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Introduction 

Boundary element method is a numerical 
technique used to solve the different types of 
problems today facing in science and technology. The 
well-known computational methods such as finite 
difference method (FDM) and finite element method 
(FEM) are very costly and time- consuming because 
in these methods the whole domain under study is 
discretised into a number of block-type elements, 
whereas in boundary element method the process of 
discretisation takes place on the surface of body. 
Which considerably reduces the size of system of 
equations resulting the reduction in data and that is 
perquisite to run a computer program efficiently. In 
other words, boundary element methods are superior 
in several aspects to other computational methods 
because of their surface modeling approach. That is 
why, the complicated structures can be more easily 
modeled by these methods and are therefore preferred 
by engineers. The results of boundary element 
methods are more accurate and reliable than those of 
classical methods. which establishes the fact that these 
methods (BEMs) are time-saving, accurate, efficient 
and economical techniques as compared to other 
numerical techniques (Mushtaq, M; 2008, 2009, 
2011). These salient features of BEMs make them 
popular in communities of engineering and science. 
Such methods are essentially the methods for solving 
the partial differential equations arising in wide range 
of fields, e.g., fluid mechanics, solid and fracture 
mechanics, heat transfer and electromagnetic theory, 
potential theory, elasticity, elastostatics and 
elastodynamics, etc. as detailed in Brebbia and 
Walker, (1980). Furthermore, the area of their 
applications is increasing day to day. Boundary 
element methods have been classified into direct and 

indirect methods. The direct method is in the form of 
a statement which gives the values of unknown 
variables at the field point under discussion in terms 
of a complete set of the entire boundary data. whereas 
the indirect method is based on the distribution of 
sources or doublets over the boundary of the body and 
calculates such distribution in terms of the solution of 
an integral equation. The first work on flow field 
calculations around three-dimensional bodies was 
probably done by Hess and Smith, (1962 & 1967). 
The direct boundary element method (DBEM) for 
potential flow calculations around objects was first 
applied in past by Morino et al (1975). In recent past, 
the direct boundary element methods have been 
applied by the author himself for flow field 
calculations around two- and three-dimensional 
objects (Muhammad, G; 2008, 2010). 
Calculation of Oseen Flow Past a Circular 
Cylinder 

 

 
 

Figure 1 
 
Boundary element methods are applied for both 

problems of exterior and interior flows in two 
dimensional space.. In this section, direct boundary 
element method is used to calculate the Oseen’s flow 
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around a circular cylinder. A circular cylinder of 
radius ‘a’ is held fixed in a uniform stream of 
incompressible viscous fluid flowing steadily around 
it and let the centre of a cylinder be taken as origin 
and Us be the velocity of uniform stream in the 
positive. 

x – direction as given in figure 1 (Shah, 2008). 
 

The hydrodynamical equations are (Lamb, 1932). 
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The relations for the velocity components are (Milne 
Thomson, 1968) and (Lamb, 1932). 
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where k is an inertia coefficient. 
Also, we know that 
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Let the appropriate solution of equation (7) for small 
values of kr be 
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where γ is Euler constant. 
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Using the equations (8), (9), (10) and (11) in equation 
(5), we have 
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Boundary conditions are 
 u = 0, v = 0, for r = a 
Using the above boundary conditions in the equations 
(12) and (13), we obtain 
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The magnitude of velocity is given by the 

relation 

V = u 2 + v 2  (16) 
Now to approximate the surface of a circular 

cylinder, the coordinates of extreme points on the 
boundary elements are generated in a computer 
program as under. 

The boundary of the cylinder can be divided into 
elements by the formula. 

  k = 
[ ( m + 2 ) – 2 k ] 

m
 ,  

  k = 1, 2,……., m (17) 
Then the coordinates of the extreme points of 

these m elements are calculated from 
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  (18) 
Take m = 8 and a = 1. 

Linear Variation 
Next the case is considered in which the 

boundary of the circular cylinder is divided into linear 
elements. In this case the nodes where the boundary 
conditions are specified are at the intersection of the 
elements (Muhammad, G 2008). 

The figure 2 shows the discretization of the 
circular cylinder into 8 linear boundary elements. 

 
 

Figure 2 
The discretization of the surface of a circular 

cylinder is given in figure 2. 
The mid-node coordinates over every element 

are defined by the formula. 
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The coordinates of the extreme points of the 

elements and the coordinates of the mid – point of 
each element where the velocity will be calculated can 
be found from the equations (18) and (19) 
respectively. The reason for distributing the elements 
in this way is such that the velocities are calculated at 
the same values of  in both figure 2 so that computed 
results could be easily compared. 

Equation for the direct boundary element method 
is given by 
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Which can be in the discretised form as  
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Since  and 
 
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  vary linearly over the element 

their values at any point on the element can be defined 
in terms of their nodal values and the interpolation 
functions N 1 and N 2 as 
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Again, the integrals in equations (23) and (24) 

are evaluated numerically as before except for the 
element on which the fixed point ‘i’ is lying. For this 
element, the integrals are evaluated analytically. The 
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Since N1 and r are functions of , and the 
integral is with respect to ‘’, so the calculation of 
this integral requires the use of a Jacobian |J| of the 
transformation. As in Brebbia and Walker, 1980. such 
Jacobian is given by 
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Figure 3 

 
where x i, y i are the coordinates of the nodes 

referred to the global system. 
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where l is the length of the element shown in 
figure 3. For the linear element shown this is obvious, 
but the same procedure yields the Jacobian for more 
complicated elements. 

Therefore, the integral in equation (25) becomes 
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If the node (1) is taken as the fixed point ‘i’, then 
r is measured from node (1). 
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From the equations (28) and (29), we get 

g 

1  
i i  =

l

8 
  

1


– 1
  ( 1 –  ) ln 

1
l
2

 ( 1 +  )
  d   

=
l

8 
  Lt          0 +  

1


– 1 + 
  ( 1 –  ) ln 

1
l
2
 ( 1 +  )

  d   



 Academia Arena 2017;9(2)          http://www.sciencepub.net/academia 

 

78 

Integrating by parts and simplifying, then 
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From the equations (27), (29) and (31), we have 
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Again integrating by parts and simplifying, we 
obtain 
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Since 
 
 n

  is specified at each node of the 

element, the values of the perturbation velocity 
potential  can be found at each node on the 
boundary. The total potential Ф is then found, which 

will then be used to calculate the velocity on the 
circular cylinder. 

 
Figure 4 

 
The velocity midway between two nodes on the 

boundary can then be approximated by using the 
formula 

Velocity V = 
k + 1 – k

Length from node  k  to  k + 1
   

(33) 
The method has been implemented using 

FORTRAN programming with 16, 32 and 64 constant 
boundary elements. 

 
TABLE (1) 

ELEMENT XM YM VELOCITY EXACT VELOCITY 
1 -.96 .19 .19509E+00 .43862E+00 
2 -.82 .54 .55557E+00 .66601E+00 
3 -.54 .82 .83147E+00 .89375E+00 
4 -.19 .96 .98079E+00 .10247E+01 
5 .19 .96 .98079E+00 .10247E+01 
6 .54 .82 .83147E+00 .89375E+00 
7 .82 .54 .55557E+00 .66601E+00 
8 .96 .19 .19509E+00 .43862E+00 
9 .96 -.19 .19509E+00 .43862E+00 
10 .82 -.54 .55557E+00 .66601E+00 
11 .54 -.82 .83147E+00 .89375E+00 
12 .19 -.96 .98079E+00 .10247E+01 
13 -.19 -.96 .98079E+00 .10247E+01 
14 -.54 -.82 .83147E+00 .89375E+00 
15 -.82 -.54 .55557E+00 .66601E+00 
16 -.96 -.19 .19509E+00 .43862E+00 
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Figure 5: Comparison of exact and computed values over the boundary of a circular cylinder for 16 linear boundary 
elements. 

 
TABLE (2) 

ELEMENT XM YM VELOCITY EXACT VELOCITY 
1 -.99 .10 .98018E-01 .38677E+00 
2 -.95 .29 .29029E+00 .46360E+00 
3 -.88 .47 .47140E+00 .57934E+00 
4 -.77 .63 .63439E+00 .70239E+00 
5 -.63 .77 .77301E+00 .81490E+00 
6 -.47 .88 .88192E+00 .90652E+00 
7 -.29 .95 .95694E+00 .97082E+00 
8 -.10 .99 .99518E+00 .10039E+01 
9 .10 .99 .99518E+00 .10039E+01 
10 .29 .95 .95694E+00 .97082E+00 
11 .47 .88 .88192E+00 .90652E+00 
12 .63 .77 .77301E+00 .81490E+00 
13 .77 .63 .63439E+00 .70239E+00 
14 .88 .47 .47140E+00 .57934E+00 
15 .95 .29 .29028E+00 .46359E+00 
16 .99 .10 .98017E-01 .38677E+00 
17 .99 -.10 .98017E-01 .38677E+00 
18 .95 -.29 .29028E+00 .46359E+00 
19 .88 -.47 .47140E+00 .57934E+00 
20 .77 -.63 .63439E+00 .70239E+00 
21 .63 -.77 .77301E+00 .81490E+00 
22 .47 -.88 .88192E+00 .90652E+00 
23 .29 -.95 .95694E+00 .97082E+00 
24 .10 -.99 .99518E+00 .10039E+01 
25 -.10 -.99 .99518E+00 .10039E+01 
26 -.29 -.95 .95694E+00 .97082E+00 
27 -.47 -.88 .88192E+00 .90652E+00 
28 -.63 -.77 .77301E+00 .81490E+00 
29 -.77 -.63 .63439E+00 .70239E+00 
30 -.88 -.47 .47140E+00 .57934E+00 
31 -.95 -.29 .29029E+00 .46360E+00 
32 -.99 -.10 .98017E-01 .38677E+00 
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TABLE (3) 
ELEMENT XM YM VELOCITY EXACT VELOCITY 
1 -1.00 .05 .49068E-01 .37355E+00 
2 -.99 .15 .14673E+00 .39500E+00 
3 -.97 .24 .24298E+00 .43401E+00 
4 -.94 .34 .33689E+00 .48510E+00 
5 -.90 .43 .42756E+00 .54321E+00 
6 -.86 .51 .51410E+00 .60444E+00 
7 -.80 .59 .59570E+00 .66590E+00 
8 -.74 .67 .67156E+00 .72547E+00 
9 -.67 .74 .74095E+00 .78155E+00 
10 -.59 .80 .80321E+00 .83289E+00 
11 -.51 .86 .85773E+00 .87852E+00 
12 -.43 .90 .90399E+00 .91764E+00 
13 -.34 .94 .94154E+00 .94964E+00 
14 -.24 .97 .97003E+00 .97405E+00 
15 -.15 .99 .98918E+00 .99051E+00 
16 -.05 1.00 .99880E+00 .99880E+00 
17 .05 1.00 .99880E+00 .99880E+00 
18 .15 .99 .98918E+00 .99051E+00 
19 .24 .97 .97003E+00 .97405E+00 
20 .34 .94 .94154E+00 .94964E+00 
21 .43 .90 .90399E+00 .91764E+00 
22 .51 .86 .85773E+00 .87852E+00 
23 .59 .80 .80321E+00 .83289E+00 
24 .67 .74 .74095E+00 .78155E+00 
25 .74 .67 .67156E+00 .72547E+00 
26 .80 .59 .59570E+00 .66590E+00 
27 .86 .51 .51410E+00 .60444E+00 
28 .90 .43 .42756E+00 .54321E+00 

29 .94 .34 .33689E+00 .48509E+00 
30 .97 .24 .24298E+00 .43401E+00 
31 .99 .15 .14673E+00 .39500E+00 
32 1.00 .05 .49067E-01 .37355E+00 
33 1.00 -.05 .49067E-01 .37355E+00 
34 .99 -.15 .14673E+00 .39500E+00 
35 .97 -.24 .24298E+00 .43401E+00 
36 .94 -.34 .33689E+00 .48509E+00 
37 .90 -.43 .42756E+00 .54321E+00 
38 .86 -.51 .51410E+00 .60444E+00 
39 .80 -.59 .59570E+00 .66590E+00 
40 .74 -.67 .67156E+00 .72547E+00 
41 .67 -.74 .74095E+00 .78155E+00 
42 .59 -.80 .80321E+00 .83289E+00 
43 .51 -.86 .85773E+00 .87852E+00 
44 .43 -.90 .90399E+00 .91764E+00 
45 .34 -.94 .94154E+00 .94964E+00 
46 .24 -.97 .97003E+00 .97405E+00 
47 .15 -.99 .98918E+00 .99051E+00 
48 .05 -1.00 .99880E+00 .99880E+00 
49 -.05 -1.00 .99880E+00 .99880E+00 
50 -.15 -.99 .98918E+00 .99051E+00 
51 -.24 -.97 .97003E+00 .97405E+00 
52 -.34 -.94 .94154E+00 .94964E+00 
53 -.43 -.90 .90399E+00 .91764E+00 
54 -.51 -.86 .85773E+00 .87852E+00 
55 -.59 -.80 .80321E+00 .83289E+00 
56 -.67 -.74 .74095E+00 .78155E+00 
57 -.74 -.67 .67156E+00 .72547E+00 
58 -.80 -.59 .59570E+00 .66590E+00 
59 -.86 -.51 .51410E+00 .60444E+00 
60 -.90 -.43 .42756E+00 .54321E+00 
61 -.94 -.34 .33689E+00 .48510E+00 
62 -.97 -.24 .24298E+00 .43401E+00 
63 -.99 -.15 .14673E+00 .39500E+00 
64 -1.00 -.05 .49068E-01 .37355E+00 
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Figure 6: Comparison of exact and computed values 
over the boundary of a circular cylinder for 32 linear 
boundary elements. 
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Figure 7: Comparison of exact and computed values 
over the boundary of a circular cylinder for 64 linear 
boundary elements. 
 
Conclusion 

Direct boundary element method has been 
applied to calculate Oseen’s flow past a circular 
cylinder in case of linear variation. The improvement 
in results gained by taking 32 and 64 constant 
elements can be seen from the tables (2), (3) and 
figures 6, 7 and such improvement increases with 
increase in number of boundary elements. Moreover, 
at the top of figure 7, the computed results are 
convergent with exact results and as we come down, 
such results are slightly divergent from the exact ones 
due to increase of viscous effects. 
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