
 Academia Arena 2019;11(7) http://www.sciencepub.net/academia AAJ

19

Parameters related to simulator for software maintainability

1Dr. Om Parkash and 2Rajesh Kumar

1Assistant Professor, Department of Computer Science, OPJS University, Churoo, Rajasthan (India)
2Research Scholar, Department of Computer Science, OPJS University, Churoo, Rajasthan (India)

Email- emailrajesh11@gmail.com
Contact No.: +91-9582228651

Abstract: Using this analysis one can generate a new sequence of random but related states which look similar to
the original. This Markov process is stochastic in nature which has the property that the probability of transition
from a given state to any future state depends only on the present state and not on the manner in which it was
reached. The simulator is developed in this chapter to compute n-step e steady state stationary transition probabilities
for various state of the software under maintenance. The one step transition probabilities for five initial states of
deterioration of the software under maintenance. The transition probabilities are chosen according to Markovian
property i.e. the sum of the probabilities of going from one state to all other state is one. The operating efficiency of
the software is supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70. The steady state transition probabilities for each state
denoted by 0,1,2,3 and 4 are shown. This simulator is executed for a maximum value of n=100 or till the system
reaches a steady state while calculating n-step probabilities successively.
[Parkash, O.D. and Kumar, R. Parameters related to simulator for software maintainability. Academ Arena
2019;11(7):19-24]. ISSN 1553-992X (print); ISSN 2158-771X (online). http://www.sciencepub.net/academia. 4.
doi:10.7537/marsaaj110719.04.

Keywords: Software, Simulators, Quality, Maintance

Introduction:

Software is developed, maintained, and used by
people in a wide variety of situations. Students create
software in their classes, enthusiasts become members
of open-source development teams, and professionals
develop software for diverse business fields from
finance to aerospace. All these individual groups will
have to address quality problems that arise in the
software they are working with. This chapter will
provide definitions for terminology and discuss the
source of software errors and the choice of different
software engineering practices depending on an
organization’s sector of business. Every profession
has a body of knowledge made up of generally
accepted principles. In order to obtain more specific
knowledge about a profession, one must either: (a)
have completed a recognized curriculum or (b) have
experience in the domain. For most software
engineers, software quality knowledge and expertise
is acquired in a hands-on fashion in various
organizations. The Guide to the Software Engineering
Body of Knowledge constitutes the first international
consensus developed on the fundamental knowledge
required by all software engineers.

According to IEEE Standard Glossary of
Software Engineering Terminology, maintainability is
the ease with which a software system or component
can be modified to correct faults, improve
performance or other attributes, or adapt to a changed
environment [IEE1990]. Maintainability can also be
defined as the probability that a specified maintenance

action on a specified item can be successfully
performed (putting the item into a specified state)
within a specified time interval by personnel of
specified characteristics using specified tools and
procedures [JAR1990].

Software under maintenance consists of finite
number of states. The states have a specific operating
efficiency. The maintenance process can bring the
software from one state to another within a specific
time slot allotted to the software maintenance
engineers. The software fails or reaches its maximum
efficiency depends upon the nature of maintenance
problems. Here an attempt has been made to develop a
simulator to compute n–step transition probabilities
successfully for software under maintenance until it
reaches steady state. This process is very much
depicted by Markov analysis [GIL2004].

The purpose of software maintenance is to assure
the quality of performance of the respective software.
But design errors, undiscovered faults and installing
new applications can cause the software degradation
[RIK1999]. There are two aspects of maintainability:
serviceability (the probability of returning the item to
normal service) and repair ability (the probability of
repairing the actual or impending fault). Generally,
software maintainability is termed as repair ability. In
software engineering, the main emphasis of
maintenance is change or the modification of a
software product after delivery to correct faults, to
improve performance or other attributes, or to adapt
the product to a modified environment.

 Academia Arena 2019;11(7) http://www.sciencepub.net/academia AAJ

20

Rajiv D. et al. [RAJ1994] estimated the impact
of development activities in a more practical time
frame. They developed a two-stage model in which
software complexity is a key intermediate variable
that links design and development decisions to their
downstream effects on software maintenance. They
analyzed the data collected from various software
enhancement projects and software applications in a
large IBM COBOL environment. Results indicated
that the use of a code generator in development is
associated with increased software complexity and
software enhancement project effort. The use of
packaged software is associated with decreased
software complexity and software enhancement effort.
Pfleeger [PFL1998] describes maintainability as the
probability that a maintenance activity can be carried
out within a stated time interval, it ranges from 0 to
Rikard Land [RIK1999] investigates how the
maintainability of a piece of software changes as time
passes and it is being maintained by performing
measurements on industrial systems. Niessink F.
[NIE2001] discussed the perspectives of improving
software maintenance and described software
maintenance process improvement from two
perspectives: measurement-based improvement and
maturity-based improvement.

Y. Kataoka et al. [YKA2002] discussed program
refactoring as a technique to enhance the
maintainability of a program. A quantitative method
was proposed to measure the maintainability
enhancement effect of program refactoring. Coupling
metrics were used to evaluate the refactoring effect.
By comparing the coupling before and after the
refactoring, the degree of maintainability
enhancement was evaluated. The results showed that
the method was really effective to quantify the
refactoring effect. The software to be maintained may
be considered to be in a number of states of
deterioration. The maintenance (repair) work of the
software is inspected after a regular interval of time,
say, weekly and is classified as being in one of the
states. Each state is considered as functionally
independent. The evaluation is carried out using
Markov analysis which looks at a sequence of states
and analyses the tendency of one state to be followed
by another, after each repair the software restored to a
state having ‘increased’ operating efficiency. Using
this analysis one can generate a new sequence of
random but related states which look similar to the
original. This Markov process is stochastic in nature
which has the property that the probability of
transition from a given state to any future state
depends only on the present state and not on the
manner in which it was reached.

If t0 < t11 < t2 <………< tn represents the points
in time scale then the family of random variables {X

(tn)} is said to be a Markov process provided it holds
the Markovian property:
P{X (tn) = xn|X (tn-1) = xn - 1, X (t0) = x0} = P{ X (tn) =
xn| X (tn-1) = xn-1}
V X (t0), X (t1),…., X (tn)

Markov process is a sequence of ‘n’ experiments

in which each experiments has ‘n’ possible outcomes
x1, x2,……, xn. Each individual outcome is called a
state and probability (that a particular outcome
occurs) depends only on the probability of the
outcome of the preceding experiment. The simplest of
the Markov processes is discrete and constant over
time. It is used when the sequence of experiment is
completely described in terms of its states (possible
outcomes). There is a finite set of states numbered 0,
1, 2, 3,….n and this process can be only in one state at
a prescribed time. The system is said to be discrete in
time if it is examined at regular intervals.

The probability of moving from one state to
another or remaining in the same state during a single
time period is called transition probability.

P xn-1, xn = P{ X (tn)= xn | X (tn-1)= xn-1}

Mathematically, the probability is called the
transition probability. This represents the conditional
probability of the system which is now in state xn at
time tn provided that it was previously in state xn-1 at
time tn-1. This probability is known as transition
probability because it describes the system during the
time interval (tn-1, tn). Since each time a new result or
outcome occurs, the process is said to have stepped or
incremented one step. Each step represents a time
period or any other condition which would result in
another possible outcome. The symbol n is used to
indicate the number of steps or increments.

The transition probability can be arranged in a
square matrix form denoted by P with elements pij

Such that

∑ pij =1; i=0, 1, 2, 3….. n and 0≤ pij ≤1
j=0

n-step stationary transition probabilities

The n-step stationary transition probabilities are
defined to be
prs

(n) = P (Xi+n = s|Xi = r) = P (Xn = s|X0 = r)
prs

(n)≥0 for all states r and s; n=1, 2,.…
n
∑ prs

(n) = 1 for all states r; n=1, 2,….
s = 0

The above equation assumes that there are N+ 1

possible states. Note that if the system is currently in
state r, it must be in some state n steps from now.

 Academia Arena 2019;11(7) http://www.sciencepub.net/academia AAJ

21

Thus

In general, the n-step stationary transition

probabilities can be calculated as follows:

Where the possible states are 1, 2,……, n. That

is, the probability of going from state r to state s in n
steps is the probability of going from state r to state j
in one step, times the probability of going from state j
to state s in n-1 steps, summed over all j=0, 1, 2,……,
n.
Steady state stationary transition probabilities

Suppose a given system has N+ 1 states, 0, 1, 2...
N. if for some value of n

The quantity as is the steady state stationary

transition probability of being in state s after a large
number of steps. That is to say, if every state can
eventually be reached from every other state (possibly
in a large number of steps), and if the system can be in
any given state on two consecutive steps, then the
probability of being in any given state after a large
number of steps is a constant. This constant is called
the steady state probability for the given state.

The N+1 steady state probabilities satisfy the
N+2 linear steady state equations

N
as = ∑ ar*prs for s=0, 1, 2,….., N
r = 0
 N
∑ as = 1
s = 0

Thus, if one forms a system of N+1 linear
equations in N+ 1 unknown using above equation, the
solution of the system will be the N+1 steady state
probabilities.
Proposed Model

The proposed model assumes that
‘maintainability’ of the software means a quantitative
characteristic called ‘operating efficiency’, which

from user point of view is maximum in the beginning
and deteriorates progressively with the passage of
time in view of ever increasing user expectations that
evolve constantly over time.

Software under consideration for maintenance
must be in one and only one state of deterioration at
specific point of time. The software that is currently in
state ‘r’ must be in some state ‘n’ steps from now.
Under fairly general conditions, if the one-step
stationary transition probabilities are available, one
can determine n-step stationary transition probabilities
until the software reaches steady state.

The simulator developed in this chapter
computes the n-step probabilities successively until
the system reaches steady state or until n = 100, which
ever occurs first. If steady state is not reached, a
message stating such is printed. The simulator is
developed using high level programming language.
Assumptions

 The software to be maintained may be
considered in one of the five states of deterioration.
Say Xi = {0, 1, 2, 3, 4} represents the state of
deterioration of the software at the end of ith week.

 The operating efficiency is simulated for
each state using Bux Muller transformation. e.g. 95%
to 100% for the state=0 and below 70% for state =4
and in-between for other states.

 The one-step stationary transition
probabilities may be given or may be determined from
the past data.

 n-step transition probabilities are calculated
successively until the system reaches steady-state or n
= 100 which ever occurs first.

 In the absence of a steady-state a message
stating such is printed.
Description Of Algorithm: Sim_Soft_Maint
Terms and Notations

N: Number of n-step probabilities.
NS: Number of states of deterioration for the

software to be maintained.
PROB (X0=I): Probability of being in state I

initially (operating efficiency)
P (I, J): One step stationary transition probability
PN (I, J): n steps stationary transition probability
MAT (I, J): Probabilities of being in state J after

I steps.
Algorithm Sim_Soft_Maint for n-step probabilities
using
Markov Analysis

1. [INPUT]
(a) [Number of states for software maintenance]
Read NS
(b) [Probabilities of being in state I initially]
[Compute the probabilities (operating efficiency)

of each state of deterioration initially operating
efficiency using Box-Muller transformation by (with

 Academia Arena 2019;11(7) http://www.sciencepub.net/academia AAJ

22

the help of random numbers generation), computing
of their mean and standard deviation and normalizing
the function These probabilities are denoted by PROB
(I)), I=1 to NS] or

Results & Discussion

The simulator is developed in this chapter to
compute n-step e steady state stationary transition
probabilities for various state of the software under
maintenance. The one step transition probabilities for
five initial states of deterioration of the software under
maintenance have been shown in table 1. The
transition probabilities are chosen according to
Markovian property i.e. the sum of the probabilities of
going from one state to all other state is one.

The operating efficiency of the software is
supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70. The
steady state transition probabilities for each state
denoted by 0,1,2,3 and 4 are shown in the table 2 in
the form of results.

This simulator is executed for a maximum value
of n=100 or till the system reaches a steady state while
calculating n-step probabilities successively.

Table 1: Transition Probabilities Matrix
From State 0 1 2 3 4
0 0.55 0.40 0.03 0.02 0
1 0 0.50 0.46 0.03 0.01
2 0 0 0.44 0.50 0.06
3 0 0 0 0.68 0.32
4 0 1.0 0 0 0

Table 2: Steady State Transition Probabilities
 State Steady state stationary transition probabilities
0 0
1 0.3173
2 0.2308
3 0.3123
4 0.1396

Conclusion:

A gradual eye on upkeeps of the software would
reveal that with the passage of time the ‘operating
efficiency’ decreases and the level of maintainability
effort increase. The initial state of software’s

operating efficiency proceeds to a state after passing
through ‘n’ steps where the operating efficiency noose
dives to the lowest level referring to as ‘steady state’
after which there will conceptually be no retardation
of software efficiency any further and the concerned
software may be branded as ‘unfit for use’ i.e. no
further maintainability is desirable and no effort
should be made to modify the software. This is
achieved after a large number of steps and as such the
transition probabilities remain fairly constant for each
state as shown in the table 16. This state is the
terminal stage where the user has to adapt the strategy
of either invests in new alternate software or goes for

 Academia Arena 2019;11(7) http://www.sciencepub.net/academia AAJ

23

an improved version of the same. The software
simulation tool designed here will be helpful for the
software project managers in judging the maintenance
efforts of the software.

Though it is difficult to quantify the actual
maintenance efforts at different point of time of our
choice, but its impact is fairly realized over the
software life cycle. A precise measure of software
maintainability can help better manage the
maintenance phase effort.

Correspondence Address:
Rajesh Kumar
Research Scholar, Department of Computer Science,
OPJS University, Churoo, Rajasthan (India)
Email- emailrajesh11@gmail.com
Contact No.: +91-9582228651

Reference:
1. Aannestad, B., Hooper, J., “The Future of

Groupware in the Interactive Workplace”,
HRMagazine, Vol. 12, Issue 11, November
1997, pp. 37-41.

2. Abdrabou A, Zhuang W (2006) A position-based
QoS routing scheme for UWB mobile ad hoc
networks. IEEE J. Select. Areas Commun.
24:850-856.

3. Agarwal, H., Demillo, R. A. and Spafford, E.H.
Debugging with Dynamic Slicing and
Backtracking, Software Practice and Experience,
23, pp. 589-616, 1993.

4. Campos, J., Arcuri, A., Fraser, G. and Abreu, R.
Continuous Test Generation: Enhancing
Continuous Integration with Automated Test
Generation, In the Proceedings of Automated
Software Engineering (ASE), 2014.

5. Camuffo, M., Maiocchi, M. & Morselli, M.,
1990. Automatic software test generation.
Inform. Softw. Technol., pp. 337-346. Carnes,
P., 1997. Software reliability in weapon
systems., Proceedings of 8th International
Symposium On Software Reliability
Engineering, p. 114–115.

6. Canfora, G., Cimitile, A. and De Lucia, A.
Conditioned Program Slicing. Information and
Software Technology, 40(11), pp. 595–607,
1998.

7. Cao, Y., Hu, C. and Li, L. An Approach to
Generate Software Test Data for a Specific Path
Automatically with Genetic Algorithm, In the
Proceedings of ICRMS, Chengdu, pp. 888- 892,
2009.

8. Dufner, D., Kwon, O., Hadidi, R., “WEB-
CCAT: A Collaborative Learning Environment
For Geographically Distributed Information
Technology Students and Working

Professionals”, Communications of the
Association for Information Systems, Vol. 1,
Article 12, March 1999, Available [Online]:
http://cais.isworld.org/articles/1-12/article.htm
[26 November 2000].

9. Edvardsson, J and Kamkar, M. Analysis of the
Constraint Solver in UNA Based Test Data
Generation, In the Proceedings of the 9th
European software engineering conference held
jointly with 9th ACM SIGSOFT international
symposium on Foundations of software
engineering, 26(5), pp. 237-245, 2003.

10. Ehrlich, W. K., Lee, K. & Molisani, R. H., 1990.
Applying reliability measurement: A case Study.
IEEE Transaction on Software, p. 56–64.

11. Udell, J., Asthagiri, N., Tuvell, W., Peer-To-
Peer: Harnessing the Power of Disruptive
Technologies, O’Reill & Associates, 2001.

12. UNCTAD, World Economy Report (2012) The
Software Industry and Developing Country PP-
38- 42 Review of Literature - II Economic
Analysis of Changing Dimensions of IT Sector
in India Page 74.

13. Upadhya, Carol (2007). Employment, Exclusion
& Merit‟ in the Indian IT Industry‟, Economic
& Political Weekly, A Sameeksha Trust
Publication also see. http://www.epw.org.in,Vol
XLI No.36 September9- 15,2006 PP-1863-
1867.

14. Vaishnav, Rajiv (2011).‟ Indian Industry2011:
Key Driver of growth‟, The Hindu Survey of
Indian Industry, REGD, RN/5734|61 pp.190-
192.

15. Varma, Shweeta (2012). „Looking for that
Sunshine‟, Dataquest, Vol.xxx No.16 &
17August31- September15, 2012, PP- 104-108.

16. Vivek V, Sandeep T, Manoj B S, Murthy C S R
(2004) A novel out-of-band signaling
mechanism for enhanced real time support in
tactical ad hoc wireless networks. Proc. IEEE
RTAS 56-63.

17. Wallace, D. & Coleman, C., 2001. Application
and Improvement of Software Reliability
Models, NASA, Goddard Space Flight Centre
(GSFC): Technical Report, Software Assurance
Technology Center.

18. Wang M, Kuo G S (2005) An application-aware
QoS routing scheme with improved stability for
multimedia applications in mobile ad hoc
networks. Proc. IEEE Vehicular Technology
Conf. 1901-1905.

19. Wang, Z. & Wang, J., 2005. Parameter
estimation of some NHPP software reliability
models with changepoint. Communications in
Statistics: Simulation and Computation, Volume
34, p. 121–134.

 Academia Arena 2019;11(7) http://www.sciencepub.net/academia AAJ

24

20. Wang, Z., Wang, J. & Liang, X., 2007. Non-
parametric Estimation for NHPP Software
Reliability Models. Journal of Applied Statistics,
pp. 107-119.

21. Whittaker, J. A., 2000. What is software testing?
And why is it so hard?. Software, pp. 70-79.

Wood, A., 1996. Predicting software reliability.
IEEE Computer, Volume 11, pp. 69 - 77.

22. Wilson, J., Hoskin, N., Nosek, J., “The Benefits
of Collaboration for Student Programmers”, 24th
SIGCSE technical symposium on Computer
Science Education, February 1993, pp. 160-164.

7/20/2019

