometric series [5], 
summability theory [1], measure theory [7] and 
Hausdorff locally convex topological vector spaces [8]. 
The concept of αβ-statistical convergence was 
introduced and studied by Aktuǧlu [9]. In [10], 
Karakaya and Karaisa extended the concept of 
αβ-statistical convergence. Also, they introduced the 
concept of weighted αβ-statistical convergence of 
order γ, weighted αβ-summability of order γ and 
strongly weighted αβ-summable sequences of order γ 
in [10]. In [11], Braha gave a new weighted 
equi-statistical convergence and proved the Korovkin 
type theorems using the new definition. 
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