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Introduction 

Bold upper-case letters denote partitioned 
matrices, meaning a matrix of matrices. In this thesis 
we refer to these partitioned matrices as 4-dimensional 
(4D) since they possess spatial and temporal 
information. Matrices with a normal font represent a 
standard N x N matrix as opposed to a partitioned 4D 
Nn x Nn matrix, for N, n £ N, where N refers to the 
spatial dimension and n denotes the temporal 
dimension. Similarly, we represent 4D partitioned 
vectors with bold lower-case letters and normal vectors 
of size N are written in normal font. Data assimilation 
is a major component of Numerical Weather 
Prediction. The data assimilation problem consists in 
using the available observations together with the 
model trajectory to provide an accurate description of 
the atmospheric state. This so-called “analysis” can 
then be used to initialize a forecast or on its own, for 
instance to help understand atmospheric properties or 
in the context of field experiments or re-analyses over 
long periods of time. There are mainly two different 
ways of performing data assimilation. The sequential 
way is using observations in small batches in time, as 
they become available. In contrast, the continuous way 
is working over time windows, using all the 
observations together. This is particularly well suited 
for re-analyses problems to obtain the best possible 
state of the atmosphere at time t using observations 
before and after this time. In general, for operational 
NWP, the time window of interest is typically 3 to 12 
hours, due to the frequency of forecasts which are 
issued to the users.  

We introduce the Gauss-Newton `incremental' 
and CVT techniques currently used for sc4DVAR. We 

then introduce the two wc4DVAR formulations. We 
then extend the theory of the Gauss-Newton and CVT 
concepts to both formulations and briey discuss the 
structures of the two wc4DVAR Hessians. We 
conclude the chapter with a literature review of 
applications of wc4DVAR in NWP and current 
understanding of the conditioning of the wc4DVAR 
problem. We begin by detailing the style of notation 
used in this thesis. 
 
Notation and Assumptions 
Matrices and Vectors 

Bold upper-case letters denote partitioned 
matrices, meaning a matrix of matrices. In this thesis 
we refer to these partitioned matrices as 4-dimensional 
(4D) since they possess spatial and temporal 
information. Matrices with a normal font represent a 
standard N _ N matrix as opposed to a partitioned 4D 
Nn _ Nn matrix, for N; n 2 N, where N refers to the 
spatial dimension and n denotes the temporal 
 
Operators 

This notation also interlinks between operators 
and matrices. We denote non-linear operators using 
calligraphic font whereas a non-linear operator which 
has been differentiated and linearised around a point is 
denoted with normal font, which can then also be 
represented as a matrix. This also applies to 4D 
operators, so a linearised 4D operator for example 
would be bold. Letters with standard font denote linear 
or linearised operators, which can be represented in 
matrix form. 
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Condition Number  
The condition number used throughout this 

chapter is the 2-norm condition number, composed of 
the ratio of the largest and smallest Eigen value of a 
symmetric positive-definite matrix. We formally 
introduce the condition number in Chapter 3 Section 
3.1. 

We now introduce the sc4DVAR problem. 
 
Strong-Constraint 4DVAR 

The aim of data assimilation is to merge the 
trajectory of a model with observational data from the 
process being modeled. In sc4DVAR the model is 
assumed to be perfect meaning each state is described 
exactly by the model equations. The errors therefore in 
the strong-constraint problem are the background, a 
previous forecast, and the observations. The objective 
is to seek the model initial conditions which minimizes 
the distance between the model trajectory and the 
background and observations. 

We begin by writing the model evolution of the 
states as 

Xi = Mi,i-i (xi-i), i = 1,...,n. (1.1) 
The model is a discrete non-linear operator Mi)i-i: 

RN —> RN evolving the model state xi £ RN from time 
ti-1 to time ti on the closed time interval [to, in] where 
Mi)i = IN. The model state can have several spatial 
points and contain additional parameters or boundary 
conditions that govern the behavior of the model. In 
this thesis we only consider models initialized by their 
respective states without any additional parameters. 

The model integrations can be factorized into 
smaller integrations using the subscript time-stepping 
notation as follows 

Mn,o (Xo) = Mn,n-1... (M2,l (Ml,o (Xo))). (1.2) 
We utilize this notation throughout the thesis. 

Now that we have discussed the model, we briefly 
introduce the notion of observations in variational data 
assimilation related to NWP. 

There is a wide network of observations gathered 
with the use of various instruments and methods for 
obtaining measurements in NWP. For example, 
radiosondes are attached to weather balloons, which 
are sent up through the layers of the atmosphere 
collecting data such as pressure, humidity and 
temperature. Observations are also obtained through 
satellite radiances, aircrafts and buoys in the ocean. 
The process of translating the observations into data 
which can be compared with the model presents its 
own inverse problem, but this is incorporated into the 
variational problem as we will see shortly. An example 
of such a complex problem is the translation of 
Atmospheric InfraRed Sounder (AIRS) radiance data, 
which involves characterizing the errors in the 
measured radiances and the radioactive-transfer model, 
[65]. In practice the number of the observations is ~ O 

(106) whereas the number of variables in the state is 
significantly larger ~ O (108), [51]. 

Let yi £ Rp denote the raw observation value at 
time i and let Hi (xi) denote the non-linear observation 
operator, which maps the model equivalent of yi from 
state space to observation space such that Hi: R

N — Rp. 
Therefore we have 

Hi (xi) - yi = eo, i = 0,n, (1.3) 
where eo £ Rp denotes the observation error at ti. 

The errors in the observations are typically assumed to 
be uncorrelated with all other types of error, and of the 
form 

eo ~ N (0,Ri), i = 0,...,n,  (1.4) 
where Ri £ Rpxp is the observation error covariance 

matrix and the mean is equal to zero. The assumption 
of a normal distribution allows the distributions to be 
defined by the mean and covariance, which simplifies 
the problem. The Gaussian assumption in (1.4) is still 
currently used by leading weather centres' 4DVAR 
implementations, such as the Met Office and the 
ECMWF, [74], [75], [13]. 

Next, we consider model trajectory errors. Initial 
conditions xo, produce a model trajectory by utilizing 
the non-linear model described in (1.1), with states at 
each time (x1,...,xn). The initial conditions that produce 
the previous forecast trajectory, is known as the 
'background', denoted as The background is the 
solution of a previous 4DVAR application, since 
variational data assimilation is a cyclic process. We 
therefore have a background trajectory such that 

xb = Mi,i-i (xb-i), i = 1,n, (1.5) 
with initial conditions xo producing a trajectory 

(xl,...,x^). The error associated with the background is 
such that 

xo - xo = eo,  (1.6) 
where the error is such that 
eo ~ N (0,Bo).  (1.7) 
The background error eo £ RN is assumed to be 

uncorrelated with all other types of error, have a zero 
mean and a background error covariance matrix such 
that. 

So the aim of the variational problem is to 
minimize the errors in (1.6) and (1.3) 
 
Conclusions 

we have introduced the strong-constraint and 
weak-constraint variational data assimilation 
problems. We introduced concepts such as the 
Gauss-Newton incremental approach and the CVT 
technique for both sc4DVAR and wc4DVAR. We also 
discussed the structures of the weak-constraint 
Hessians. This was then followed by a review of the 
current literature detailing the applications and 
conditioning of the weak-constraint problem. 

We now introduce the mathematical framework 
required to understand and solve the 4DVAR problem 
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and the necessary tools used to obtain the results  
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