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1.1 Introduction extends the limit functional on c, the space of
Convergence of random variables (sometimes convergent sequences, in the sense that ®(x) = lim &
called stochastic convergence) is where a set of for all x € c. In case o is the translation mapping
numbers settle on a particular number. It works the k—k+1, an invariant mean is often called a Banach
same way as convergence anywhere else; For example, limit and V,, the set of bounded sequences all of whose
cars on a S5-line highway might convergeto one invariant means are equal, is the set of almost
specific lane if there’s an accident closing down four of convergent sequences [19].
the other lanes. In the same way, a sequence of If x = {&}, set Tx = {T&} = {&xqo}. It can be
numbers (which could represent cars or anything else) shown [28] that
can converge (mathematically, this time) on a single, lim t . (X)
specific number. Certain processes, distributions and Vo= {x={&): Mo — &e uniformly in k,
events can result in convergence— which basically £=o-lim &}
mean the values will get closer and closer together. m
The main object of this paper is to study two more (ak + Tak tot T S )
extensions of the concept of statistical convergence where tmk (X) - m+1 )
namely c-statistical ~convergence and lacunary Several authors including Mursaleen [22], Savas
o-statistical convergence. We also study the concept of [27], Schaefer [31] and others have studied invariant
L¢-convergence. In section 1.2 we study some convergent sequences.
inclusion relations between Lg-convergence and Definition 1.1.2. A sequence x = {&} is said to be
lacunary o-statistical convergence and show that these strongly c-convergent [23] to & if
are equivalent for bounded sequences. Further in 1 n-t
section 1.3 we study relation between o-statistical |im_2|§ .
convergence and lacunary c-statistical convergence. noon =g 7o (M _g=0 uniformlyinm

Definition 1.1.1. Let o be a mapping of the set of
positive integers into itself. A continuous linear
functional @ on /,, the space of real bounded
sequences X = {&}, is said to be an invariant mean or a
o-mean if and only if

. d(x)=>0if& >0 for all k,

2. O({&wt) = D(x) for all x € L,

3. @(e)=1wheree= {1,1,1,...}.

The mappings o are one-to-one and such that ¢™
(k) #k for all Eositive integers k and m, where 6™ (k)
denotes the m" iterate of the mapping o at k. Thus ®

In this case we write § — &[V,] and [V,] denotes
the set of all strongly c-convergent sequences.
Remark 1.1.3.

(1) For o(m) = m+1, the space [V,] is the space
of strongly almost convergent sequences.

(i) It is known [23] that c C[V,] TV, CL,.

Definition 1.1.4. A lacunary sequence is an
increasing integer sequence 6 = {k,} such that ko = 0
and h,=k,—k.; > wasr — .
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Throughout this paper the intervals determined by 6
will be denoted by I, = (k.1, k;].

Definition 1.1.5. Let 6 be a lacunary sequence.
The space denoted by Nj is defined [9] as

I|m Z|§k

Np = {x = {&}: for some &, h, kel —&=
0}.

Definition 1.1.1. A sequence x = {&} is said to be
lacunary strong o-convergent [28] to & if

lim— Z|§ «
e hr kel, : :
-§ = uniformly in m.

We shall denote by Ly the set of all lacunary
strong G-convergent sequences.

Remark 1.1.1. Ly < [V,] for every lacunary
sequence 6.

Definition 1.1.8. A complex number sequence x
= {&} is said to be o-statistically convergent or S,
-convergent to the number ¢ if for each € >0

1

lim — £ .

"N 0<k<n:| % (M _g>e¢}| = Ouniformly
in m.

In this case we write Sy-lim & = & or & — &(S,)
and S, denotes the set of all o-statistically convergent
sequences.

Definition 1.1.9. Let 6 = {k,} be a lacunary
sequence. The complex number sequence x = {&} is
said to be lacunary o-statistically convergent or
Sse-convergent to the number & if for each € >0

1
lim— £
>7h, l{k € L: | °" (™ _ ¢ > g}| = Ouniformly
in m.
In this case we write Syp-lim &, = & or & — §(Se0)
and S, denotes the set of all lacunary o-statistically
convergent sequences.

1.2Some Inclusion Relations Between
Lo-Convergence And Lacunary o-Statistical
Convergence

In his section we study some inclusion relations
between Lg-convergence and lacunary o-statistical

1
3 215w 5
r1kﬂ g Fewm gy

_ M
hr glr i €
EemY 2 L hia

convergence and show that these are equivalent for
bounded sequences.

Theorem 1.4.1. Let 6 =
sequence. Then

(1) & — &(Lo) =& — &(Son),

(i) ifx € [, and & — &(Sep), then & — E(Ly),

(iii) S0 N o= L.

Proof. (i). Since & — &(Ly), for each &€ > 0, we

have
I|m Z|§ «

rkEl _E_,|:O

{k;} be a lacunary

uniformly in m. ..(D)
If € > 0, we can write
Zl ‘:ck(m)

ZI ack(m) kel,

kel, —E_,|> oK (m) g =z¢ —E_,|
>gl{k € I;: |aﬁk<m> —g > e}
Consequently,
1
!En 2|§k lim—
L LT

St g
Hence by (1) and the fact that € is fixed number,
we have

1

lim
= Do e |§Gk<m> -

\%
™
pniad
Il
[

uniformly in m,
i.e. E_,k i E_,(Sce).
(ii). Suppose that & — &(S) and x € [,.. Then
for each £ >0

1
lim
PN e S g s g -
uniformly in m. .. (2

Since x € [, there exists a positive real number

M such that | a"k(m) — & <M for all k and m.
For given € > 0, we have

z| ac"(m)

kel,
€
o (m) é‘

-
1

"k el Iack(m) — &z} +8hr [n—~(n-h+1)+ 1]
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M 1
_h Ik € I: |aﬁk<m>—§|ze}|+shr h,
M

h &

=k €T M g e e

1
lim—=>"1& lim—

r—o *©
- hr kel, —§|§Mr_> r|{kEIr:|aGk(m)—§|28}|+8
Hence by using (2), we get
o1
!mh— zl };Gk(m)
r kel, —&=0 uniformly in m. ...(3)
= & — &(Lo)-

Example 1.2.2. Let 0 be given and define & to be 1,2,3,..., [V hr Jfork=c"(m),n=k.+ 1,k +2,... .k +][

v hf ]; m > 1 and & = 0 otherwise (where [ | denotes the greatest integer function).
Note that x is not bounded. Now

1 [vh,]

h &

" ik € I;: | Gk(m)—()|28}|: h, —0ast— o,
1.€. E_,k — O(Sce). But

1 1
_Z|§6k(m) _([ﬁ]@

hr kElr h

1
-0|="T )—>2¢Oasr—>oo,
ie. E_,k UO(LQ).

Thus inclusion in (i) is proper and this example 1 £,
shows that the boundedness condition can not be - € . a
omitted from (ii) N sksn1: ™ —gze)< 2
(iii). It follows from (i), (ii), Remark 1.1.7 and the , (4)
fact that [V,] C L. for all n > ny and m > m,. .
This completes the proof of the theorem. Itis "enough to prove that there exists ny such that
1.31In this section we study relation between forn=ng, 0 <m<m,,
Ss-convergence and Sp-convergence. First we discuss 1
a lemma which will be used in studying that relation. N 3

Gk
Lemma 14.1. A sequence x = {&} is N{0<sksn-1:| oM —gze)<g

o-statistically convergent to the number & if for given
g1 > 0 and each € > 0, there exist ny and m, such that

...(5)
since taking ny=max {n,,ny }, (5) will hold for n

1 >npand for all m, which gives the result.
— a ) Once myhas been chosen, 0 <m <m,, myis fixed.
N0<ksn-1:| =M g ze}|<g .
for all n > ny and m > m,,. Solet[{0<k<mo1:| M _g>e}|=K.
Proof. Let ¢, > 0 be given. For each £ > 0, choose Now taking 0 <m < myand n > m,, we have
no and my such that

1
n . (:Gk(m) =N . ack(m)

[{0<k<n-1:| —&>¢e}="{0<k<my1: | — & >¢}

1

ack(m) _

+ N fmy<k<n-1:|

&l =ejl
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1 £,
<NK+ 2 [Using (4)]
<g [Taking n sufficiently large]

which gives (5), and hence the result follows.

Theorem 1.3.2. S,y = S, for every lacunary
sequence 6.

Proof. Let x € Sgo. Then from Definition 1.1.9,
given g, > 0, there exist roand & such that

1

h &

r{0<k<h-1:| oM _g>el|<g
forr>rpandm=k.;+1+u,u>0.
Let n >h, and write n = ih, + t where 0 <t<h,, i is
an integer. Since n > h,, it follows thati> 1.

Now
! & 1 &
No<k<n1:] oM _g>e < N{0<k<(+Dh—1:] ° M _g>e)
1 i
HZ| . . ak(m)
120 fih, <k <(j+Dh,—1:| "™ _ ¢ >¢}]
1
< N (G+Dh, g
&
<2ih N [i>1]
h, ih,
for M <1,since N <1.So

1
n Sotim)
[{0<k<n-1:| ° —&l>¢}| < 2.

Then, by Lemma 1.4.1,x € S,.

Thus Sqg C S..

It is easy to see that S; C Sgp.

Hence Sy = S, for every lacunary sequence 0.

This completes the proof of the theorem.

Remark 1.3.3. When o(m) = m + 1, from
Definition 1.1.8 and Definition 1.1.9, we have the
definitions of almost statistical convergence and
lacunary almost statistical convergence of a sequence.
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