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Abstract: It is found that not only the model (equation (1.5)) and its derivative agree with the function
)(xf

 and its 

derivative 
),(' xf

 respectively, but the second derivative of the model and the second derivative of the function are 

also agreeing at the current iterate nxx 
 (Fernando and Weerakoon [1997]). Even though the model for Newton’s 

method matches with the values of the slope 
)('

n
xf

of the function, it does not match with its curvature in terms of 

)('' nxf
. It was found that the computational order of convergence is more than three in some cases in variant of 

Newton’s method, which is higher than the classical Newton’s method. The number of function evaluations was found 
to be less for variant of Newton’s method as compared to classical Newton’s method. Another important characteristic 
of this method is that it does not require second or higher derivatives of the function to carry out iterations. 
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1.1 Introduction 

In this study, authors have suggested an 
improvement over the Newton’s method at the expense 
of one additional first derivative evaluation. Derivation 
of Newton’s method involves an indefinite integral of 
the derivative of the function, and the relevant area is 
approximated by a rectangle. Here authors have 
approximated this indefinite integral by a trapezoid 
instead of a rectangle, and the resulted method has 
third-order convergence, i.e., the method 
approximately triples the number of significant digits 
after some iterations. Computed results 
overwhelmingly support this theory, and 

computational order of convergence was even more 
then three for certain functions. It is important to 
understand how Newton’s method is constructed. At 
each iterative step construct a local model of the 

function 
)(xf

 at the point nx
 and solve for the 

root 1nx
 of the local model. In Newton’s method, 

shown in figure 1.1, the local linear model is the 

tangent drawn to the function 
)(xf

at the contact 

point n
x

 as: 

 
).()(')()( nnnn xxxfxfxM 

    …(1.1) 
Dennis [1983] interpreted local linear model in another way. From Newton’s theorem, 

 


x

xn
n

dfxfxf .)(')()( 
     …(1.2) 

Dennis [1983] replaced the indefinite integral by the rectangle ABCD as shown in figure 1.2, i.e., 

 
),()(')(' n

x

x n xxxfdf
n

 
     …(1.3) 

which results in the model given in equation (1.1). In this the area DCE is ignored. 
 
1.2 A Variant of Newton’s Method 
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In this paper the authors have approximated the indefinite integral involved in equation (1.2) by the trapezium ABED 
as shown in figure 1.3, i.e., 

 

 .)(')(')(
2

1
)(' xfxfxxdf nn

x

xn









 

   …(1.4)  
Thus, the local modal is given by 
 

  
Figure 1.1: Newton’s iterative step. 

 
 

. 
Figure 1.2: Approximating the area by the rectangle ABCD 
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Figure 1.3: Approximating the area by the trapezoid ABCD. 
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It is found that not only the model (equation (1.5)) and its derivative agree with the function
)(xf

 and its 

derivative 
),(' xf

 respectively, but the second derivative of the model and the second derivative of the function are 

also agreeing at the current iterate nxx 
 (Fernando and Weerakoon [1997]). Even though the model for Newton’s 

method matches with the values of the slope 
)('

n
xf

of the function, it does not match with its curvature in terms of 

)('' nxf
. 

 
The next iterative point as the root of the local model (equation (1.5)) is  
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This is an implicit scheme, which means derivative of the function at the 
thn )1( 

 iterative step is used to 

calculate the 
thn )1( 

 iterate. This difficulty is overcome by using Newton’s method to compute the 
thn )1( 

 
iterate on the right-hand side. Therefore, the resulting scheme is 
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where 

.
)('

)(*
1

n

n
nn

xf

xf
xx 

       …(1.8) 
 
1.3 Convergence of Method 

Let   be a simple root of 
)(xf

, i.e., 
0)( f

 and 
0)(' f

. Let approximate value of the root is 

given by nn ex 
, where en is the error. Using Taylor expansion 

)( nxf
 can be written as: 
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    …(1.9) 

where 
).(/)()!/1( )1()(  ffjC j

j


 Similarly, using Taylor expansion, 
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nn
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    …(1.10) 

Dividing equation (1.9) by equation (1.10) and after some simplifications, one gets, 
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  …(1.11) 

Substituting the results from equation (1.11) in equation (1.8), one gets, 

 
*

1nx
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   …(1.12) 

This value of 
*

1nx
 is used for the Taylor’s series expansion of 

 *
1

)1(
nxf

 as, 
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 …(1.13) 

Adding equation (1.10) and equation (1.13), 
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          …(1.14) 
 
using equation (1.9) and equation (1.14), one gets, 
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on simplifying it becomes, 
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Therefore from equation (1.7) and equation (1.15) 
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This shows that the proposed method has third-order convergence. 

 
 

Table 1.1: Examples used for comparison of Varient’s Newton method and classical Newton’s method 
S.No. Functions Root 

1. 0104 23  xx  1.36523001341448 

1. 01sin 22  xx  
1.40449164821621 

3. 0232  xex x

 0.25753028543977 

4. 0cos  xx
 

0.73908513321475 

5. 01)1( 3 x
 

1.00000000000000 

6. 0103 x  1.15443469003367 

7. 05cos3sin 22

 xxxex

 
.1 20764782713013 

8. 028sin sincos22 2

 xxxexx  
4.82458931731526 

9. 013072

 xxe  
3.00000000000000 

 
 

1.4 Numerical Examples 
The authors have demonstrated the use of their 

variant of Newton’s method over the classical 
Newton’s method for the examples given in Table 1.1. 
The roots were found correct to 15 decimal places. 
1.5 Conclusions 

From Table 1.1 it was found that the 
computational order of convergence is more than three 
in some cases in variant of Newton’s method, which is 
higher than the classical Newton’s method. The 
number of function evaluations was found to be less for 
variant of Newton’s method as compared to classical 
Newton’s method. Another important characteristic of 
this method is that it does not require second or higher 
derivatives of the function to carry out iterations. 
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