$1+2$ is Indeed not 1＋1，the Mathematician Never Attempted to Prove 1＋1 by Proof 1＋2

Tong Xinping
童信平
xpt2008＠126．com

Abstract

From the concepts of philosophy，logic，and the elimination of k－almost prime，it is impossible to prove $" 1+1$＂from＂ $9+9$＂to＂ $1+2$＂．Some experts said：＂Mathematicians have never attempted to prove $(1+1)$ by proof（1 +2 ）when studying the Goldbach conjecture．＂Therefore，we cannot eliminate the k－almost prime（N－p）．（k＞2．）We should be eliminated the p of $p \equiv N\left(\bmod p_{i}\right)$ ． ［Tong Xinping． $\mathbf{1 + 2}$ is Indeed not 1＋1，the Mathematician Never Attempted to Prove 1＋1 by Proof 1＋2． Academ Arena 2018；10（11）：12－14］．ISSN 1553－992X（print）；ISSN 2158－771X（online）． http：／／www．sciencepub．net／academia．3．doi：10．7537／marsaaj101118．03．

Keywords：Indeed；Mathematician；Prove；Proof

0 Foreword．

In 1966 and 1973，Chen Jingrun published his proof of＂ $1+2$＂with coefficient values of 0.62 and 0.67 ．

In 1999，Wang Yuan affirmed in the book：＂（1，2） is only one step away from $(1,1)^{[1]}$ ．＂

On August 8，1999，Youth Summer Camp of Beijing Municipality，Wang Yuan said：＂The world mathematicians，including Hua Luogeng，Chen Jingrun and himself，How to advance the Goldbach conjecture from＇ $9+9$＇to＇ $1+2$＇for centuries ${ }^{[2]}$ ．＂

Teenagers come from different schools．They are a blank piece of paper，burned by Wang Yuan in their minds and spread to other teachers，classmates，friends， family members．This speech will affect generations． Slowly misunderstood as＂Chen Jingrun conquered the even Goldbach conjecture．＂（The even number Goldbach＇s conjectures can abbreviations：conjecture （A），＂1＋1＂，（1＋1），1＋1．）

When Wang Yuan＇s speech reached the 60th anniversary of the National Day，he was pushed to the
top by the Xinhua News Agency reporter：＂Chen Jingrun finally conquered the world mathematics mystery of＇Gedbach＇s conjecture，＇This world mathematics＇suspended case＇was finally deciphered by Chen Jingrun．The jewel in the crown was finally picked up by Chen Jingrun．＂

2012－03－12，the expert of＂KEXUE ZHIHUI HUOHU＂responded to Mr．Yan Zhaolin：＂$(1+2)$ is indeed not a Goldbach conjecture！＂＂Mathematicians never studied Goldbach＇s conjecture，never Attempt to prove $(1+1)$ by proof（1＋2）．＂ （http：／／tieba．baidu．com／p／1262716260）．

This paper analyzes that only those who make low－level mistakes in the definition of philosophy， logic，and mathematics will attempt to prove＂ $1+1$＂by proving＂ $1+2$＂．

1 Wang Yuan changed the definition of the standardization of international standardization．Is it testing the standardization knowledge of everyone？

Table 1．The international k－almost prime is defined and Wang Yuan＇s＂k－almost prime＂．

k	k－almost prime	＂k－almost prime＂of Wang Yuan
1	2，3，5，7，11，13，17，．．．	2，3，5，7，11，13，17，．．．
2	4，6，9，10，14，15，．．．	2，3，5，7，11，13，17，．．．6，10，21，．．．
3	8，12，18，20，27，28，．．．	2，3，5，7，11，13，17，．．．6，10，21，．．．8，12，．．．
4	16，24，36，40，54，56，．．．	2，3，5，7，11，13，17，．．。6，10，21，．．．8，12，．．。16，24，．．。

According to the definition of the almost prime in the world，it can be seen in Table 1：＂ $1+1$＂＝the first line + the first line $=1$－almost prime +1 －almost prime，$" 1+2 "=$ the first line + the second line $=1$－ almost prime +2 －almost prime，$" 1+3 "=$ first line + third line，etc．，it can be seen that＂ $1+2$＂and $" 1+1 "$ are two propositions．Can＇t think of proving $1+1$ after
proving $1+2$ ．
2 Philosophy tells us that prime numbers and composite numbers are two different concepts that need to be solved in different ways．＂9＋9＂～＂1＋2＂ is the solution to the composite number．（See Table 1．）It is impossible to solve the problem from＂ $1+2$＂
(composite) to " $1+1$ " (prime).
On the Qing Ming Festival in 1996, on the 16th day after Chen Jingrun's death, Zheng Xian wrote in《The moving and tragic of Goldbach》: "The Chen's theorem is the shining culmination of the sieve theory. The apex is the end of a road, a method the die in one's bed [3]. "The end of life is a philosophical evaluation of the "vertex", It is certainly not possible to prove " $1+1$ " by " $1+2$ ".

See $<$ Cannot reach $1+1$ from $1+2$, the error is on
the mathematical model>.
(bbs1.people.com.cn/post/1/1/2/161449908.html)

3. Logic tells us that " $1+2$ " and " $1+1$ " are two propositions at different levels.

In logic, the division of propositions is based on the division of concepts, so the level of concepts determines the level of propositions. The logical relationship between " $1+1$ " and " $1+5$ " to " $1+2$ " is shown in Fig. 1.

Figure 1 The logical relationship between " $1+1$ " and " $1+5$ " to " $1+2$ "

The figure points out that " $1+1$ " and " $1+2$ " are the propositions of the second level and the third level respectively, and it is not possible to prove " $1+1$ " by proving " $1+2$ ".
4. In Chen Jingrun's "small" even number, practice shows that the " $1+2$ " lower bound estimate cannot estimate " $1+1$ " and " $1+1 \times 1$ ". Further, the parametric variables affecting the number of " $1+1$ " representations are different combinations of prime numbers $6 \mathbf{t}-1$ and prime numbers $6 t+1$. (There is no data showing that the prime number $6 t \pm 1$ has an effect on the number of " $1+1 \times 1$ ".)
"Practice is the only criterion for testing truth." Especially after " $9+9$ " ~ " $1+2$ " have problems in definition, philosophy, and logic, the most convincing is only practice verification, Chen Jingrun's An example is the example of verification:

He said: "For example, in the case of 'small' even number, if $\mathrm{N}=62$, there may be: $62=43+19$, and $62=7+5 \times 11^{[4]}$."

We will expand Chen Jingrun's example a bit more:
$98=" 1+1 "=19+79=31+67=37+61=61$ $+37=67+31=79+19$. - The number of representations is 6 .

98 " $1+1 \times 1=3+5 \times 19=5+3 \times 31=7+7 \times 13=11+3 \times 29=$
$13+5 \times 17=29+3 \times 23=41+3 \times 19=43+5 \times 11=$
$47+3 \times 17=59+3 \times 13=73+5 \times 5=83+3 \times 5=89+3 \times 3$. There are computational rules for the number of representations, which is about 13.

According to Chen Jingrun's " $1+2$ " lower bound
estimate, the calculated value is 4.26 . It is close to the " $1+1$ " of 6 , while away from the $" 1+1 \times 1$ " of 13 . It can be seen that " $1+2$ " cannot balance " $1+1$ " and $" 1+1 \times 1$ ". This phenomenon inspires us to do more comparative experiments. For example, taking $2^{7} \sim 2{ }^{21}$ for experiments, we can further understand Chen Jingrun's lower bound estimate and " $1+1$ " and " $1+1 \times 1$ ". The experimental results show that the calculated value of the lower bound estimate of " $1+2$ " can neither estimate " $1+1$ " nor estimate $" 1+1 \times 1$ ", indicating that a lower bound estimate cannot solve two propositions at the same time. We can saying " $1+2$ " including " $1+1$ " and " $1+1 \times 1$ " is a subjective assumption, and, according to the international definition of almost prime, the experiment shows that " $1+2$ " $=$ " $1+1 \times 1$ " The next world is estimated to have not found enough parameters. See <Experimental Accuracy Curve to show Hardy's "details" and $1+2$ cannot estimate $1+1$, $1+1 \times 1>$. (https://tieba.baidu.com/p/5848046607)

The article also discussed Hardy's statement: "We are not in principle not successful, but have not succeeded in the details ${ }^{[5]}$."

It is known that in the prime number not greater than N , the prime number $6 \mathrm{t}-1$ is slightly more than the prime number $6 t+1$, and the experiment is performed from 2^{7} to 2^{21}, and it can be seen that $\mathrm{N}=(6 \mathrm{t}+1)+(6 \mathrm{t}+1)=12 \mathrm{t}+2$ and $\mathrm{N}=(6 \mathrm{t}-1)+(6 \mathrm{t}-1)=12 \mathrm{t}-2$ appear alternately, where a small difference in the number of prime numbers produces an oscillation of the accuracy curve. Also, since N increases, the difference in the number of prime numbers ($6 \mathrm{t}-1$) from prime numbers $(6 t+1)$ approaches 0 with respect to N,
so the oscillation of the accuracy curve approaches zero. This is the "details" of Hardy said "there is no success in the details." In " $1+1 \times 1$ " $=" 1+2$ ", there is no data to find the effect of this "detail".
5. The mathematical model of the even Goldbach conjecture study needs to shift from $N=p+(N-p)$ to $\mathbf{N}=\mathbf{p} 1+\mathbf{p} 2$.

When " $1+5$ " to " $1+2$ ", the mathematical model is $\mathrm{N}=\mathrm{p}+(\mathrm{N}-\mathrm{p})$. After phasing out all the copmposite numbers in ($\mathrm{N}-\mathrm{p}$), if there are any remaining, they are the answer of " $1+1$ ". However, when it comes to $" 1+2$ ", the coefficient value is only 0.67 . It is impossible to continue deleting the composite numbers of the two prime. Therefore, Pan Chengdong said: "The coefficient value of $(1+2)$ may be greater than 2 to have value ${ }^{[6]}$." Wang Yuan also said: "Improvement with the current method is impossible to prove $(1,1){ }^{[1]}$."

Is there any other way?
According to the definition of congruence, if $\sqrt{N}<$ prime number $\mathrm{p}<(\mathrm{N}-\sqrt{N}){ }^{[7]}, \mathrm{N} \equiv \mathrm{p}(\bmod$ pi), then p will not be the answer of " $1+1$ " of N.

These p are the prime numbers in the arithmetic progression with N as the last term and pi as the tolerance. Therefore, the prime numbers are gradually eliminated, and the remaining prime numbers and their numbers are the representations of the even Goldbach
conjecture. number. See $<$ From the Inclusion-Exclusion Formula of Even Goldbach's Conjecture to the Hardy-Litwood Conjecture (A)>. (https://tieba.baidu.com/p/5848052550)

6 Summary.

Through the above theoretical analysis and practical verification, I don't know if I can to anew start the of the Goldbach conjecture discuss.

References

1. Li Wenlin, editor-in-chief, Wang Yuan on Goldbach's conjecture, Shandong Education Press, 1999.
2. Wang Jing, Lu Jiaxing, lay a good foundation for the future, Science Times, 1999, 08, 10.
3. Chen Xian, the tragic and strong of Goldbach, Liberation Daily, 1996, 04, 04.
4. Chen Jingrun, Shao Pinhao, Goldbach Conjecture, Liaoning Education Press.
5. Liu Jianya, Goldbach Conjecture and Pan Chengdong, China Reading, 2003, 01, 15.
6. Pan Chengdong, Pan Chengyu, Goldbach Conjecture, Science Press, 1981, 237 pages.
7. Tong Xinping, Even Number Formulae When Calculating Goldbach Problem, Journal of Youjiang Teachers' College for Nationalities, 1997, 3. 10-12.
