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1. Introduction 

The recent introduction of DT-MRI (Diffusion 
Tensor Magnetic Resonance Imaging) has raised a 
strong interest in the medical imaging community. 
Magnetic resonance imaging (MRI) uses the fact that 
under certain conditions the spin of hydrogen nuclei 
can be flipped from one state to another. By 
measuring the location of these flips, a picture can be 
formed of where the hydrogen atoms (mainly as a part 
of water) are in a body. magnetic resonance imaging 
(MRI) is based on effects that cross multiple 
biological levels: contrast depends on interactions 
between the local chemistry, water mobility, 
microscopic magnetic environment at the subcellular, 
cellular or vascular level, cellular integrity, etc. The 
success of diffusion MRI is deeply rooted in the 
powerful concept that during their random, diffusion-
driven displacements molecules probe tissue structure 
at a microscopic scale well beyond the usual image 
resolution. The diffusion MRI can reveal orientation-
dependent behavior of water molecules for 
localization of specific organs and pathologies, and 
for functionality assessment. As diffusion is truly a 
three dimensional process, molecular mobility in 
tissues may be anisotropic, as in brain white matter. 
With diffusion tensor imaging (DTI), diffusion 
anisotropy effects can be fully extracted, 
characterized, and exploited, providing even more 
exquisite details on tissue microstructure. On the other 
hand, measuring diffusion in the real space, for 
instance water diffusion in a living body, is not a 
simple task though it provides useful and important 
information. Indeed, incoherent motion of water 
molecules has certain anisotropy in living bodies 
relating to normal and abnormal structures [1-5]. 

The “diffusion” may be one of the most 
important and attractive notions in mathematical 
methods for image analysis. Diffusion equation is one 
of the most important models which appears in the 
MRI, and often is nonlinear. Nonlinear partial 

differential equations are encountered in such various 
fields as physics, mathematics and engineering. Most 
nonlinear models of real life problems are still very 
difficult to solve either numerically or theoretically. 
There has recently been much attention devoted to the 
search for better and more efficient methods for 
determining a solution, approximate or exact, 
analytical or numerical, to the nonlinear models [1-
3,6-8,20]. 
 
2. Mathematical formulation 

In this paper we consider a class of diffusion 
problems which arises in MRI frequently as follows: 

t x xu D x u x F u

x t T



 

=( ( ) ) ( ) ( ),  

 ( , ) [0,1] [0, ]   (1) 

1<<0   ),(=,0)( xxfxu
,  (2) 

Tttptu <<0   ),(=)(0,
,  (3) 

Tttqtux <<0   ),(=)(1,
,  (4) 

],[0,[0,1]),(   ,|<),(| TtxKtxu    (5) 

Where
,D x( )>0 )( ),( ),( ),( tpxfuFx

, 

and 
)(tq

 are known functions and K  is a known 
constant. In addition we suppose that 

)( ),( ),( tpxfx
, and 

)(tq
 are point-wise 

continuous functions, 
(0,1))( 1CxD 

, and 
)(uF

 
is a continues Lipshits function; i.e. there exist a 

positive constant Rl  such that for each 1u
 and 2u

 

.|||)()(| 2121 uuluFuF 
  (6) 

In (1), )(xD  represents the diffusive coefficient 

and )()( uFx  represents the source term. Here we 
represent an algorithm based on Adomian 
decomposition method (ADM) for solving the 
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problem (1)-(5). The ADM has been proved to be 
effective and reliable for handling differential 
equations, linear or nonlinear. Unlike the traditional 
methods, The ADM needs no discritization, 
linearization, spatial transformation or perturbation. 
The ADM provide an analytical solution in the form 
of an infinite convergent power series. A large amount 
of research works has been devoted to the application 
of the ADM to a wide class of linear and nonlinear, 
ordinary or partial differential equations [7-13]. 
 
3. The base of Adomian decomposition method 

Let us first recall the basic principles of the 
ADM for solving differential equations. Consider the 

general equation: gu = , where   represents a 
general nonlinear differential operator involving both 
linear and nonlinear terms. The linear term is 

decomposed into RL  , where L  is easily 

invertible and R  is the remainder of the linear 
operator. For convenience, L may be taken as the 
highest order derivation. Thus the equation may be 
written as: 

,= qNuRuLu    (7) 

where Nu  represents the nonlinear terms. 

Solving Lu  from (7), we have: 

.= NuRugLu    (8) 

Since L  is invertible, the equivalent expression 
is: 

.= 1111 NuLRuLgLLuL  
  (9) 
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Here   is a parameter introduced for 
convenience. From (12) and (13), we have: 
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Now, substituting (10) and (11) into (9) yields 
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 we can write 

,= 0
1

0
1

1 ALRuLu  
 

  
.= 11

1 nnn ALRuLu 
 

 

All of nu
 are calculable, and nn

uu 


0=
=

. 
Since the series converges and does so very rapidly, 

the n-term partial sum k
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 can serve as 
a practical solution. 

For the convergence of the decomposition 
method, the readers are referred to [13-19]. 
 
4. Method of solution 

In this section, consider following linear 
operators 
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Using this notation, the equation (1) becomes 

).()())((=)( uFxuLxDLuL xxt 
  (17) 

By defining the inverse operators 
1

tL
 one may 

formally obtain from (9) that 
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The nonlinear terms are decomposed as: 
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Substituting (20) and (21) into (18) gives 
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Using above decomposition analysis, the 

following recurrence relation can be derived 
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In (29), D x( ) shows the derivation of 
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with respect to variable x  and the Adomian 

polynomial nA
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calculated using 
1

xxL
. The decomposition series (25) 

and (29) are generally convergent very rapidly in real 
physical problems. The convergence of the 
decomposition series have been investigated by 
several authors [5-8, 12, 13]. One can use each one of 
the decomposition series (25) or (29) for constructing 
the solution of the problem (1)-(5). In addition if one 
wants to introduce the solution with respect to the 
initial and boundary conditions (2)-(4), the average of 
the relations (25) or (29) can be used. 
 
5. Numerical Experiments 

In this section, for illustrations purpose we 
consider some problems and we show that how the 
ADM presented in the preceding section is 
computationally efficient. 
Example 1. 

Consider the following nonlinear diffusion 
problem 
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and so on, the solution u(x, t) is in the following 
form: 
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Example 2. 

Consider following initial- boundary value 
problem 
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Using the recursive relation (25) yields 
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and so on, the solution u(x, t) in a series form is 
given by 
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Example 3. 

Consider following nonlinear initial-boundary 
value problem 
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The exact solution of this problem can be 

derived as [14] 
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Table 1 shows the decomposition solution using 

the average of (25) or (29) using 3 terms, exact 

solution ),( txu , and the absolute errors between 
them at some points. 

 
Table 1: Decomposition solutions using 3 terms. 

x t Exact S_3 Absolute errors 
0.2 0.3 5.00242026E-4 5.00133504E-4 1.08521533E-7 
 0.6 5.00484052E-4 5.00334801E-4 1.49250462E-7 
 0.9 5.00726077E-4 5.00536098E-4 1.89979346E-7 
0.4 0.3 5.00272026E-4 5.00128692E-4 1.43334091E-7 
 0.6 5.00544052E-4 5.00356134E-4 1.87917588E-7 
 0.9 5.00816077E-4 5.00583576E-4 2.32501015E-7 
0.6 0.3 5.00302026E-4 5.00164199E-4 1.37826021E-7 
 0.6 5.00604057E-4 5.00417787E-4 1.86264116E-7 
 0.9 5.00906077E-4 5.00671375E-4 2.34702119E-7 

 
6. Conclusion 

In this paper a class of diffusion equations 
subject to initial and boundary conditions is solved by 
using ADM. This class of problem appear during the 
modeling of a lot of physical phenomena specially in 
MRI. Using this method has this advantages that it 
needs no discritization, linearization, spatial 

transformation or perturbation and it seems that ADM 
is a reasonable method for solving the nonlinear 
problems. 
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