
 Academia Arena 2018;10(6) http://www.sciencepub.net/academia

28

Formalizing Inheritance Detection of Class Diagram in UML

Alireza Souri 1, Mohammad esmaeel Akbari 2, Mohammad ali Sharifloo 1

1. Department of Computer Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
2 Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

3 Department of computer Engineering, University College of Nabi Akram, Tabriz, Iran
a-souri@iau-Ahar.ac.ir, m-Akbari@iau-Ahar.ac.ir, m.shariffloo@gmail.com

Abstract: One of the important relationships between classes in UML is inheritance relationships. Since there are
few techniques for modeling and analyzing UML, by formalizing class diagram – as important section of UML – in
this paper, after converting one system to class structure in UML, we present a solution for Establishment of
inheritance relationships in UML. Also we can reduce complexity of each class in the system. Then by modeling
this structure by this solution it will be prepare for some goals such as verifying and validating. By using an example
we show procedure of formalizing the system. After all, we come to a conclusion that formal method improves
ability of analyzing and implementing a system. By improving these factors, we can get better results in other
techniques such as formal verification and validation and software testing.
[Alireza Souri, Mohammad esmaeel Akbari, Mohammad ali Sharifloo. Formalizing Inheritance Detection of
Class Diagram in UML. Academ Arena 2018;10(6):28-31]. ISSN 1553-992X (print); ISSN 2158-771X (online).
http://www.sciencepub.net/academia. 5. doi:10.7537/marsaaj100618.05.

Keywords: formal method, UML, class diagram, modeling, inheritance, relationships

1. Introduction

Modeling is discussed in many sciences. For
example one part of designing software and hardware
of systems can be modeled, verified and even
evaluated by mathematic analyzes and logic
commands [1].

UML is a modeling language used in software
processes (e.g. Rational Unified Process (RUP)) to
generate software models. Because of its simplicity,
this language has been widely applied in the software
industry. One of the disadvantages of UML models is
that these artifacts can be interpreted differently by
two members of a software team [4]. Papers [5], [6],
[7], [8], [9] demonstrate that Alloy, which is the
modeling language used in this paper, has been
successfully used to formally specify UML diagrams.

A model is simplified the whole existence.
Originally a model provides a map of a system.
Models maybe include whole details of a system. So
in general we can say that a good model is a model
that can determine all the elements involved in the
plan, relationships between them and how effective
they can be. Each system explained by several models
and there is a semantic map which describes the
system in each model.

Now, by these fragments, why do we want to
modeling? We want to model a system in order to
have a good understanding of the system which we
want to implement better. Modeling is central part of
all activities that guide the software developers to
good product.

In this paper, we explain class diagram and
formalizing class structure briefly. Then by using an

example, we present an algorithm in order to
designing our system easily and exactly.

2. Class Diagram

A class diagram is an illustration of the
relationships and source code dependencies among
classes in the Unified Modeling Language (UML).
The Unified Modeling Language (UML) is the
standard formalism for object-oriented modeling [2].
In this paper, a class defines the methods and
variables in an object, which is a abstraction of entity
in a program or the unit of code representing that
entity. Class diagrams are useful in all forms of
object-oriented programming (OOP). The concept is
several years old but has been refined as OOP
modeling paradigms have evolved.

A more detailed class diagram can include the
features of the entities as well as their responsibilities.
There are two types of features: structural and
dynamic [10]. Structural features can be subdivided in
attributes and associations. Attributes correspond to
variables in programming languages. Due to the fact
that the associations between classes are represented
as variables in programming languages, these are also
considered to be structural features. The dynamic part
of the classes are the operations, which are
implemented by methods in a programming language.
There are five types of relations between classes:
association, aggregation, composition, generalization
and dependency.

In a class diagram, the classes are arranged in
groups that share common characteristics. A class
diagram resembles a flowchart in which classes are

 Academia Arena 2018;10(6) http://www.sciencepub.net/academia

29

portrayed as boxes, each box having three rectangles
inside. The top rectangle contains the name of the
class; the middle rectangle contains the attributes of
the class; the lower rectangle contains the methods,
also called operations, of the class. Lines, which may
have arrows at one or both ends, connect the boxes.
These lines define the relationships, also called
associations, between the classes [3].

Since class diagram has been developed widely,
in this paper we choose class diagram in order to
formalizing the systems, too.

3. Formalizing Class Structure

In our related work [1], we formalize class
diagram because we can show all of the relationships
of between classes in the system model easily. Now,
by using a relationship in these methods [1], we want
to present some solutions for class diagram.

These solutions cause:
 It influences on normalization design in

creating database.
 Programmer finds main classes and it can

program easily and exactly.
 Complexity of information has reduces in

each class, so design of database, verification of
system and implementation of system will be done
better.

By formalizing a system using class diagram, we
need to show all of the entities, specifications and
behavior of the system as a class diagram.

Each system has some subsystems for converting
a system to class diagram. We should create one main
class and then convert subsystems to subclasses in
main class.

For classifying one class, we should define some
variables and values and we can show one system as
followed set:

System: {Type, Classes, Attributes, Variables};
 Type: determines type of system. Type of

system can be Basic, Real time, distribute, embedded,
fuzzy and etc.

 Class: determines name of classes that have
been classified and are connected together based on
subsystems in the system.

 Attribute: determines attributes of system
which are used for connecting to the classes in the
system.

 Variables: determines Inputs, Outputs and
the amount of Data of system which are placed as
variables in the classes.

Now, when all states of the system converted to
the class, we demonstrate all the relationships between
elements of each class by each other.

Each class can have communications to its
elements:

(Active, Module, finite) C
 Boolean type:= active: shows activity of

class
 Boolean type:= Module: shows the main

class
 Boolean type:= finite: shows that the class is

finite
Variables can communicate to their elements:

(Public, private, protected, package, initial) V
Also, Attributes can communicate to their

elements:

(Type, enable) At
Ways of relationships between elements of

system are:
C & At: V or At: C V
Now, after explaining formula and variables, we

create relationships between classes. We define three
variables which are in structure of each class for
creating relationships between classes:

{Extend, Attribute, Operation};
When two same attributes from two different

classes give us a same result, we should place name of
the second class in Extend section of the first class.

For example, in converting class relationships to
the formulas like follow:

{c1, c2} C

{v1, v2} V

{at_1, at_2} At
at_1: c1 v1
at_1: c2 v1
We should place name of c2 class in Extend

section of c1 class at the above formulas.
Whenever protected element enables in set of V,

we should place the name of V in the Attribute section
of resulted class.

For example:

{c1, c2, ci} C

{v1, v2, vi} V

{at_1, at_2} At

at_1: ci vi => vi (public, private, protected,
package, initial) = (0, 0,1,0,0)

Therefore we should place vi in Attribute section
of ci class.

Whenever Public element enables in set of V, we
should place the name of V in the Operation section of
resulted class.

For example:

{c1, c2, ci} C

{v1, v2, vi} V

{at_1, at_2} At

 Academia Arena 2018;10(6) http://www.sciencepub.net/academia

30

at_1: ci vi => vi (public, private, protected,
package, initial) = (1, 0,1,0,0)

Therefore we should place vi in Operation

section of ci class.
According to above explanations, we convert the

relationships between classes as class diagram [1]:
The Roles of classes:

Extend: Ω
Inheritance

ci ∈ C { The name of all Classes }
∈i C { The name of all Classes} – { ci }

If ci ∈ i. Ω
According to above formulas, whenever there

was a class like ci in Extend section of i class, i class
inherits from ci class.

In this relationship, we can define subclasses that
create in property of each class:

Property: = {field name, type, data}
Each property can contain some fields. The

information of each field includes information of
subclasses. We purpose class i and class j that each
class has a property. Property of each class includes
some fields that these fields put content data in each
class.

In this follow, we have two class_student and
class_teacher:

For the Student:

Class_student_1 =: Property {(name of student,
char, Alex), (family of student, char, Huffman), (ID
number, int, 12345) };

Class_student_2 =: Property {(name of student,
char, James), (family of student, char, Stanson), (ID
number, int, 14145) };

Class_student_3 =: Property {(name of student,
char, Kate), (family of student, char, Anderson), (ID
number, int, 13345) };

For the teacher:
Class_teacher_1 =: Property {(name of teacher,

char, Robert), (family of teacher, char, Macpean), (
ID number, int, 6789) };

Class_teacher_2 =: Property {(name of teacher,
char, Tomas), (family of teacher, char, Kameron), (
ID number, int, 6779) };

Now, we want to find joint data in two classes by

using function_ . First, we should implement search
algorithm for finding common data in each field of
class. See the figure-1.

The function_ gets first field of
Class_student_1 and compare first field of
Class_teacher_1 and first field of Class_teacher_2. If
there are Subscriptions between these fields,{field
name, type, data} of same data put in the main
class_parent. Also, this compare will execute for the
other field.

Fig.1: Class structure

 Academia Arena 2018;10(6) http://www.sciencepub.net/academia

31

Now, the function_ gets second field of
Class_student_1 and compare second field of
Class_teacher_1 and second field of Class_teacher_2.
If there are Subscriptions between these fields, field
family, type, data} of same data put in the main
class_parent. Then this compare will continue for
class_student_2 and class_student_3. So, there are a
main class_parent in the system model that this class
maintenance fields such as name field and family
field. The other properties will inheritance from these
class properties.

After completing this main class_parent, the
modeling of system by using the relationships will be
easy. Understanding of inheritance relationships
between classes will be better. Complexity of classes
is reduced and system model is intelligible. By this
model, we can implement our system easily and
exactly. When subscription of classes is found, we
have inheritance relationship between subclasses and
main class. In normalization time, density of
information and complexity of system are reduced.
So, our database design will be better and softly.

4. Conclusion

By formalizing the structure of class in UML, we
could model a system as a class diagram in order to
determine all the relationships in the system clearly.

Also, we have shown the procedure of
formalizing the system and by using a solution we can
extend inheritance relationships between classes in
system. This work has cause information inspection
and search in system has been done. Also, when we
want to model a big system, all of the relationships
between classes and properties are modeled and we
use these properties easily. Also, by using inheritance
detection we can normalization database of system
completely and easily.

We come to these results that formal method is
one of the important and efficient methods for
analyzing systems, by using this method we can
model one system easily.

In the future we will try to analyze the other
structures of relationships of UML and also we will
attempt to present one Debugger algorithm for
modeling UML.

Acknowledgements:

Foundation item: The National Project of India
(No.: xxx-xxxx). Authors are grateful to the
Department of Science and Technology, Government
of India for financial support to carry out this work.

Corresponding Author:
Dr. Geeta Kharkwal
Department of Botany
DSB Campus, Kumaun University
Nainital, Uttarakhand 263002, India
E-mail: geetakh@gmail.com

References
1. Alireza souri, Mohammad ali sharifloo and

Monireh norouzi. “ formalizing class diagram in
UML”. Proceeding of International conference
on software engineering and service science
2011. pp 524-527.

2. Daniela Berardi, Diego Calvanese, and Giuseppe
De Giacomo. “Reasoning on UML Class
Diagrams using Description Logic Based
Systems”. Proc. of the KI'2001 Workshop on
Applications of Description Logics. Volume 44
of CEUR Electronic Workshop
Proceedings,2001.

3. http://searchsoa.techtarget.com/definition/class-
diagram.

4. Fernando Valles-Barajas, “Using Lightweight
Formal Methods to Model Class and Object
Diagrams”, Com SIS Vol. 9, No. 1, January
2012.

5. Valles-Barajas, F. “A formal model for a
requirements engineering tool”. In: First Alloy
Workshop, co-located with the 14th
ACM/SIGSOFT Symposium on Foundations of
Software Engineering (FSE’06). ACM, Portland,
Oregon (2006).

6. Valles-Barajas, F.: A formal model for a state
machine modeling tool: A lightweight approach.
In: 3rd IEEE Systems and Software Week
(SASW 2007). IEEE/NASA, Baltimore,
Maryland (2007).

7. Valles-Barajas, F.: A metamodel for the
requirements diagrams of Sys ML. IEEE Latin
America Transactions 8(3), 259–268 (2009).

8. Valles-Barajas, F.: Use of a lightweight formal
method to model the static aspects of state
machines. Journal of Innovations in Systems and
Software Engineering (ISSE): A NASA Journal
5(4), 255–264 (2009).

9. Valles-Barajas, F.: A precise specification for the
modeling of collaboratios. Malaysian Journal of
Computer Science 23(1), 18–36 (2010).

10. Fowler, M.: UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-
Wesley, 3rd edn. (2003).

6/25/2018

