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1. Introduction: this paper is to extend the concept of [3], to some new

The concept of cone metric space was introduced
by Huang and Zhang [1] in 2007 and some fixed point
theorems was proved. Initially Branciari [2]
introduced the contractive condition of integral type

contractive conditions of integral type in cone metric
space.

The following definitions and lemmas are useful
for us to prove the main results.

and extended Banach fixed point theorem. Later on F.
Khojasteh, Z. Goodarzi and A. Razani [3] gave the
concept of cone integrable function and proved
Branciari’s theorem in cone metric space. The aim of

Definition 1.1[1]: Let Y be a real Banach space

and P a subset of Y. P is called a cone if the
following hold.

(1) P is closed, non-empty and P# {O}
(2)Ifa,beR and a,bZO’then ax+byeP’ Vx,yeP'
3) X € P g —X€P implies x=0

. . . < . . —
Let Pcu be a cone. We define a partial ordering with respect to P as Y=Y ifand only if y-xePp and

Y <V will imply that X<y but * 7Y , while <<V Will mean that ¥ ~ X € th, where int P denotes
the interior of P.

M >0 | <M

0< X<V implies [

The cone P is called normal if there is a number such that

Vx,yew

. The least positive number M is called the normal constant.

P:{(x,y)el-l-| x’yZO}, X=R Let d:XXX_>LLbe defined as
b>0 (X, d)

2
Example: Suppose W= R

d(x, y)= (=3, [r—)

Definition 1.2[1]: Let (

beR

2

where and . Then

X, d)

is cone metric space.

be a cone metric space and let {x” } be a sequence in X. Then

xe X

1) {x” is said to converges to some if for every ¢ €M yith 0<<e , 3 a natural number N such

thatanN, d(xn,x)<<c'

€U ith 0<<e, d

2) {x”} is said to be Cauchy sequence if for every ¢ a natural number N such that

Vmn=>2N d(xn, x,,,) << ¢ Vx,yeP

(3) A cone metric space (X’ d) is complete if every Cauchy sequence is convergent.

Definition 1.3[3]: Let P be a normal cone in ** and a, few where & < B . Then we define

[a, ,B]z{xel-usﬂ+(l—s)a,se[0, 1]}

>

[, B)={x e sp+(1-s)a, s [0,1)}
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Definition 1.4[3]: The set h= {0( = Yoo Koo Xos s Xy = ’B} is called a partition of [0!,,3] if and only if
XX ) a, ={u"; [x;,x‘}u
the sets {[ s )}Fl are pairwise disjoint and [ 'B] JALE ) {'B}
Definition 1.5[3]: Let B = {0( =Yoo X Yo e Xy ='B} be a partition of [a,ﬂ] and ¢= [0!, 'B] - P
be an increasing function. We deﬁne cone lower sum and cone upper sum as

L (g B)= olx,)|x, - x,.

Jj= 0

n—1

U (4, B)= ¢(x_/+1 ) Hx_/ X

J

Il
(=]

, respectively.

The function ¢ is called cone integrable function on [0!, p ] if and only if for all partitions § of [0!, p ]
lim L (¢, B)= 8" =1limU:" (4, P)

on _ (7 ’ B
where A is unique. We shall write _I ¢ dp I ¢(t) dp(t).

Lemmal.1[3]:If[a"B] a, 7] then.[ ¢dp<.f ¢dp rqﬁeﬁl(X, P)

B
[" (ap+bg,)dp=a[" pdp+b| ¢,dp o b el (X, P)  abeR
/'(x, P)

where denotes the set all cone integrable functions.

Definition 1.6[3]: A function ¢:P—>u is said to be subadditive cone integrable function if and only if
Va,feP

[ o< i [ oar

2. Main Results:
Theorem 2.1: Let (X’ d) be a complete cone metric space with normal cone P. Let ¢:P—>P be a

" gdp >> 0
nonvanishing and subadditive cone integrable map on each [0!, p ] <P for which IO ddp , €>>0 . Let

r:Xx—-»>2Xx be a mapping such that

1
d(T(x).7(v)) d(x,T(v)Hd(y.7(x)) —
J. ¢dPSCIO ¢dp x,yEX,CE(O,zj

0 for each
Then T has a unique fixed point in X.

Y e X, choose 1€ X such that 1 = T(x)' Let ¥2€ X be such that 2 = T(x). Continuing

xn:T(xnfl):Tn(x) fO n:1 2 3
J‘ n+1>Xn ¢d
x , X, +dx 1x+1
2 ¢ dp
SCJ- X 1x+1 ¢dp
But d( n-1> n+1) ( 1> )+d(x x”+1),therefore

J~d(x”+l,x” ¢ dp <c J-Od(x,,,l,x,, Yd (x5 %001 ) ¢ dp

0

Proof: Let

in this way we can define

d (T (%, ).7(x, 1))
) ¢ dp

|/\
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Since ¢ is cone subadditive, so

d(x01,%,) d(x,1,%,) d(x,,%,11)
[/ pdp<c| pdp+c| ¢ dp
d(xwl »Xp ) C d(xn > X1 ) d(xn X1 ) C
dp £ — dp=k d fh=——
N -L ¢ dp l—CJ.O $ dp '[) ¢ p, where l-c
n d("l »«"n)
<k'[ ddp
e (T ().x)
[ pdp <k [ ¢ dp
" pdp >> 0
Sinceogk<1,andj0 ¢ dp foreachg>>0,s0
. d(xn+l >Xn )
llmJ‘0 ¢dp=0
hm d(‘xn+l ’xn ) = O
which implies, that 7 .
) limd(7(x,,,}7(x,))=0
To show 7’ is Cauchy sequence, we shall show that "~ for each positive integer
P
Let ¥~ 0 be any integer. By triangular inequality
d(anrp ’xn) S d(anrp ’xn+p—l)+ d(anrp—l’anrp—Z )+ et d(anrl’xn )
d(x,,m,x,,) d(x,,w,x,,ﬂ,,l )—h..+d(x,,+|,x,,)
[ 7 pdp <] pdp
d(T(x,HpH ),T(x,, )) d(x,,m,x,,) d(x,,ﬂ, Xt ol )+...+d(x,,+| ,x,,)
.L ¢dp—J‘0 ¢dpSJ‘0 ¢dp
Since ¢ is cone subadditivez :
d Xntp s Xnsp-1 ) d Xntp-1>Xntp-2 ) d(xl1+| X )
sjo ¢dp+j0 ¢agp+...+j0 $dp
< (prrp-1 n+p-2 n d(xx)
<l ke k) [ pdp
< n n+l n+p-2 n+p-1 d(T(x),x)
S Ry Sary ot § ddp
k" pa(r(x).x)
<
STl e
d(T(X:1+p+l )’T(Xn ))
im ¢dp =0
Letting n—>® , P '[0 .
limd(7(x,,, )} 7(x,)=0
Which implies that "> for each positive integer P
Hence {x”} is a Cauchy sequence. Since X is complete cone metric space so {x”} is convergent to some
zeX . hrnn T =2
.l.e.

d(T(2). %) d(7(2).7(x,))
| pdp = $dp

0
<[ gap

0

10
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<c J.d(z’x"”) ¢dp+c J.d(x”’T(Z)) ¢dp

0 0

J~d(z,T(z))
0

d(T(z),z)
jo ddp < c $dp

which implies that d(T(Z)’ Z) =0 ie. T(Z) =z,
Thus z is a fixed point of 7.

Uniqueness: Let 7 has two fixed point z and wi.e. T(Z) = and T(W) =W,
d(z,w) d(T (z),T(w)) d(z,T(w)}rd(w,T(z))
Jo =]l pdpse | ddp

<c jd(”’) ddp +c j”’(””z) ddp

0 0

zZ,W Cc
P :kjod( " pdp k=12

where l-c

d(z,w)

[ gdp <<

0 l—c

Which implies that ¢ (2 w)=0,  z=w
This shows that 7 has a unique fixed point in X.

(x.d) $:P>P

Theorem 2.2: Let be a complete cone metric space with normal cone P. Let

a, IB]C Pforwhich 'L bdp >> O, £>>0

a

nonvanishing and subadditive cone integrable map on each [ . Let

r:x—»>2Xx be a mapping such that

(7(x)
J-d T Od

7() () 4(7(x) 0<p<lt
0 ¢dpSaI ¢dp+bj0 ¢dp.F0r a,beR s.t.a<1_2b and 2

Then T has unique fixed point.

xelX

, choose xneX such that 1 = T(x)' Let ¥2€ X be such that 2 = T(x). Continuing

x,=T(x,,)=T"(x) o n=1,2,3,..
(o) (T(0 )T (%,4))
J-d ¢dp _ J~d T T ¢dp

0 0
)
pdp

Proof: Let

in this way we can define

Xp-1>Xn41

<af o) g 4 b jo”’(

0
Using triangle inequality and cone subadditivity,

d(xu sXp-1 ) d(xufl > Xy ) d(xn > Xn+1 )
Sajo ¢dp+bj0 ddp + bjo $dp
d(xnﬂ’xn) a + b d(xn’xn—l) d(xn’xn—l) a + b
dp < dp =k d k=
IO ¢dp l—bL pdp fo ¢p’where =5
dnin) () ed(T())
T edp <k [T gdp =k [T pap
a+b d(x,00,%,)
k= <1 lim| " dp=0
Since 1-b then as n—=% =, J.O ¢ P

lim d(x,.,, x,)=0
Which implies that 7 .
It is easy to show that {x”} is a Cauchy sequence (See previous theorem). Since X is complete cone metric

se X lim x, =z

space so there is some such that 7

11
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d(T(2).%,.1) d(7(2).7(x,))
[ pdp = [ $dp

0

< aJ.Od(Z’x") ¢dp + b.[:(x”’T(Z)) ¢dp

d(1(2).2) d(z,7(z))
1o L pdp < bL ¢dp

Now,

A
! a(r(z).)
0<bh<— e dp=0
Since 2 then IO ddp which implies that d(T(Z)’ z)=0 = T(Z): z
Uniqueness: Let 7 has two fixed point z and wi.e. T(Z) =< and T(W) =W

d(z,w) d(T(z),T(w))
[ gdp= | ¢ dp
w,T(z

<a j:(z’”’) ddp + b jo”’( ) 4 dp

_ (a +b)J~d(z,w) ¢dp

0

0<a+bh<l therefore

d(z,w)
jo $dp =0
d(z,w)=0

Since

=
= Z=W,

It shows that T has a unique fixed point.

(X, d)

Theorem 2.3: Let t ¢ ‘P> P be

be a complete cone metric space with normal cone P. Le

¢dp>>0 e>>0

a
&

nonvanishing and subadditive cone integrable map on each [0!, p ] <P for which IO . Let
P

r:Xx—-»>2Xx be a mapping such that
d(T(x).7(y)) d(x.T(x)}+d (y.7(»)) cel 0. =
| pdp <c | ¢ dp : | .
0 0 . For then 7'has a unique fixed point in X.
Proof: Let X € X, choose 1€ X such that 1 = T(x). Let ¥2€ X be such that 2 = T(x). Continuing

in this way we can define Y = T(x’“*l) =T (x) for = 2,3, ..
d(%,.1,%,) d (T (x, .7 (x,-1)) d (%, %0 1 (1%, )
| pdp = | pdp <c| ¢ dp

0 0
XpsXp1 )

<c| )y + e jo”’( ddp

0

J‘d(x,m,x”) ¢dp < é J-Od(x,,,x,,,l) ¢dp=k J-Od(x,,,x,,,l) ¢dp

0

As in theorems (2.1), it is easy to prove that {x”} is a Cauchy sequence and completeness of X implies that

lim x =z
there is some 2 € X such that n

d(T(=)%,.) AT (:)7()
[ pdp = | pdp
¢ dp

CJ'd(Z»T(Z)) bdp + CJ'Od(xn»x,m) bdp

0

Now,
d(z,T(z)Hd(x,,x,,

0

IA

12
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d(T(z),z) d(T(z),z)
N L pdp <c jo Pdp which implies that d(7(z), z) - T(z)= z

A
Uniqueness: Let 7 has two fixed point z and wi.e. T(Z) ~ % and T(W) -
d(z,w) d(T(z),7(w))
R
d (2.7 (2)}+d (w.T (w))
<c J; pdp
d(z,7(z)) d(w,T(w))
<cll T gdpe[TT ddp_ o d(ew)=0 oo

X,d)

Theorem 2.4: Let ( be a complete cone metric space with normal cone P. Let ¢:P—>P be a

a, Blc P ¢dp>>0 . 550

nonvanishing and subadditive cone integrable map on each [ for which IO . Let

r:x—-»>2Xx be a mapping such that

rf(r(x),w» bdp<c Id<x,T<y>>+d<y,r<x»+d<x,y> 1

cel0,—
0 0 ¢dp ( ) i

. For some than 7 has a unique fixed
point in X.

Proof: Let ¥ € X,deﬁne Kt =T(x”) for P21 g M =T(x0)= T(x).
(5 50) (7 (57 (5,01))
Id pdp = IOdT ' @gdp

0
d (%%, 1d (x, 1%, 00 Frd (x,,%,)

<c I @dp

XpsXp )

<c| W) g v e jo”’( ddp

0
Using triangular inequality and cone subadditivity.

0

d("u—l > X ) d("u > Xpt1 ) d("u >Xp-1 )
SCL ¢dp+cj0 ¢dp+cj0 ¢dp
d(xnﬂ > Xp ) 26’ d(x” > Xp-1 )
[ edp < [ gy
2¢ Y pdlen) 2¢ ' pd(r(e)x)
o e S s N
0< i <1 c< l
If —C ie. 3 then
d(xn+l )
hmI ¢dp=0
hm d(‘xn+l’ xn ) = 0

which implies that 7

. X, . . . . .
It is easy to prove that { ”} is Cauchy sequence. Since X is complete cone metric space so there is some

lim x =z
ZEXsuchthat n "

AT ()e) a(r(=)7(x,)
| pdp = [ ¢ dp

0
$dp

Now,
d (2,2, Jd (x,,T(2)+d (2,x,)
<c I

0

13
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< CJ~d(z,x,,+|) ¢dp + CJ~0d(x”,T(z)) ¢dp + Cjod(z,x,,) ¢dp

0

d(T(z),z)
o [, #dpsc

d(z,T(z))
[ pdp

A

Which implies that @ (T(z).2)=0 e T (z)=z .

Hence z is a fixed point of 7.

Uniqueness: Let z and w are two fixed points of 7. i.e.

d(z,w) d(T(z),T(W))
[ o= 17 gy

0
< CJ~0d(z,T(w)}+d(w,T(z)}\Ld(z,w) ¢dp

J~d(z,w) ¢dp < CJ~3d(z,w) ¢dp'

0 0

Which is possible if ¢ (zw)=0, z=w
Thus fixed point of 7 is unique.

References:

1. L.G. Huang and X. Zhang, “Cone metric spaces
and fixed point theorems of contractive
mappings’, Journal of Mathematical Analysis
and Applications, Vol. 332, No. 2, pp. 1468-
1476, 2007.

2. A. Branciari, “A fixed point theorem for
mappings satisfying a general contractive
condition of integral type”, International Journal
of Mathematics and Mathematical Sciences, Vol.
29, No. 9, pp. 531-536, 2002.

3. F. Khojesteh, Z. Goodarzi and A. Razani, “Some
fixed point theorems of integral type contraction

7/20/2019

14

T(Z)zz

T(w)zw'

and

in cone metrix spaces”, Fixed Point Theory and
Applications, Hindawi Publishing Corporation,
Vol. 2010.

B.E. Rhoades, A Comparison of various
definitions of contractive mappings trans.
American Mathematical Society. Vol. 226, 1977
(257-290).

Sh. Rezapour, R. Hamlbarani, Some notes on the
paper, “Cone metric space and fixed point
theorems of Contractive mappings”. J. Math.
Anel. Appl. 345 (2008) 719-724.



