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Abstract: We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
                 （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
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Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 
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Dedicated to the 30-th anniversary of hadronic mechanics 
 
Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 

reason to believe that there are some mysteries which the human mind will never penetrate. 
Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
 
Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as    ，            （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 
1, , ( )i   

. We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 0,1,2,n   . 

（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. 
We have 
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where ih
denotes the number of primes iP N

 in i iP n h 
 

0,1,2,n  
, 

( )N
 the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 

prime distribution. 

Let 30   and (30) 8  . From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 0,1,2,n             （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many primes 

1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where 
( )P

 is called sieve constant and denotes the number of solutions for the following congruence 

1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using 

( )P
 we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
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        （8） 

（8）is called a unite prime formula in prime distribution. Let 
1, 0n k 

, 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
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Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes 
, 2P P 

(300BC). 
From (6) and (7) we have Jiang’s function 

2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N
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1
2 1 (1 (1)).

( 1) logP

N
o
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In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N    in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a prime 

equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations 
, 2, 6P P P 

. 
From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. Since 

2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime equations. 
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Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 






 

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N    in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
             . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P


    

 

3( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. Since 

3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
, 

where 
( ) 3( 1)P P    if 

1

32 1(mod )
P

P



; ( ) 0P   if 

1

32 1(mod )
P

P


 ; ( ) 1P P    otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 
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Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
 

where ( ) 2( 1)P P  
 if 

1(mod4)P 
; 

( ) 2( 3)P P  
 if 

1(mod8)P 
; 

( ) 0P 
 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 

3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3, , kP P

 are 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3, , kP P
 

are primes. 
From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
 

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
  

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P 

 is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n 

, 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n 
 is always divisible by 3. 
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2. 
2 4, , , ,P P n P n P n   , 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n  
 is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n   , 

where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n  
 is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n  

, 

where 
11 ( ), 3, 4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n  
 is always divisible by 11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n  
 is always divisible by 13. 

6. 
2 16, , , ,P P n P n P n   , 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n  
 is always divisible by 17. 

7. 
2 18, , , ,P P n P n P n   , 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n  
 is always divisible by 19. 

Example 10. Let n  be an even number. 

1. 
, , 1,3,5, ,2 1iP P n i k  

, 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n  are  primes for any k . 

2. , , 2, 4,6, ,2iP P n i k   . 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is prime 

equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 
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2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

 

In the same way we can prove 
2

2 3 12P P P 
 which has the same Jiang’s function. 

 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 
primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 
numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
simplest twin primes. They conjecture that the prime 
distribution is randomness [12-25], because they do not 
understand theory of prime numbers. 
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The Hardy-Littlewood prime k-tuple conjecture is false 
 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k -

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture. 
 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P  

, 
( )P

 is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 
1, , 1q p 

.                  （3） 

If ( ) 1P P    then 2 ( ) 0J  
. There exist infinitely many primes P  such that each of iP n

 is prime. 

If ( ) 1P P    then 2 ( ) 0J  
. There exist finitely many primes P  such that each of iP n

 is prime. 

2 ( )J 
 is a subset of Euler function ( )  [2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
  （4） 

( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 
2, , 2k P P 

, twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P  
 if 2P  ,                （6） 

Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 
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  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 

Example 2. Let 3, , 2, 4k P P P   . 
From (3) we have 

(2) 0, (3) 2                       （9） 
From (2) we have 

2 ( ) 0J  
.                        （10） 

It has only a solution 3P  , 2 5P   , 4 7P   . One of 
, 2, 4P P P 

 is always divisible by 3. 

Example 3. Let 
4, ,k P P n 

, where 
2,6,8n 

. 
From (3) we have 

(2) 0, (3) 1, ( ) 3P    
 if 3P  .              （11） 

Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 2,6,8,12n  . 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P        if 5P           （14） 
Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 

There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have the 
best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 
2,6,8,12,14n 

. 
From (3) and (2) we have 

2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One of 

P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 
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 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 

( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

，  
1, ,q P 

.             （21） 

From (21) we have 
( )P P 

 and 
( ) 0H k 

. For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 2, , 2k P P  , twin primes theorem 
Frome (21) we have 

( ) 1P                       （22） 
Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 3, , 2, 4k P P P   . 
From (21) we have 

(2) 1, ( ) 2P    if 2P                 （25） 
Substituting (25) into (20) we have 

2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

   （27） 
which is false see example 2. 

Conjecutre 3. Let 4k  , 
,P P n

, where 
2,6,8n 

. 
From (21) we have 

(2) 1, (3) 2, ( ) 3P      if 3P              （28） 
Substituting (28) into (20) we have 

3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

    （30） 
Which is false see example 3. 
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Conjecture 4. Let 5, ,k P P n  , where 2,6,8,12n   
From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P        if 5P               （31） 
Substituting (31) into (20) we have 

4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
Substituting (32) into (19) we have asymptotic formula 

 
4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P      
 if 5P         （34） 

Substituting (34) into (20) we have 
5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 

 

Conclusion. The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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Automorphic Functions And Fermat’s Last Theorem(1) 

 
Chun-Xuan Jiang 
 
P.O.Box 3924,Beijing 100854,China 
jiangchunxuan@sohu.com 
 

Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n    has no integer solutions, all different from 0(i.e., it has only the trivial 

solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an odd prime. 
The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 

 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

1
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a n th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order n  with 1n   variables [1-7]. 

1

2
( 1)

1

1 ( 1)
[ 2 ( 1) cos( ( 1) )]j

n

BA i j j
i j

j

i j
S e e

n n











    

    （2） 
where i=1,2,…,n; 

1

1

n

A t






 
,   

1

1

( 1) cos
n

j
j

j
B t

n





 



 
,                     

 （3） 

1
1

1

( 1) ( 1) sin
n

j j
j

j
t

n





 







  
,   

1

2

1

2 0

n

j
j

A B





 
 

(2) may be written in the matrix form 
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1

2

3

2

1 1 0 0

( 1)
1 cos sin sin

2

2 2 ( 1)1
1 cos sin sin

( 1) ( 1) ( 1)
1 cos sin sin

2

n

nS
n n nS

n
S

n n nn

S
n n n

n n n

  

  

  

 
      

   
   
    
   
   
        

  








    


 

1

1

1

1

1 1

2 2

2 cos

2 sin

2exp sin

A

B

B

n n

e

e

e

B





 

 
 
 
 
 
 
 
  



 (4) 

where ( 1) / 2n   is an even number. 
From (4) we have its inverse transformation 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n n

B
n n n

n n n

  


  


  

 

 
   
  
  
      
  
  
          
  








    


 

1

2

3

n

S

S

S

S

 
 
 
 
 
 
 
 



  (5) 
From (5) we have 

1

n
A

i
i

e S


 
, 

1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
 

1
1

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
,                                 （6） 

In (3) and (6) it  and iS
 have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and proved FLT 
[1-7] Substituting (4) into (5) we prove (5). 

 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)1sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n nn

B
n n n

n n n

  


  


  

 

 
     
  
  

   
  
  
          
  








    


 

1

1

1

1

1 1
2

2 2

1 1 0 0

( 1)
1 cos sin sin

2 2 cos
2 2 ( 1) 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)

1 cos sin sin
2

A

B

B

n n

en

n n n e
n e

n n n

B
n n n

n n n
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1

1

1

1

1 1

2 2

0 0 0

0 0 0
2 2 cos

1 2 sin0 0 0
2

2exp( )sin( )

0 0 0
2

A

B

B

n n

n

en

e

n e
n

B
n





 

 
   
   
   
   

    
   
   
     
  








    


 

1

1

1

1

1 1

2 2

cos

sin

exp( )sin( )

A

B

B

n n

e

e

e

B





 

 
 
 
   
 
 
  



,                                          （7） 

where 

1
2

1

1 (cos )
2

n

j

j n

n





 
, 

1
2

1

(sin )
2

n

j

j n

n






. 

From (3) we have 
1

2

1

exp( 2 ) 1

n

j
j

A B





 
.                           （8） 

From (6) we have 

1 2 1 1 1 1 11

2
2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )

( ) ( )
exp( 2 )

( ) ( )

n nn

n

j
j

n n n n n n

S S S S S S

S S S S S S
A B

S S S S S S







 

  

 

 

       

 
,        （9） 

where 

( ) i
i j

j

S
S

t





[7]. 

From (8) and (9) we have the circulant determinant 

1 21

2
2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S

S S S
A B

S S S







  





   


          （10） 

If 
0iS 

, where 1,2, ,i n  , then (10) has infinitely many rational solutions. 

Assume 1 0S 
, 2 0S 

, 
0iS 

 where 
3, 4, , . 0ii n S 

 are 2n   indeterminate equations with 

1n   variables. From (6) we have 

1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cosjB j j

e S S S S
n


   

.        （11） 
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From (10) and (11) we have the Fermat equation 
1 1

2 2
2 2

1 2 1 2 1 2 1 2
1

1

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j

j
j

j
A B S S S S S S S S

n


 




         
（12） 

Example[1]. Let 15n  . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t             
 

1 1 14 2 13 3 12 4 11

2 3 4
( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

5 6 7
( )cos ( )cos ( )cos

15 15 15
t t t t t t

  
     

, 

2 1 14 2 13 3 12 4 11

2 4 6 8
( )cos ( ) cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

10 12 14
( )cos ( )cos ( )cos

15 15 15
t t t t t t

  
     

, 

3 1 14 2 13 3 12 4 11

3 6 9 12
( )cos ( ) cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

15 18 21
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

4 1 14 2 13 3 12 4 11

4 8 12 16
( )cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

20 24 28
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

5 1 14 2 13 3 12 4 11

5 10 15 20
( )cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

25 30 35
( )cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

6 1 14 2 13 3 12 4 11

6 12 18 24
( )cos ( ) cos ( )cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

30 36 42
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

7 1 14 2 13 3 12 4 11

7 14 21 28
( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

35 42 49
( )cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 
7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t


     
.                       (13) 

Form (12) we have the Fermat equation 
7

15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S


     
.                   (14) 

From (13) we have 
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5
3 6 5 10exp( 2 2 ) [exp( )]A B B t t   

.                 （15） 
From (11) we have 

5 5
3 6 1 2exp( 2 2 )A B B S S   

.                     (16) 
From (15) and (16) we have the Fermat equation 

5 5 5
3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t     

.                  （17） 
Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 

solutions for exponent 5[1]. 

Theorem 1. [1-7]. Let 3n P ,where 3P   is odd prime. From (12) we have the Fermat’s equation 
3 1

3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1
P

P P P P
j

j

A B S S S S




     
.                (18) 

From (3) we have 
1

2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t





  
.                     (19) 

From (11) we have 
1

2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S





  
.                        (20) 

From (19) and (20) we have the Fermat equation 
1

2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t





    
.           （21） 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 

solutions for 3P   [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

P P Px y z 
                           （22） 

in the form 
2 1( )( )( ) ( )P Px y x ry x r y x r y z                          （23） 

where P  is odd prime, 

2 2
cos sinr i

P P

 
 

. 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 
[8].. 

We consider the Fermat’s equation 
3 3 3P P Px y z                          （24） 

we rewrite (24) 
3 3 3( ) ( ) ( )P P Px y z                        (25) 

From (24) we have 
2 3( )( )( )P P P P P P Px y x ry x r y z                  （26） 

where 

2 2
cos sin

3 3
r i

 
 

 

We assume the divisor of each factor is a P th power. 



 Academia Arena 2016;8(3s)          http://www.sciencepub.net/academia 

 

17 

Let 
1

x
S

z


, 
2

y
S

z


. From (20) and (26) we have the Fermat’s equation 

2[ exp( )]P P P
P Px y z t t   

                 (27) 
Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 

solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

3 3 3( ) ( ) ( )P P Px y z 
                  (28) 

Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no 

integer solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

4 4 4P P Px y z                      (29) 
We rewrite (29) 

4 4 4( ) (( ) ( )P P Px y z                  （30） 
4 4 4( ) ( ) ( )P P Px y z                   （31） 

 
Fermat proved that (30) has no integer solutions 

for exponent 4 [8]. Therefore we prove that (31) has no 

integer solutions for all prime exponent P  [2,5,7].This 
is the proof that Fermat thought to have had. 
Remark. It suffices to prove FLT for exponent 4. Let 

4n P , where P  is an odd prime. We have the 

Fermat’s equation for exponent 4P  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be n P  , 2n P   and 

4n P  . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be n P  , 2n P   and 

4n P  . Every factor of exponent n  has Fermat’s 
equation [1-7].Using modular elliptic curves Wiles and 
Taylor prove FLT[9,10].This is not the proof that 
Fermat thought to have had. The classical theory of 
automorphic functions, created by Klein and Poincare, 
was concerned with the study of analytic functions in 
the unit circle that are invariant under a discrete group 
of transformations. Automorphic functions are 
generalization of the trigonometric,hyperbolic,elliptic, 
and certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Automorphic Functions And Fermat’s Last Theorem（2） 
 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 6P  and P , where P  is an odd prime. 
The proof of FLT must be direct .But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

2 1 2
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a 2n th root of unity, 
2 1nJ  , n is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 2n  with 2 1n   variables 

[5,7]. 

1

1

2
( 1)

1

1 ( 1)
2 ( 1) cos ( 1)

2
j

n

i jBA j
i j

j

i j
S e

n n










 
         

  


 

2

1
( 1) 2

( 1) 1

1

( 1) ( 1)
2 ( 1) cos ( 1)

2
j

n
i

DA i j j
j

j

i j
e e

n n







 



 
          

  


 ,       （2） 

where 1,..., 2i n ; 
2 1 2 1 2 1

( 1)
1

1 1 1

, ( 1) cos , ( 1) ( 1) sin
n n n

j j j
j j

j j
A t B t t

n n
 

  
  

   


  


  

       
, 

2 1 2 1
( 1)

2
1 1

( 1) , ( 1) cos
n n

j
j

j
A t D t

n
 

 
 

  


 

    
, 

1
2 1 2

( 1)
1 2

1 1

( 1) ( 1) sin , 2 ( ) 0

n
n

j j
j j j

j

j
t A A B D

n





 







 

       
       （3） 

From (2) we have its inverse transformation[5,7] 
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1 2

2 2
1

1 1

, ( 1)
n n

A A i
i i

i i

e S e S 

 

   
 

2 1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
, 

2 1
( 1)

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
, 

2 1
( 1)

1 1
1

cos ( 1) cosj

n
D j i

j i
i

ij
e S S

n










  
 

2 1
( 1)

1
1

sin ( 1) ( 1) sinj

n
D j j i

j i
i

ij
e S

n










  
                          （4） 

(3) and (4) have the same form. 
From (3) we have 

1

2

1 2
1

exp 2 ( ) 1

n

j j
j

A A B D





 
    
 
  


                   （5） 

From (4) we have 

1 2 21

2
2 1 3

1 2
1

2 2 1 1

exp 2 ( )

nn

j j
j

n n

S S S

S S S
A A B D

S S S







 
    
 
  







   


 

 

1 1 1 1 2 1

2 2 1 2 2 1

2 2 1 2 2 1

( ) ( )

( ) ( )

( ) ( )

n

n

n n n n

S S S

S S S

S S S













   


             (6) 

where 

( ) i
i j

j

S
S

t





[7].. 

From (5) and (6) we have circulant determinant 

1 2 21

2
2 1 3

1 2
1

2 2 1 1

exp 2 ( ) 1

nn

j j
j

n n

S S S

S S S
A A B D

S S S







 
     
 
  







   


          （7） 

If 
0iS
，where ni 2,...,3,2,1 , then (7) have infinitely many rational solutions. 

Let 1n . From (3) we have 11 tA 
 and 12 tA 

. From (2) we have 

11 ch tS 
    12 sh tS 

                 （8） 
we have Pythagorean theorem 

1shch 1
2

1
2  tt                                   （9） 
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(9) has infinitely many rational solutions. 

Assume 
0,0,0 21  iSSS

, where ni 2,...,3 . 
0iS

 are )22( n  indeterminate equations with 

)12( n
 variables. From (4) we have 

n

j
SSSSeSSeSSe jBAA j


cos)1(2,, 21

2
2

2
1

2

2121
21 

, 

n

j
SSSSe jD j


cos)1(2 1

21
2
2

2
1

2 
                     （10） 

Example. Let 15n . From (3) and (10) we have Fermat’s equation 

1)()()](2exp[ 310
2

310
1

30
2

30
1

7

1
21  



SSSSDBAA jj
j  （11） 

From (3) we have 

5
5

5

1
631 )][exp()22exp( j

j

tBBA 




         （12） 
From (10) we have 

5
2

5
1631 )22exp( SSBBA 

            (13) 
From (12) and (13) we have Fermat’s equation 

5
5

5

1

5
2

5
1631 )][exp()22exp( j

j

tSSBBA 




       (14) 
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational 

solutions for exponent 5. 

Theorem. Let Pn 3  where P  is an odd prime. From (7) and (8) we have Fermat’s equation 

1)()()](2exp( 32
2

32
1

6
2

6
1

2

13

1
21  





PPPP
jj

P

j

SSSSDBAA
  (15) 

From (3) we have 

P

jP
j

j

P

j

tBA








































 






5

1
3

2

1

1
1 exp2exp

              (16) 
From (10) we have 

PP
j

P

j

SSBA 213

2

1

1
1 2exp 

















 





               (17) 
From (16) and (17) we have Fermat’s equation 

P

jP
j

PP
j

P

j

tSSBA








































 






5

1
213

2

1

1
1 exp2exp

    (18) 
Euler prove that (15) has no rational solutions for 

exponent 3[8]. Therefore we prove that (18) has no 

rational solutions for prime exponent P [5,7]. 
 

Remark. It suffices to prove FLT for exponent 4. Let 

Pn 4 , where P  is an odd prime. We have the 

Fermat’s equation for exponent P4  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
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Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has 
Fermat’s equation [1-7]. Using modular elliptic curves 
Wiles and Taylor prove FLT [9, 10]. This is not the 
proof that Fermat thought to have had. The classical 
theory of automorphic functions, created by Klein and 
Poincare, was concerned with the study of analytic 
functions in the unit circle that are invariant under a 
discrete group of transformation. Automorphic 
functions are the generalization of trigonometric, 
hyperbolic, elliptic, and certain other functions of 
elementary analysis. The complex trigonometric 
functions and complex hyperbolic functions have a 
wide application in mathematics and physics. 
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Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 4P  and P , where P  is an odd prime. 
We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of  FLT is disbelieving. 

 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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4 1 4
1

1 1

exp
m m

i i
i i

i i

t J S J




 

 
 

 
 

,                        （1） 

where J  denotes a 4m th root of unity, 
4 1mJ  , m=1,2,3,…, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 4m  with 4 1m   variables 

[2,5,7]. 
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         （2） 

where 1,..., 4i m ; 
 
 

4 1 4 1
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, ( 1)
m m
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2 1 2
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1 1

( 1) , ( 1)
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4 1 4 1

1 1
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2 2

m m
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j j
B t t

m m
 

 

   


 

 

   
 

4 1 4 1

1 1

( 1) cos , ( 1) sin
2 2

m m

j j

j j
D t t

m m
 

 
 

   


 

 

    
, 

1

1 2
1

2 2 ( ) 0
m

j j
j

A A H B D




    
.                                  （3） 

From (2) we have its inverse transformation[5,7] 

1 2

4 4
1
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cos ( 1) , sin ( 1)
m m

H i H i
i i

i i

e S e S 


 

    
, 

4 1 4 1

1 1 1
1 1

cos cos , sin sin
2 2

j j

m m
B B

j i j i
i i

ij ij
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cos ( 1) cos , sin ( 1) sin
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D Di i

j i j i
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ij ij
e S S e S
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.（4） 

(3) and (4) have the same form. 
From (3) we have 

1

1 2
1

exp 2 2 ( ) 1
m

j j
j

A A H B D




 
     

 


                （5） 
From (4) we have 
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1 4 2
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    (6) 

where 

( ) i
i j

j

S
S

t





[7] 

From (5) and (6) we have circulant determinant 

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( ) 1

m

m

j j
j

m m

S S S

S S S
A A H B D
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   （7） 

Assume 1 20, 0, 0iS S S  
, where 

3,..., 4 .i m
 

0iS 
 are 

(4 2)m 
 indeterminate equations with 

(4 1)m   variables. From (4) we have 
1 2 2 2 2

1 2 1 2 1 2, ,A A He S S e S S e S S     
 

2 2 2
1 2 1 22 cos

2
jB j

e S S S S
m


  

,  

2 2 2
1 2 1 22 cos

2
jD j

e S S S S
m


  

   （8） 

Example [2]. Let 4 12m  . From (3) we have 

1 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t          
, 

2 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t           
, 

2 10 4 8 6( ) ( )H t t t t t     
, 

1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( )cos ( ) cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( ) cos ( ) cos ( )cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( )cos ( ) cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( ) cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

1 2 1 2 1 22( ) 0A A H B B D D      
,  2 2 3 6 92 3( )A B t t t    

.               （9） 
From (8) and (9) we have 

12 12 3 4 3 4
1 2 1 2 1 2 1 2 1 2exp[ 2( )] ( ) ( ) 1A A H B B D D S S S S          

.     (10) 
From (9) we have 
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3
2 2 3 6 9exp( 2 ) [exp( )]A B t t t    

.                  (11) 
From (8) we have 

2 2 3 3
2 2 1 2 1 2 1 2 1 2exp( 2 ) ( )( )A B S S S S S S S S      

.             (12) 
From (11) and (12) we have Fermat’s equation 

3 3 3
2 2 1 2 3 6 9exp( 2 ) [exp( )]A B S S t t t      

.                (13) 
Fermat proved that (10) has no rational solutions for exponent 4 [8]. 
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2] 

Theorem . Let 4 4m P , where P  is an odd prime, ( 1) / 2P   is an even number. 
From (3) and (8) we have 

1
4 4 4 4

1 2 1 2 1 2
1

exp[ 2 2 ( )] ( ) ( ) 1
P

P P P P
j j

j

A A H B D S S S S




        
. (14) 

From (3) we have 
1

4

2 4 2 4 2 3
1

exp[ 2 ( )] [exp( )]

P

P
j j P P P

j

A B D t t t






     
.         (15) 

From (8) we have 
1

4

2 4 2 4 1 2
1

exp[ 2 ( )]

P

P P
j j

j

A B D S S






   
.              (16) 

From (15) and (16) we have Fermat’s equation 
1

4

2 4 2 4 1 2 2 3
1

exp[ 2 ( )] [exp( )]

P

P P P
j j P P P

j

A B D S S t t t






       
.  (17) 

 
Fermat proved that (14) has no rational solutions 

for exponent 4 [8]. Therefor we prove that (17) has no 

rational solutions for prime exponent P . 
Remark. Mathematicians said Fermat could not 
possibly had a proof, because they do not understand 

FLT.In complex hyperbolic functions let exponent n  

be n P  ，  2n P   and 4n P  . Every 

factor of exponent n  has Fermat’s equation [1-7]. 
Using modular elliptic curves Wiles and Taylor prove 
FLT [9,10]. This is not the proof that Fermat thought to 
have had. The classical theory of automorphic 
functions,created by Klein and Poincare, was 
concerned with the study of analytic functions in the 
unit circle that are invariant under a discrete group of 
transformation. Automorphic functions are the 
generalization of trigonometric, hyperbolic elliptic, and 
certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Abstract 

In 1859 Riemann defined the zeta function 
( )s

. From Gamma function he derived the zeta function with 

Gamma function 
( )s

. 
( )s

 and 
( )s

are the two different functions. It is false that 
( )s

 replaces 
( )s

. 

After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 
( )nJ 

 can 
replace RH. 

 
AMS  mathematics subject classification: Primary 11M26. 
 
In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



    
 ,       （1） 

where , 1s ti i    ，  and t  are real, P ranges over all primes. RZF is the function of the complex 

variable s  in 0, 0t   ，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti   .                   （2） 
In 1998 Jiang proved [3] 

( ) 0s  ,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 

1
2

02

s
ts

e t dt
 

 
  

 


.                  （4） 

For 0  . On setting 
2t n x , we observe that 

21
2 2

02

s s
s n xs

n x e dx
 

  
  

 


.            （5） 

Hence, with some care on exchanging summation and integration, for 1  , 

21
2 2

0
1

( )
2

s s
n x

n

s
s x e dx 
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1
2

0

( ) 1

2

s x
x dx

   
  

 


,            （6） 

where ( )s  is called Riemann zeta function with gamma function rather than ( )s , 

2

( ) : n x

n

x e 






 
,                （7） 

is the Jacobi theta function. The functional equation for ( )x  is 
1

12 ( ) ( ),x x x  
                  （8） 

and is valid for 0x  . 

Finally, using the functional equation of ( )x
, we obtain 

12 1
2 2 2

1

1 ( ) 1
( ) ( ) ( ) .

( 1) 2

2

s
s s x

s x x dx
s s s

 


    
    

    
 



   （9） 
From (9) we obtain the functional equation 

1

2 2
1

( ) (1 )
2 2

s ss s
s s   


      

     
    .              （10） 

The function ( )s  satisfies the following 

1. ( )s  has no zero for 1  ; 

2. The only pole of ( )s  is at 1s  ; it has residue 1 and is simple; 

3. ( )s  has trivial zeros at 
2, 4, ...s   

 but 
( )s

 has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1 / 2  . 

The strip 0 1   is called the critical strip and the vertical line 1 / 2   is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of ( )s  lie on the critical line 1 / 2  , which is 
false. [3] 

( )s  and 
( )s

 are the two different functions. It is false that ( )s  replaces 
( )s

, Pati proved that is not 

all complex zeros of ( )s  lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 

proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, then 

the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime theorems 
including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in primes[7,8]. 

In the same way we have a general formula involving ( )s  

1 1

0 0
1 1

( ) ( )s s

n n

x F nx dx x F nx dx
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1 1

0 0
1

1
( ) ( ) ( )s s

s
n

y F y dy s y F y dy
n


  

 



   
,       （11） 

where 
( )F y

 is arbitrary. 

From (11) we obtain many zeta functions ( )s  which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 

and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT  which is 
Fermat’s marvelous proof[7, 13]. 

Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3

3 1 22P P P 
. 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2 1P P    if 

1

32 1
P

  (mod P ); ( ) 2P P     if 

1

32 1
P

  (mod P ); ( ) 1P   
otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
3 3

2 1 2 1 2 1 2 3( ,3) { , : , , 2 prime}N P P P P N P P P    
 

2 2 2
3

3 3 3 3
3

( ) 1 ( 3 3 ( ))
~

6 ( ) log 3 ( 1) logP

J N P P P P N

N P N

  

 

  


 


. 

where 2 P

P


 
 is called primorial, 2

( ) ( 1)
P

P


  
. 

It is the simplest theorem which is called the Heath-Brown problem [15]. 

（2）Let 0n P
 be an odd prime, 

2 m
 and 

0Pm b  . 
we have 

0 0

3 1 2
P PP P mP 

 
We have 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where ( ) 2P P     if 0 0; ( ) ( 1) 2P m P P P P    
 if 

0

1

1

P

Pm



  (mod P ); 

( ) 2P P   
 if 

0

1

1

P

Pm



 (mod P ); 
( ) 1P 

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have 
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2
3

2 3 3
0

( )
( ,3) ~ .

2 ( ) log

J N
N

P N

 



  . 

The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 

（1）Let 4n  , We have 
4 2

3 1 2( 1)P P P  
, 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( )P P 

 if 1P   (mod 4); 
( ) 4P P  

 if 1P  （mod 8）; 
( ) 2P P   

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
4 2

2 1 2 1 2 1 2 3( ,3) { , : , , ( 1) prime}N P P P P N P P P     
 

2
3

3 3

( )
~

8 ( ) log

J N

N

 

 . 
It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 1,2,3,m   . 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
iP P

J P P P 
 

    
, 

where 
( ) 4P P m  

 if 
8 ( 1) ; ( ) 4m P P P  

 if 
8 ( 1)P 

;
( )P P 

if 
4 ( 1)P 

; 

( ) 2P P   
 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a generalization 
of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

8 ( ) log

J N

m N

 

 . 

（3）Let 2n b .  We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( ) 2P P b  

 if 
4 ( 1); ( ) 2b P P P  

 if 
4 ( 1)P 

; 
( ) 2P P   

 otherwise. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

4 ( ) log

J N

b N

 

 . 
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（4）Let 0n P
, We have 

0 2
3 1 2( 1)PP P P  

. 

where 0P
 is an odd. Prime. 

we have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where 0( ) 1P P  
 if 0 ( 1); ( ) 0P P P 

 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3
0

( )

2 ( ) log

J N

P N

 


. 

 

The Jiang function 
( )nJ 

 is closely related to 

the prime distribution. Using 
( )nJ 

 we are able to 
tackle almost all prime problems in the prime 
distributions. 
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国外数学家给王元信,请王元支持蒋春暄费马大定理证明。 
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From: Moshe Klein 
To: ywang@math.ac.cn 
Sent: Wednesday, December 29, 2010 8:21 AM 
Subject: To Prof. Wang Yuan 

 
Dear Prof Yuan, 

 
My name is Moshe Klein and I am expert in mathematic education in Kindergarden. 
During the last 4 month I study cheerfully the work of Jiang on Fermat Last Theorem 
I find it very interesting and promising direction. 
 
I think that he need help of  great mathematician like you 
to improve his paper so it will accepted in respective journal 
I ask you please spent some of your  time to look on his paper 
and give us ( I work with him) some helpful hints to improve the presentation 
Please visit my web-site and look on the last version of his paper: 
 
http://www.omath.org.il/112431/FLT 
 

Best regards 
Moshe Klein 

 

王元主编<数学大辞典>2010年 8月由科学出版出版, 华罗庚接班人王元代表中科院中国政府在<数学大

辞典>中宣布费马大定理最后是美国怀尔斯解决的, 不承认中国蒋春暄 1991年证明费马大定理。蒋春暄因首

先证明费马大定理荣获特勒肖-伽利略科学院 2009年度金奖, 但中国不承认这个金奖, 连蒋春暄母校北京航空

航天大学不承认蒋春暄是北航的校友, 蒋春暄成果献给母校被拒绝。怀尔斯因证明费马大定理获国际十五个

大奖包括中国邵逸夫 2005 年百万美元数学大奖。如中国支持蒋春暄这些大奖都应该属于中国的。费马大定

理证明是 20世纪最大数学成就。怀尔斯证明费马大定理是西方一大批数学家研究成果。他们 

看不起中国人, 他们大多数数学家都看到蒋春暄证明费马大定理比怀尔斯早三年, 但他们仍是支持怀尔

斯。 丘成桐就是坚决支持怀尔斯, 不承认中国人证明费马大定理。王元对蒋春暄成果态度;Dear Prof.Tsang. I 

don't approach Jiang and also don't care of any of his result.  Wang Yuan。王元关心是怀尔斯费马大定理怀尔斯

证明, 他是在中国宣传怀尔斯干将。www.baidu.com点蒋春暄和费马大定理有 13100条, 点蒋春暄和哥德巴赫

猜想有 10900条, 点蒋春暄和黎曼假设有 7160条,这三大数学难题都被蒋春暄彻底解决而且都己发表。 
 

 

The New Prime theorems（1041）-（1090） 
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book 

proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS, 

THES, MPIM, MSRI. In this paper using Jiang function 2 ( )J 
 we prove that the new prime theorems (1041)-

（1090) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest 

solution 0( ,2) 1k N 
. This is the Book theorem. 

It will be another million years, at least, before we understand the primes. 
Paul Erdos (1913-1996) 
TATEMENT OF INTENT 
If elected. I am willing to serve the IMU and the international mathematical community as president of the 

IMU. I am willing to take on the duties and responsibilities of this function. 
These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its 
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tasks related to organizing the 2014 ICM，fostering the development of mathematics, in particular in developing 
countries and among young people worldwide, representing the interests of our community in contacts with other 
international scientific bodies, and helping the IMU committees in their function. 

--IMU president, Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve 

methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s 
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple 
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: 

(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996 

Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang 
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s 
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and 
Tao theorem is false) to see. 

(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level. 

Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the 
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new 
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(1040)]: (http://www.wbabin.net/xuan.htm#chun-
xuan) (http://vixra.org/numth/) 

 
 

The New Prime theorem（1041） 
 

2002, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2002jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2002, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2002

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  
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such that each of 
2002jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2002 2
1

( )
( ,2) : ~

(2002) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3, 23,2003k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3, 23,2003k 

 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3, 2003k  . 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 2003k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1042） 
 

2004, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2004jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2004, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2004

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2004jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2004 2
1

( )
( ,2) : ~

(2004) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1043） 
 

2006, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 

Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2006jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2006, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 
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1
2006

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2006jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2006 2
1

( )
( ,2) : ~

(2006) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1044） 
 

2008, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2008jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2008, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P  
， ( )P  is the number of solutions of congruence 

1
2008

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2008jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2008 2
1

( )
( ,2) : ~

(2008) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,503k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,503k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,503k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,503k  ， 

(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1045） 
 

2010, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2010jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2010, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2010

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2010jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2010 2
1

( )
( ,2) : ~

(2010) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,11,31,2011k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,11,31,2011k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,31,2011k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,11,31,2011k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1046） 
 

2012, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2012jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
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2012, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2012

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2012jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2012 2
1

( )
( ,2) : ~

(2012) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k  , 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1047） 
 

2014, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
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Using Jiang function we prove that 
2014jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2014, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2014

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2014jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2014 2
1

( )
( ,2) : ~

(2014) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,107k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,107k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,107k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,107k 

， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1048） 
 

2016, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2016jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2016, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2016

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2016jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2016 2
1

( )
( ,2) : ~

(2016) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k 

. From (2) and(3) 
we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1049） 
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2018, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2018jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2018, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2018

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2018jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2018 2
1

( )
( ,2) : ~

(2018) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（1050） 
 

2020, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2020jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2020, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2020

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2020jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2020 2
1

( )
( ,2) : ~

(2020) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,11k 

 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,11k 

， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1051） 
 

2022, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2022jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2022, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2022

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2022jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2022 2
1

( )
( ,2) : ~

(2022) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7k 

, 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 3, 7k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 7k 
， 

(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1052） 
 

1924, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2024jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2024, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2024

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2024jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2024 2
1

( )
( ,2) : ~

(2024) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,23,47,89k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,5,23,47,89k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,23,47,89k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,23,47,89k 

， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1053） 
 

2026, ( 1, , 1)P jP k j j k   
 

 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2026jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2026, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2026

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2026jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2026 2
1

( )
( ,2) : ~

(2026) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,2027k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,2027k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 2027k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3, 2027k  ， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1054） 
 

2028, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2028jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2028, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2028

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2028jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2028 2
1

( )
( ,2) : ~

(2028) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13,53,79,157,677,2029k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,53,79,157,677,2029k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,53,79,157,677,2029k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,53,79,157,677,2029k 

， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1055） 
 

2030, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2030jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2030, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2030

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2030jp + k j  is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2030 2
1

( )
( ,2) : ~

(2030) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,59,71k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11,59,71k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,59,71k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11,59,71k 

， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1056） 
 

2032, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2032jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2032, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2032

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2032jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2032 2
1

( )
( ,2) : ~

(2032) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17,509k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,509k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,509k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,17,509k  ， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1057） 
 

2034, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2034jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2034, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 
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1
2034

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2034jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2034 2
1

( )
( ,2) : ~

(2034) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,19,227k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19,227k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19,227k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19,227k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1058） 
 

2036, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2036jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2036, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2036

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2036jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2036 2
1

( )
( ,2) : ~

(2036) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,1019k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,1019k 
, 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1019k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1019k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1059） 
 

2038, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 
2038jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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2038, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2038

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2038jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2038 2
1

( )
( ,2) : ~

(2038) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1060） 
 

2040, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2040jP k j   contain infinitely many prime solutions and no prime 
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solutions. 

Theorem. Let k  be a given odd prime. 
2040, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2040

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2040jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2040 2
1

( )
( ,2) : ~

(2040) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,11,13,31,41,61,103,137,409k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,31,41,61,103,137,409k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,11,13,31,41,61,103,137,409k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,31,41,61,103,137,409k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1061） 
 

2042, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
2042jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2042, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2042

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2042jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2042 2
1

( )
( ,2) : ~

(2042) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1062） 
 

2044, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2044jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2044, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2044

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2044jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2044 2
1

( )
( ,2) : ~

(2044) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,29k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,29k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,29k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,29k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1063） 
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2046, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2046jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2046, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2046

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2046jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2046 2
1

( )
( ,2) : ~

(2046) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,23,67,683k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,23,67,683k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,23,67,683k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,23,67,683k  ， 
(1) contain infinitely many prime solutions 
 



 Academia Arena 2016;8(3s)          http://www.sciencepub.net/academia 

 

56 

 

The New Prime theorem（1064） 
 

2048, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2048jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2048, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2048

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2048jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2048 2
1

( )
( ,2) : ~

(2048) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,17,257k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,257k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,257k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,17,257k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1065） 
 

2050, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2050jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2050, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2050

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2050jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2050 2
1

( )
( ,2) : ~

(2050) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,83k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11,83k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,83k  . 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11,83k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1066） 
 

2052, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2052jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2052, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2052

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2052jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2052 2
1

( )
( ,2) : ~

(2052) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,109,2053k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19,37,109,2053k 

, 
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(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,19,37,109,2053k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,19,37,109,2053k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1067） 
 

2054, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2054jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2054, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2054

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2054jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2054 2
1

( )
( ,2) : ~

(2054) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1068） 
 

2056, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2056jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2056, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2056

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2056jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2056 2
1

( )
( ,2) : ~

(2056) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 
 

 

he New Prime theorem（1069） 
 

2058, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2058jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2058, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2058

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2058jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

2058 2
1

( )
( ,2) : ~

(2058) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,43k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,43k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,43k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,43k  ， 

(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1070） 
 

2060, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2060jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2060, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2060

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2060jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2060 2
1

( )
( ,2) : ~

(2060) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,11,1031k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11,1031k 
, 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,11,1031k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,11,1031k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1071） 
 

2062, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2062jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2062, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2062

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2062jp + k j  is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2062 2
1

( )
( ,2) : ~

(2062) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,2063k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,2063k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 2063k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 2063k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1072） 
 

2064, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2064jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2064, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2064

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2064jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2064 2
1

( )
( ,2) : ~

(2064) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13,17,1033k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,17,1033k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,17,1033k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,17,1033k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1073） 
 

2066, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2066jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2066, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2066

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2066jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2066 2
1

( )
( , 2) : ~

(1966) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（1074） 
 

2068, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2068jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2068, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 
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1
2068

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2068jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2068 2
1

( )
( ,2) : ~

(2068) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,23,2069k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,23,2069k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,23,2069k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,23,2069k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1075） 
 

2070, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2070jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2070, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2070

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2070jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2070 2
1

( )
( ,2) : ~

(2070) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,11,19,31,139k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,11,19,31,139k 
, 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,11,19,31,139k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,11,19,31,139k 

， 
(1) contain infinitely 

many prime solutions 
 

 

The New Prime theorem（1076） 
 

2072, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2072jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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2072, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2072

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2072jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2072 2
1

( )
( ,2) : ~

(2072) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,29,149k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,29,149k  , 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,29,149k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,29,149k  ， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1077） 

 
2074, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
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Using Jiang function we prove that 
2074jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2074, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2074

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2074jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2074 2
1

( )
( ,2) : ~

(2074) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1078） 
 

2076, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
2076jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2076, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2076

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2076jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2076 2
1

( )
( ,2) : ~

(2076) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,347,1039k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,347,1039k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,347,1039k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,347,1039k  ， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1079） 

 
2078, ( 1, , 1)P jP k j j k     
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2078jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2078, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2078

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2078jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2078 2
1

( )
( ,2) : ~

(2078) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1080） 
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2080, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2080jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2080, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2080

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2080jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2080 2
1

( )
( ,2) : ~

(2080) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,11,17,41,53,131,521,2081k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11,17,41,53,131,521,2081k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11,17,41,53,131,521,2081k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,11,17,41,53,131,521,2081k 

， 
(1) contain infinitely many prime solutions 

 

The New Prime theorem（1081） 
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2082, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2082jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2082, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2082

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2082jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2082 2
1

( )
( ,2) : ~

(2082) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,2083k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,2083k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,2083k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,2083k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（1082） 
 

2084, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2084jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2084, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2084

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2084jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2084 2
1

( )
( ,2) : ~

(2084) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1083） 
 

2086, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2086jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2086, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2086

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2086jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2086 2
1

( )
( ,2) : ~

(2086) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,2087k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,2087k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 2087k  . 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 2087k 

， 
(1) contain infinitely many prime solutions 

 
 

The New Prime theorem（1084） 
 

2088, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2088jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2088, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2088

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2088jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2088 2
1

( )
( ,2) : ~

(2088) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,59,73,233,349,523,2089k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19,37,59,73,233,349,523,2089k 

, 
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(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,19,37,59,73,233,349,523,2089k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,19,37,59,73,233,349,523,2089k 

， 
(1) contain infinitely many prime solutions 
 

 
 

The New Prime theorem（1085） 
 

2090, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2090jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2090, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2090

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2090jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2090 2
1

( )
( ,2) : ~

(2090) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,11,23,191,419k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,11,23,191,419k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,23,191,419k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11,23,191,419k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（1086） 

 
2092, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2092jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2092, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2092

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2092jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2092 2
1

( )
( ,2) : ~

(2092) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 

 
 

The New Prime theorem（1087） 
 

2094, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2094jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2094, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2094

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2094jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

2094 2
1

( )
( ,2) : ~

(2094) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3, 7k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 7k  ， 

(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1088） 
 

2096, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2096jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2096, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2096

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2096jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2096 2
1

( )
( ,2) : ~

(2096) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,17,263,1049k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17,263,1049k 
, 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17,263,1049k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,263,1049k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（1089） 
 

2098, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2098jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2098, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2098

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2098jp + k j  is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2098 2
1

( )
( ,2) : ~

(2098) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,2099k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,2099k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 2099k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 2099k 

， 
(1) contain infinitely many prime solutions 

 
 

The New Prime theorem（1090） 
 

2100, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2100jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2100, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
2100

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2100jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2100 2
1

( )
( ,2) : ~

(2100) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,11,13,31,61,71,151,211,1051k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,11,13,31,61,71,151,211,1051k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,11,13,31,61,71,151,211,1051k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,11,13,31,61,71,151,211,1051k  ， 
(1) contain infinitely many prime solutions 
 

 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ   and Jiang prime k -tuple 

singular series 

1
2 ( ) 1 ( ) 1

( ) 1 (1 )
( )

k
k

k P

J P
J

P P

  


 


 

     
  [1,2], which can count the number of prime 

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series 

( ) 1
( ) 1 (1 ) k

P

P
H

P P


  

    
   is false [3-17], which cannot count the number of prime numbers[3]. 
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Szemer é di’s theorem does not directly to the 
primes, because it cannot count the number of primes.  

Cram é r’s random model cannot prove any prime 

problems. The probability of 
1/ log N  of being prime 

is false. Assuming that the events “ P  is prime”, 

“ 2P   is prime” and “ 4P   is prime” are 

independent, we conclude that P , 2P  , 4P   are 
simultaneously prime with probability about 

31/ log N
. There are about 

3/ logN N
 primes less 

than N . Letting N    we obtain the prime 
conjecture, which is false. The tool of additive prime 
number theory is basically the Hardy-Littlewood prime 
tuples conjecture, but cannot prove and count any 
prime problems[6]. 

Mathematicians have tried in vain to discover 
some order in the sequence of prime numbers but we 
have every reason to believe that there are some 
mysteries which the human mind will never penetrate. 

Leonhard Euler(1707-1783) 
 

It will be another million years, at least, before 
we understand the primes. 

Paul Erdos(1913-1996) 

 
 

Jiang’s function 1( )nJ   in prime distribution 
 

Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 
Dedicated to the 30-th anniversary of hadronic mechanics 

 
Abstract 

We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
              （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
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1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 

 
Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 

reason to believe that there are some mysteries which the human mind will never penetrate. 
Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
 
Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as    ，            （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 1, , ( )i    . We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 0,1,2,n   . 

（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. 
We have 

(mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                （3） 

where ih
denotes the number of primes iP N

 in i iP n h 
 0,1,2,n   , ( )N  the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 

prime distribution. 

Let 30   and 
(30) 8 

. From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 

0,1,2,n  
          （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many primes 

1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where 
( )P  is called sieve constant and denotes the number of solutions for the following congruence 
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1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using 

( )P
 we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

（8）is called a unite prime formula in prime distribution. Let 1, 0n k  , 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes , 2P P  (300BC). 
From (6) and (7) we have Jiang’s function 

2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 
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Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N    in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a prime 

equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations 
, 2, 6P P P  . 

From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. Since 

2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime equations. 

Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 






 

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N    in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
             . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P
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3( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. Since 

3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
, 

where 
( ) 3( 1)P P  

 if 

1

32 1(mod )
P

P



; 

( ) 0P 
 if 

1

32 1(mod )
P

P


 ; 
( ) 1P P  

 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
 

where ( ) 2( 1)P P    if 1(mod4)P  ; ( ) 2( 3)P P    if 1(mod8)P  ; ( ) 0P   otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 
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3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3, , kP P

 are 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3, , kP P
 

are primes. 
From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
 

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
  

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P   is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n  , 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n   is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n   , 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n  
 is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n   , 

where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n  
 is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n   , 

where 
11 ( ), 3, 4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n  
 is always divisible by 11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n  
 is always divisible by 13. 

6. 
2 16, , , ,P P n P n P n  

, 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n    is always divisible by 17. 

7. 
2 18, , , ,P P n P n P n  

, 

where 
19 ( ), 4,5,6,9,16.17.n b b 
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From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n    is always divisible by 19. 

Example 10. Let n  be an even number. 

1. , , 1,3,5, ,2 1iP P n i k   , 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n  are  primes for any k . 

2. , , 2, 4,6, ,2iP P n i k   . 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is prime 

equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

 

In the same way we can prove 
2

2 3 12P P P 
 which has the same Jiang’s function. 

 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 
primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 
numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
simplest twin primes. They conjecture that the prime 
distribution is randomness [12-25], because they do not 
understand theory of prime numbers. 
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The Hardy-Littlewood prime k-tuple conjecture is false 

 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k -

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture. 
 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P  

, ( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 
1, , 1q p 

.                  （3） 

If ( ) 1P P    then 2 ( ) 0J  
. There exist infinitely many primes P  such that each of iP n

 is prime. 
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If 
( ) 1P P    then 2 ( ) 0J  

. There exist finitely many primes P  such that each of iP n
 is prime. 

2 ( )J 
 is a subset of Euler function 

( ) 
[2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
  （4） 

( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 2, , 2k P P  , twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P    if 2P  ,                （6） 
Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 

  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 

Example 2. Let 3, , 2, 4k P P P   . 
From (3) we have 

(2) 0, (3) 2                       （9） 
From (2) we have 

2 ( ) 0J  
.                        （10） 

It has only a solution 3P  , 2 5P   , 4 7P   . One of 
, 2, 4P P P 

 is always divisible by 3. 

Example 3. Let 
4, ,k P P n 

, where 
2,6,8n 

. 
From (3) we have 

(2) 0, (3) 1, ( ) 3P    
 if 3P  .              （11） 

Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 2,6,8,12n  . 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P        if 5P           （14） 
Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 
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There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have the 
best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 2,6,8,12,14n  . 
From (3) and (2) we have 

2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One of 

P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 

 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 

( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

，  1, ,q P  .             （21） 

From (21) we have 
( )P P 

 and 
( ) 0H k 

. For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 2, , 2k P P  , twin primes theorem 
Frome (21) we have 

( ) 1P                       （22） 
Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 3, , 2, 4k P P P   . 
From (21) we have 

(2) 1, ( ) 2P  
 if 2P                 （25） 

Substituting (25) into (20) we have 
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2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

  （27） 
which is false see example 2. 

Conjecutre 3. Let 4k  , ,P P n , where 2,6,8n  . 
From (21) we have 

(2) 1, (3) 2, ( ) 3P    
 if 3P              （28） 

Substituting (28) into (20) we have 
3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （30） 
Which is false see example 3. 

Conjecture 4. Let 5, ,k P P n 
, where 

2,6,8,12n 
 

From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P        if 5P               （31） 
Substituting (31) into (20) we have 

4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
Substituting (32) into (19) we have asymptotic formula 

 
4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P        if 5P         （34） 
Substituting (34) into (20) we have 

5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 

 

Conclusion. The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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Automorphic Functions And Fermat’s Last Theorem(1) 

 
Chun-Xuan Jiang 
 
P.O.Box 3924,Beijing 100854,China 
jiangchunxuan@sohu.com 
 

Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n    has no integer solutions, all different from 0(i.e., it has only the trivial 

solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an odd prime. 
The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

1
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a n th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 
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iS
 is called the automorphic functions(complex hyperbolic functions) of order n  with 1n   variables [1-7]. 

1

2
( 1)

1

1 ( 1)
[ 2 ( 1) cos( ( 1) )]j

n

BA i j j
i j

j

i j
S e e

n n











    

    （2） 
where i=1,2,…,n; 

1

1

n

A t






 
,   

1

1

( 1) cos
n

j
j

j
B t

n





 



 
,                     

 （3） 

1
1

1

( 1) ( 1) sin
n

j j
j

j
t

n





 







  
,   

1

2

1

2 0

n

j
j

A B





 
 

(2) may be written in the matrix form 
 

1

2

3

2

1 1 0 0

( 1)
1 cos sin sin

2

2 2 ( 1)1
1 cos sin sin

( 1) ( 1) ( 1)
1 cos sin sin

2

n

nS
n n nS

n
S

n n nn

S
n n n

n n n

  

  

  

 
      

   
   
    
   
   
        

  








    


 

1

1

1

1

1 1

2 2

2 cos

2 sin

2exp sin

A

B

B

n n

e

e

e

B





 

 
 
 
 
 
 
 
  



(4) 

where ( 1) / 2n   is an even number. 
From (4) we have its inverse transformation 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n n

B
n n n

n n n

  


  


  

 

 
   
  
  
  

   
  
  
          
  








    


 

1

2

3

n

S

S

S

S

 
 
 
 
 
 
 
 



 (5) 
From (5) we have 

1

n
A

i
i

e S


 
, 

1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
 

1
1

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
,                                 （6） 

In (3) and (6) it  and iS
 have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and proved FLT 
[1-7] Substituting (4) into (5) we prove (5). 
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1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)1sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n nn

B
n n n

n n n

  


  


  

 

 
   
  
  
  

   
  
  
          
  








    


 

1

1

1

1

1 1
2

2 2

1 1 0 0

( 1)
1 cos sin sin

2 2 cos
2 2 ( 1) 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)

1 cos sin sin
2

A

B

B

n n

en

n n n e
n e

n n n

B
n n n

n n n

  


   


  

 

 
   
     
   
   

   
   
   
        
  








    


 

1

1

1

1

1 1

2 2

0 0 0

0 0 0
2 2 cos

1 2 sin0 0 0
2

2exp( )sin( )

0 0 0
2

A

B

B

n n

n

en

e

n e
n

B
n





 

 
   
   
   
   

    
   
   
     
  








    


 

1

1

1

1

1 1

2 2

cos

sin

exp( )sin( )

A

B

B

n n

e

e

e

B





 

 
 
 
   
 
 
  



,                                          （7） 

where 

1
2

1

1 (cos )
2

n

j

j n

n





 
, 

1
2

1

(sin )
2

n

j

j n

n






. 

From (3) we have 
1

2

1

exp( 2 ) 1

n

j
j

A B





 
.                           （8） 

From (6) we have 
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1 2 1 1 1 1 11

2
2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )

( ) ( )
exp( 2 )

( ) ( )

n nn

n

j
j

n n n n n n

S S S S S S

S S S S S S
A B

S S S S S S







 

  

 

 

       

 
,        （9） 

where 

( ) i
i j

j

S
S

t





[7]. 

From (8) and (9) we have the circulant determinant 

1 21

2
2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S

S S S
A B

S S S







  





   


          （10） 

If 
0iS 

, where 
1,2, ,i n 

, then (10) has infinitely many rational solutions. 

Assume 1 0S 
, 2 0S 

, 
0iS 

 where 
3, 4, , . 0ii n S 

 are 2n   indeterminate equations with 

1n   variables. From (6) we have 

1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cosjB j j

e S S S S
n


   

.        （11） 
From (10) and (11) we have the Fermat equation 

1 1
2 2

2 2
1 2 1 2 1 2 1 2

1
1

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j

j
j

j
A B S S S S S S S S

n


 




         
（12） 

Example[1]. Let 15n  . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t             
 

1 1 14 2 13 3 12 4 11

2 3 4
( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

5 6 7
( )cos ( )cos ( )cos

15 15 15
t t t t t t

  
     

, 

2 1 14 2 13 3 12 4 11

2 4 6 8
( )cos ( ) cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

10 12 14
( )cos ( )cos ( )cos

15 15 15
t t t t t t

  
     

, 

3 1 14 2 13 3 12 4 11

3 6 9 12
( )cos ( ) cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

15 18 21
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

4 1 14 2 13 3 12 4 11

4 8 12 16
( )cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

20 24 28
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 
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5 1 14 2 13 3 12 4 11

5 10 15 20
( )cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

25 30 35
( )cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

6 1 14 2 13 3 12 4 11

6 12 18 24
( )cos ( ) cos ( )cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

30 36 42
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

7 1 14 2 13 3 12 4 11

7 14 21 28
( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

35 42 49
( )cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 
7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t


     
.                       (13) 

Form (12) we have the Fermat equation 
7

15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S


     
.                   (14) 

From (13) we have 
5

3 6 5 10exp( 2 2 ) [exp( )]A B B t t   
.                 （15） 

From (11) we have 
5 5

3 6 1 2exp( 2 2 )A B B S S   
.                     (16) 

From (15) and (16) we have the Fermat equation 
5 5 5

3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t     
.                  （17） 

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 
solutions for exponent 5[1]. 

Theorem 1. [1-7]. Let 3n P ,where 3P   is odd prime. From (12) we have the Fermat’s equation 
3 1

3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1
P

P P P P
j

j

A B S S S S




     
.                (18) 

From (3) we have 
1

2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t





  
.                     (19) 

From (11) we have 
1

2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S





  
.                        (20) 

From (19) and (20) we have the Fermat equation 
1

2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t





    
.           （21） 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 
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solutions for 3P   [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

P P Px y z                             （22） 
in the form 

2 1( )( )( ) ( )P Px y x ry x r y x r y z    
                     （23） 

where P  is odd prime, 

2 2
cos sinr i

P P

 
 

. 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 
[8].. 

We consider the Fermat’s equation 
3 3 3P P Px y z                          （24） 

we rewrite (24) 
3 3 3( ) ( ) ( )P P Px y z 

                      (25) 
From (24) we have 

2 3( )( )( )P P P P P P Px y x ry x r y z   
              （26） 

where 

2 2
cos sin

3 3
r i

 
 

 

We assume the divisor of each factor is a P th power. 

Let 
1

x
S

z


, 
2

y
S

z


. From (20) and (26) we have the Fermat’s equation 

2[ exp( )]P P P
P Px y z t t   

                 (27) 
Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 

solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

3 3 3( ) ( ) ( )P P Px y z 
                  (28) 

Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no 

integer solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

4 4 4P P Px y z 
                    (29) 

We rewrite (29) 
4 4 4( ) (( ) ( )P P Px y z 

                （30） 
4 4 4( ) ( ) ( )P P Px y z                   （31） 

 
Fermat proved that (30) has no integer solutions 

for exponent 4 [8]. Therefore we prove that (31) has no 

integer solutions for all prime exponent P  [2,5,7].This 
is the proof that Fermat thought to have had. 
Remark. It suffices to prove FLT for exponent 4. Let 

4n P , where P  is an odd prime. We have the 

Fermat’s equation for exponent 4P  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be n P  , 2n P   and 

4n P  . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be n P  , 2n P   and 

4n P  . Every factor of exponent n  has Fermat’s 
equation [1-7].Using modular elliptic curves Wiles and 
Taylor prove FLT[9,10].This is not the proof that 
Fermat thought to have had. The classical theory of 
automorphic functions, created by Klein and Poincare, 
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was concerned with the study of analytic functions in 
the unit circle that are invariant under a discrete group 
of transformations. Automorphic functions are 
generalization of the trigonometric,hyperbolic,elliptic, 
and certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Automorphic Functions And Fermat’s Last Theorem（2） 
 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n    has no integer solutions, all different from 0(i.e., it has only the trivial 

solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 6P  and P , where P  is an odd prime. 
The proof of FLT must be direct .But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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where J  denotes a 2n th root of unity, 
2 1nJ  , n is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 2n  with 2 1n   variables 

[5,7]. 
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From (2) we have its inverse transformation[5,7] 
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(3) and (4) have the same form. 
From (3) we have 
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From (4) we have 
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From (5) and (6) we have circulant determinant 
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If 
0iS
，where ni 2,...,3,2,1 , then (7) have infinitely many rational solutions. 

Let 1n . From (3) we have 11 tA 
 and 12 tA 

. From (2) we have 
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                 （8） 
we have Pythagorean theorem 
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(9) has infinitely many rational solutions. 

Assume 
0,0,0 21  iSSS

, where ni 2,...,3 . 
0iS

 are )22( n  indeterminate equations with 

)12( n  variables. From (4) we have 
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Example. Let 15n . From (3) and (10) we have Fermat’s equation 

1)()()](2exp[ 310
2

310
1

30
2

30
1

7

1
21  



SSSSDBAA jj
j  （11） 

From (3) we have 
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From (10) we have 
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From (12) and (13) we have Fermat’s equation 

5
5

5

1

5
2

5
1631 )][exp()22exp( j

j

tSSBBA 




       (14) 
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational 

solutions for exponent 5. 

Theorem. Let Pn 3  where P  is an odd prime. From (7) and (8) we have Fermat’s equation 
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From (10) we have 
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From (16) and (17) we have Fermat’s equation 
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Euler prove that (15) has no rational solutions for 

exponent 3[8]. Therefore we prove that (18) has no 

rational solutions for prime exponent P [5,7]. 
 

Remark. It suffices to prove FLT for exponent 4. Let 

Pn 4 , where P  is an odd prime. We have the 

Fermat’s equation for exponent P4  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has 
Fermat’s equation [1-7]. Using modular elliptic curves 
Wiles and Taylor prove FLT [9, 10]. This is not the 
proof that Fermat thought to have had. The classical 
theory of automorphic functions, created by Klein and 
Poincare, was concerned with the study of analytic 
functions in the unit circle that are invariant under a 
discrete group of transformation. Automorphic 
functions are the generalization of trigonometric, 
hyperbolic, elliptic, and certain other functions of 
elementary analysis. The complex trigonometric 
functions and complex hyperbolic functions have a 
wide application in mathematics and physics. 
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Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 4P  and P , where P  is an odd prime. 
We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of  FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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where J  denotes a 4m th root of unity, 
4 1mJ  , m=1,2,3,…, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 4m  with 4 1m   variables 

[2,5,7]. 
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From (2) we have its inverse transformation[5,7] 
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(3) and (4) have the same form. 
From (3) we have 
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From (4) we have 
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From (5) and (6) we have circulant determinant 
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Assume 1 20, 0, 0iS S S  
, where 3,..., 4 .i m  

0iS 
 are (4 2)m   indeterminate equations with 

(4 1)m 
 variables. From (4) we have 
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Example [2]. Let 4 12m  . From (3) we have 
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From (8) and (9) we have 
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From (11) and (12) we have Fermat’s equation 
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Fermat proved that (10) has no rational solutions for exponent 4 [8]. 
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2] 

Theorem . Let 4 4m P , where P  is an odd prime, 
( 1) / 2P 

 is an even number. 
From (3) and (8) we have 
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From (15) and (16) we have Fermat’s equation 
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Fermat proved that (14) has no rational solutions for exponent 4 [8]. Therefor we prove that (17) has no 

rational solutions for prime exponent P . 
 

Remark. Mathematicians said Fermat could not 
possibly had a proof, because they do not understand 

FLT.In complex hyperbolic functions let exponent n  

be n P  ，  2n P   and 4n P  . Every 

factor of exponent n  has Fermat’s equation [1-7]. 
Using modular elliptic curves Wiles and Taylor prove 
FLT [9,10]. This is not the proof that Fermat thought to 
have had. The classical theory of automorphic 
functions,created by Klein and Poincare, was 
concerned with the study of analytic functions in the 
unit circle that are invariant under a discrete group of 
transformation. Automorphic functions are the 
generalization of trigonometric, hyperbolic elliptic, and 
certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Fermat's Last Theorem 
Fermat's last Theorem: There is no positive 

integers x, y, z, and n > 2 such that x n+ yn = zn 
was broadcast on 15 January 1996 

 
At the age of ten, browsing through his public 

library, Andrew Wiles stumbled across the world's 
greatest mathematical puzzle. Fermat's Last Theorem 
had baffled mathematicians for over 300 years. But 
from that day, little Andrew dreamed of solving it. 
Tonight's HORIZON tells the story of his obsession, 
and how, thirty years later, he gave up everything to 
achieve his childhood dream. 

Deep in our classroom memories lies the enduring 
notion that "the square of the hypotenuse is equal to the 
sum of the squares of the other two sides": Pythagoras's 
Theorem for right-angled triangles. Written down, it is 
also the simplest of mathematical equations: x 2+ y2 = 
z2 

In 1637, a French mathematician, Pierre de 
Fermat said that this equation could not be true for x3 + 
y3 = z3 or for any equation xn + yn = zn where n is 
greater than 2. Tantalisingly, he wrote on his Greek 
text: "I have discovered a truly marvellous proof, 
which this margin is too narrow to contain." No one 
has found the proof, and for 350 years attempts to 
prove "F.L.T." attracted huge prizes, mistaken and 
eccentric claims, but met with failure. 

Simon Singh and John Lynch's film tells the 
enthralling and emotional story of Andrew Wiles. A 
quiet English mathematician, he was drawn into maths 
by Fermat's puzzle, but at Cambridge in the '70s, FLT 
was considered a joke, so he set it aside. Then, in 1986, 
an extraordinary idea linked this irritating problem with 
one of the most profound ideas of modern mathematics: 
the Taniyama-Shimura Conjecture, named after a 
young Japanese mathematician who tragically 
committed suicide. The link meant that if Taniyama 
was true then so must be FLT. When he heard, Wiles 
went after his childhood dream again. "I knew that 
the course of my life was changing." For seven years, 
he worked in his attic study at Princeton, telling no one 
but his family. "My wife has only known me while I 
was working on Fermat", says Andrew. In June 1993 
he reached his goal. At a three-day lecture at 
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Cambridge, he outlined a proof of Taniyama - and with 
it Fermat's Last Theorem. Wiles' retiring life-style was 
shattered. Mathematics hit the front pages of the 
world's press. 

Then disaster struck. His colleague, Dr Nick Katz, 
made a tiny request for clarification. It turned into a 
gaping hole in the proof. As Andrew struggled to repair 
the damage, pressure mounted for him to release the 
manuscript - to give up his dream. So Andrew Wiles 
retired back to his attic. He shut out everything, but 

Fermat. 
A year later, at the point of defeat, he had a 

revelation. "It was the most important moment in 
my working life. Nothing I ever do again will be the 
same." The very flaw was the key to a strategy he had 
abandoned years before. In an instant Fermat was 
proved; a life's ambition achieved; the greatest puzzle 
of maths was no more. 

 

 
PROF. ANDREW WILES: 

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark mansion. One 
goes into the first room and it's dark, completely dark, one stumbles around bumping into the furniture and then 
gradually you learn where each piece of furniture is, and finally after six months or so you find the light switch, you 
turn it on suddenly it's all illuminated, you can see exactly where you were. 

At the beginning of September I was sitting here at this desk when suddenly, totally unexpectedly, I had this 
incredible revelation. It was the most, the most important moment of my working life. Nothing I ever do again will... 
I'm sorry. 
NARRATOR: 

This is the story of one man's obsession with the world's greatest mathematical problem. For seven years 
Professor Andrew Wiles worked in complete secrecy, creating the calculation of the century. It was a calculation 
which brought him fame, and regret. 
ANDREW WILES: 

So I came to this. I was a 10-year-old and one day I happened to be looking in my local public library and I 
found a book on math and it, it told a bit about the history of this problem that someone had resolved this problem 
300 years ago, but no-one had ever seen the proof, no-one knew if there was a proof, and people ever since have 
looked for the proof and here was a problem that I, a 10-year-old, could understand, but none of the great 
mathematicians in the past had been able to resolve, and from that moment of course I just, just tried to solve it 
myself. It was such a challenge, such a beautiful problem. 
This problem was Fermat's last theorem. 
NARRATOR: 

Pierre de Fermat was a 17th-century French mathematician who made some of the greatest breakthroughs in 
the history of numbers. His inspiration came from studying the Arithmetica, that Ancient Greek text. 
PROF. JOHN CONWAY: 

Fermat owned a copy of this book, which is a book about numbers with lots of problems, which presumably 
Fermat tried to solve. He studied it, he, he wrote notes in the margins. 
NARRATOR: 

Fermat's original notes were lost, but they can still be read in a book published by his son. It was one of these 
notes that was Fermat's greatest legacy. 
JOHN CONWAY: 

And this is the fantastic observation of Master Pierre de Fermat which caused all the trouble. "Cubum autem in 
duos cubos" 
NARRATOR: 

This tiny note is the world's hardest mathematical problem. It's been unsolved for centuries, yet it begins with 
an equation so simple that children know it off by heart. 
CHILDREN: 

The square of the hypotenuse is equal to the sum of the squares of the other two sides. 
JOHN CONWAY: 

Yes well that's Pythagoras's theorem isn't it, that's what we all did at school. So Pythagoras's theorem, the 
clever thing about it is that it tells us when three numbers are the sides of a right-angle triangle. That happens just 
when x squared plus y squared equals z squared. 
ANDREW WILES: 

X squared plus y squared equals zee squared, and you can ask: well what are the whole numbers solutions of 
this equation? And you quickly find there's a solution 3 squared plus 4 squared equals 5 squared. Another one is 5 
squared plus 12 squared is 13 squared, and you go on looking and you find more and more. So then a natural 
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question is, the question Fermat raised: supposing you change from squares, supposing you replace the two by three, 
by four, by five, by six, by any whole number 'n', and Fermat said simply that you'll never find any solutions, 
however, however far you look you'll never find a solution. 
NARRATOR: 

You will never find numbers that fit this equation, if n is greater than 2. That's what Fermat said, and what's 
more, he said he could prove it. In a moment of brilliance, he scribbled the following mysterious note. 
JOHN CONWAY: 

Written in Latin, he says he has a truly wonderful proof "Demonstrationem mirabilem" of this fact, and then 
the last words are: "Hanc marginis exigiutas non caperet" - this margin is too small to contain this. 
NARRATOR: 

So Fermat said he had a proof, but he never said what it was. 
JOHN CONWAY: 

Fermat made lots of marginal notes. People took them as challenges and over the centuries every single one of 
them has been disposed of, and the last one to be disposed of is this one. That's why it's called the last theorem. 
NARRATOR: 

Rediscovering Fermat's proof became the ultimate challenge, a challenge which would baffle mathematicians 
for the next 300 years. 
JOHN CONWAY: 

Gauss, the greatest mathematician in the world... 
BARRY MAZUR: 

Oh yes, Galois... 
JOHN COATES: 

Kummer of course... 
KEN RIBET: 

Well in the 18th-century Euler didn't prove it. 
JOHN CONWAY: 

Well you know there's only been the one woman really... 
KEN RIBET: 

Sophie Germain 
BARRY MAZUR: 

Oh there are millions, there are lots of people 
PETER SARNAK: 

But nobody had any idea where to start. 
ANDREW WILES: 

Well mathematicians just love a challenge and this problem, this particular problem just looked so simple, it 
just looked as if it had to have a solution, and of course it's very special because Fermat said he had a solution. 
NARRATOR: 

Mathematicians had to prove that no numbers fitted this equation but with the advent of computers, couldn't 
they check each number one by one and show that none of them fitted? 
JOHN CONWAY: 

Well how many numbers are there to beat that with? You've got to do it for infinitely many numbers. So after 
you've done it for one, how much closer have you got? Well there's still infinitely many left. After you've done it for 
1,000 numbers, how many, how much closer have you got? Well there's still infinitely many left. After you've done 
a few million, there's still infinitely many left. In fact, you haven't done very many have you? 
NARRATOR: 

A computer can never check every number. Instead, what's needed is a mathematical proof. 
PETER SARNAK: 

A mathematician is not happy until the proof is complete and considered complete by the standards of 
mathematics. 
NICK KATZ: 

In mathematics there's the concept of proving something, of knowing it with absolute certainty. 
PETER SARNAK: 

Which, well it's called rigorous proof. 
KEN RIBET: 

Well rigorous proof is a series of arguments... 
PETER SARNAK: 
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...based on logical deductions. 
KEN RIBET: 

...which just builds one upon another. 
PETER SARNAK: 

Step by step. 
KEN RIBET: 

Until you get to... 
PETER SARNAK: 

A complete proof. 
NICK KATZ: 

That's what mathematics is about. 
NARRATOR: 

A proof is a sort of reason. It explains why no numbers fit the equation without haaving to check every number. 
After centuries of failing to find a proof, mathematicians began to abandon Fermat in favour of more serious maths. 

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles was just beginning his career as a 
mathematician. He went to Cambridge as a research student under the supervision of Professor John Coates. 
JOHN COATES: 

I've been very fortunate to have Andrew as a student, and even as a research student he, he was a wonderful 
person to work with. He had very deep ideas then and it, it was always clear he was a mathematician who would do 
great things. 
NARRATOR: 

But not with Fermat. Everyone thought Fermat's last theorem was impossible, so Professor Coates encouraged 
Andrew to forget his childhood dream and work on more mainstream maths. 
ANDREW WILES: 

The problem with working on Fermat is that you could spend years getting nothing so when I went to 
Cambridge my advisor, John Coates, was working on Iwasawa theory and elliptic curves and I started working with 
him. 
NARRATOR: 

Elliptic curves were the in thing to study, but perversely, elliptic curves are neither ellipses nor curves. 
BARRY MAZUR: 

You may never have heard of elliptic curves, but they're extremely important. 
JOHN CONWAY: 

OK, so what's an elliptic curve? 
BARRY MAZUR: 

Elliptic curves - they're not ellipses, they're cubic curves whose solution have a shape that looks like a 
doughnut. 
PETER SARNAK: 

It looks so simple yet the complexity, especially arithmetic complexity, is immense. 
NARRATOR: 

Every point on the doughnut is the solution to an equation. Andrew Wiles now studied these elliptic equations 
and set aside his dream. What he didn't realise was that on the other side of the world elliptic curves and Fermat's 
last theorem were becoming inextricably linked. 
GORO SHIMURA: 

I entered the University of Tokyo in 1949 and that was four years after the War, but almost all professors were 
tired and the lectures were not inspiring. 
NARRATOR: 

Goro Shimura and his fellow students had to rely on each other for inspiration. In particular, he formed a 
remarkable partnership with a young man by the name of Utaka Taniyama. 
GORO SHIMURA: 

That was when I became very close to Taniyama. Taniyama was not a very careful person as a mathematician. 
He made a lot of mistakes, but he, he made mistakes in a good direction and so eventually he got right answers and I 
tried to imitate him, but I found out that it is very difficult to make good mistakes. 
NARRATOR: 

Together, Taniyama and Shimura worked on the complex mathematics of modular functions. 
NICK KATZ: 

I really can't explain what a modular function is in one sentence. I can try and give you a few sentences to 
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explain it. 
PETER SARNAK: 

LAUGHS 
NICK KATZ: 

I really can't put it in one sentence. 
PETER SARNAK: 

Oh it's impossible. 
ANDREW WILES: 

There's a saying attributed to Eichler that there are five fundamental operations of arithmetic: addition, 
subtraction, multiplication, division and modular forms. 
BARRY MAZUR: 

Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many 
internal symmetries that their mere existence seem like accidents, but they do exist. 
NARRATOR: 

This image is merely a shadow of a modular form. To see one properly your TV screen would have to be 
stretched into something called hyperbolic space. Bizarre modular forms seem to have nothing whatsoever to do 
with the humdrum world of elliptic curves. But what Taniyama and Shimura suggested shocked everyone. 
GORO SHIMURA: 

In 1955 there was an international symposium and Taniyama posed two or three problems. 
NARRATOR: 

The problems posed by Taniyama led to the extraordinary claim that every elliptic curve was really a modular 
form in disguise. It became known as the Taniyama-Shimura conjecture. 
JOHN CONWAY: 

The Taniyama-Shimura conjecture says, it says that every rational elliptic curve is modular and that's so hard to 
explain. 
BARRY MAZUR: 

So let me explain. Over here you have the elliptic world the elliptic curve, these doughnuts, and over here you 
have the modular world, modular forms with their many, many symmetries. The Shirmura-Taniyama conjecture 
makes a bridge between these two worlds. These worlds live on different planets. 

It's a bridge, it's more than a bridge, it's really a dictionary, a dictionary where questions, intuitions, insights, 
theorems in the one world get translated to questions, intuitions in the other world. 
KEN RIBET: 

I think that when Shirmura and Taniyama first started talking about the relationship between elliptic curves and 
modular forms people were very incredulous. I wasn't studying mathematics yet. By the time I was a graduate 
student in 1969 or 1970 people were coming to believe the conjecture. 
NARRATOR: 

In fact, Taniyama-Shimura became a foundation for other theories which all came to depend on it. But 
Taniyama-Shimura was only a conjecture, an unproven idea, and until it could be proved, all the maths which relied 
on it was under threat. 
ANDREW WILES: 

Built more and more conjectures stretched further and further into the future but they would all be completely 
ridiculous if Taniyama-Shimura was not true. 
NARRATOR: 

Proving the conjecture became crucial, but tragically, the man whose idea inspired it didn't live to see the 
enormous impact of his work. In 1958, Taniyama committed suicide. 
GORO SHIMURA: 

I was very much puzzled. Puzzlement may be the best word. Of course I was sad that, see it was so sudden and 
I was unable to make sense out of this. 
NARRATOR: 

Taniyama-Shimura went on to become one of the great unproven conjectures. But what did it have to do with 
Fermat's last theorem? 
ANDREW WILES: 

At that time no-one had any idea that Taniyama-Shimura could have anything to do with Fermat. Of course in 
the 80s that all changed completely. 
NARRATOR: 

Taniyama-Shimura says: every elliptic curve is modular and Fermat says: no numbers fit this equation. What 
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was the connection? 
KEN RIBET: 

Well, on the face of it the Shimura-Taniyama conjecture which is about elliptic curves, and Fermat's last 
theorem have nothing to do with each other because there's no connection between Fermat and elliptic curves. But in 
1985 Gerhard Frey had this amazing idea. 
NARRATOR: 

Frey, a German mathematician, considered the unthinkable: what would happen if Fermat was wrong and there 
was a solution to this equation after all? 
PETER SARNAK: 

Frey showed how starting with a fictitious solution to Fermat's last equation if such a horrible, beast existed, he 
could make an elliptic curve with some very weird properties. 
KEN RIBET: 

That elliptic curve seems to be not modular, but Shimura-Taniyama says that every elliptic curve is modular. 
NARRATOR: 

So if there is a solution to this equation it creates such a weird elliptic curve it defies Taniyama-Shimura. 
KEN RIBET: 

So in other words, if Fermat is false, so is Shimura-Taniyama, or said differently, if Shimura-Taniyama is 
correct, so is Fermat's last theorem. 
NARRATOR: 

Fermat and Taniyama-Shimura were now linked, apart from just one thing. 
KEN RIBET: 

The problem is that Frey didn't really prove that his elliptic curve was not modular. He gave a plausibility 
argument which he hoped could be filled in by experts, and then the experts started working on it. 
NARRATOR: 

In theory, you could prove Fermat by proving Taniyama, but only if Frey was right. Frey's idea became known 
as the epsilon conjecture and everyone tried to check it. One year later, in San Francisco, there was a breakthrough. 
KEN RIBET: 

I saw Barry Mazur on the campus and I said let's go for a cup of coffee and we sat down for cappuccinos at this 

caf頡 nd I looked at Barry and I said you know, I'm trying to generalise what I've done so that we can prove the full 
strength of Serre's epsillon conjecture and Barry looked at me and said well you've done it already, all you have to 
do is add on some extra gamma zero of m structure and run through your argument and it still works, and that gives 
everything you need, and this had never occurred to me as simple as it sounds. I looked at Barry, I looked to my 
cappuccino, I looked back at Barry and said my God, you're absolutely right. 
BARRY MAZUR: 

Ken's idea was brilliant. 
ANDREW WILES: 

I was at a friend's house sipping iced tea early in the evening and he just mentioned casually in the middle of a 
conversation: by the way, do you hear that Ken has proved the epsilon conjecture? And I was just electrified. I, I 
knew that moment the course of my life was changing because this meant that to prove Fermat's last theorem I just 
had to prove Taniyama-Shimura conjecture. From that moment that was what I was working on. I just knew I would 
go home and work on the Taniyama-Shimura conjecture. 
NARRATOR: 

Andrew abandoned all his other research. He cut himself off from the rest of the world and for the next seven 
years he concentrated solely on his childhood passion. 
ANDREW WILES: 

I never use a computer. I sometimes might scribble, I do doodles I start trying to, to find patterns really, so I'm 
doing calculations which try to explain some little piece of mathematics and I'm trying to fit it in with some previous 
broad conceptual understanding of some branch of mathematics. Sometimes that'll involve going and looking up in a 
book to see how it's done there, sometimes it's a question of modifying things a bit, sometimes doing a little extra 
calculation, and sometimes you realise that nothing that's ever been done before is any use at all, and you, you just 
have to find something completely new and it's a mystery where it comes from. 
JOHN COATES: 

I must confess I did not think that the Shimura-Taniyama conjecture was accessible to proof at present. I 
thought I probably wouldn't see a proof in my lifetime. 
KEN RIBET: 

I was one of the vast majority of people who believe that the Shimura-Taniyama conjecture was just 
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completely inaccessible, and I didn't bother to prove it, even think about trying to prove it. Andrew Wiles is 
probably one of the few people on earth who had the audacity to dream that you can actually go and prove this 
conjecture. 
ANDREW WILES: 

In this case certainly for the first several years I had no fear of competition. I simply didn't think I or any one 
else had any real idea how to do it. But I realised after a while that talking to people casually about Fermat was, was 
impossible because it just generates too much interest and you can't really focus yourself for years unless you have 
this kind of undivided concentration which too many spectators will have destroyed. 
NARRATOR: 

Andrew decided that he would work in secrecy and isolation. 
PETER SARNAK: 

I often wondered myself what he was working on. 
NICK KATZ: 

Didn't have an inkling. 
JOHN CONWAY: 

No, I suspected nothing. 
KEN RIBET: 

This is probably the only case I know where someone worked for such a long time without divulging what he 
was doing, without talking about the progress he had made. It's just unprecedented. 
NARRATOR: 

Andrew was embarking on one of the most complex calculations in history. For the first two years, he did 
nothing but immerse himself in the problem, trying to find a strategy which might work. 
ANDREW WILES: 

So it was now known that Taniyama-Shimura implied Fermat's last theorem. What does Taniyama-Shimura 
say? It, it says that all elliptic curves should be modular. Well this was an old problem been around for 20 years and 
lots of people would try to solve it. 
KEN RIBET: 

Now one way of looking at it is that you have all elliptic curves and then you have the modular elliptic curves 
and you want to prove that there are the same number of each. Now of course you're talking about infinite sets, so 
you can't just can't count them per say, but you can divide them into packets and you could try to count each packet 
and see how things go, and this proves to be a very attractive idea for about 30 seconds, but you can't really get 
much further than that, and the big question on the subject was how you could possibly count, and in effect, Wiles 
introduced the correct technique. 
NARRATOR: 

Andrew's trick was to transform the elliptic curves into something called Galois representations which would 
make counting easier. Now it was a question of comparing modular forms with Galois representations, not elliptic 
curves. 
ANDREW WILES: 

Now you might ask and it's an obvious question, why can't you do this with elliptic curves and modular forms, 
why couldn't you count elliptic curves, count modular forms, show they're the same number? Well, the answer is 
people tried and they never found a way of counting, and this was why this is the key breakthrough, that I found a 
way to count not the original problem, but the modified problem. I found a way to count modular forms and Galois 
representations. 
NARRATOR: 

This was only the first step, and already it had taken three years of Andrew's life. 
ANDREW WILES: 

My wife's only known me while I've been working on Fermat. I told her a few days after we got married. I 
decided that I really only had time for my problem and my family and when I was concentrating very hard and I 
found that with young children that's the best possible way to relax. When you're talking to young children they 
simply aren't interested in Fermat, at least at this age, they want to hear a children's story and they're not going to let 
you do anything else. 

So I'd found this wonderful counting mechanism and I started thinking about this concrete problem in terms of 
Iwasawa theory. Iwasawa theory was the subject I'd studied as a graduate student and in fact with my advisor, John 
Coates, I'd used it to analyse elliptic curves. 
NARRATOR: 

Andrew hopes that Iwasawa theory would complete his counting strategy. 
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ANDREW WILES: 
Now I tried to use Iwasawa theory in this context, but I ran into trouble. I seemed to be up against a wall. I just 

didn't seem to be able to get past it. Well sometimes when I can't see what to do next I often come here by the lake. 
Walking has a very good effect in that you're in this state of concentration, but at the same time you're relaxing, 
you're allowing the subconscious to work on you. 
NARRATOR: 

Iwasawa theory was supposed to help create something called a class number formula, but several months 
passed and the class number formula remained out of reach. 
ANDREW WILES: 

So at the end of the summer of '91 I was at a conference. John Coates told me about a wonderful new paper of 
Matthias Flach, a student of his, in which he had tackled a class number formula, in fact exactly the class number 
formula I needed, so Flach using ideas of Kolyvagin had made a very significant first step in actually producing the 
class number formula. So at that point I thought this is just what I need, this is tailor-made for the problem. I put 
aside completely the old approach I'd been trying and I devoted myself day and night to extending his result. 
NARRATOR: 

Andrew was almost there, but this breakthrough was risky and complicated. After six years of secrecy, he 
needed to confide in someone. 
NICK KATZ: 

January of 1993 Andrew came up to me one day at tea, asked me if I could come up to his office, there was 
something he wanted to talk to me about. I had no idea what, what this could be. Went up to his office. He closed 
the door, he said he thought he would be able to prove Taniyama-Shimura. I was just amazed, this was fantastic. 
ANDREW WILES: 

It involved a kind of mathematics that Nick Katz is an expert in. 
NICK KATZ: 

I think another reason he asked me was that he was sure I would not tell other people, I would keep my mouth 
shut, which I did. 
JOHN CONWAY: 

Andrew Wiles and Nick Katz had been spending rather a lot of time huddled over a coffee table at the far end 
of the common room working on some problem or other. We never knew what it was. 
NARRATOR: 

In order not to arouse any more suspicion, Andrew decided to check his proof by disguising it in a course of 
lectures which Nick Katz could then attend. 
ANDREW WILES: 

Well I explained at the beginning of the course that Flach had written this beautiful paper and I wanted to try to 
extend it to prove the full class number formula. The only thing I didn't explain was that proving the class number 
formula was most of the way to Fermat's last theorem. 
NICK KATZ: 

So this course was announced. It said calculations on elliptic curves, which could mean anything. Didn't 
mention Fermat, didn't mention Taniyama-Shimura, there was no way in the world anyone could have guessed that 
it was about that, if you didn't already know. None of the graduate students knew and in a few weeks they just 
drifted off because it's impossible to follow stuff if you don't know what it's for, pretty much. It's pretty hard even if 
you do know what's it for, but after a few weeks I was the only guy in the audience. 
NARRATOR: 

The lectures revealed no errors and still none of his colleagues suspected why Andrew was being so secretive. 
PETER SARNAK: 

Maybe he's run out of ideas. That's why he's quiet, you never know why they're quiet. 
NARRATOR: 

The proof was still missing a vital ingredient, but Andrew now felt confident. It was time to tell one more 
person. 
ANDREW WILES: 

So I called up Peter and asked him if I could come round and talk to him about something. 
PETER SARNAK: 

I got a phone call from Andrew saying that he had something very important he wanted to chat to me about, 
and sure enough he had some very exciting news. 
ANDREW WILES: 

Said I, I think you better sit down for this. He sat down. I said I think I'm about to prove Fermat's last theorem. 
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PETER SARNAK: 
I was flabbergasted, excited, disturbed. I mean I remember that night finding it quite difficult to sleep. 

ANDREW WILES: 
But there was still a problem. Late in the spring of '93 I was in this very awkward position and I thought I'd got 

most of the curves to be modular, so that was nearly enough to be content to have Fermat's last theorem, but there 
was this, these few families of elliptic curves that had escaped the net and I was sitting here at my desk in May of 
'93 still wondering about this problem and I was casually glancing at a paper of Barry Mazur's and there was just 
one sentence which made a reference to actually what's a 19th-century construction and I just instantly realised that 
there was a trick that I could use, that I could switch from the families of elliptic curves I'd been using, I'd been 
studying them using the prime three, I could switch and study them using the prime five. It looked more complicated, 
but I could switch from these awkward curves that I couldn't prove were modular to a different set of curves which 
I'd already proved were modular and use that information to just go that one last step and I just kept working out the 
details and time went by and I forgot to go down to lunch and it got to about teatime and I went down and Nada was 
very surprised that I'd arrived so late and then, then she, I told her that I, I believed I'd solved Fermat's last theorem. 

I was convinced that I had Fermat in my hands and there was a conference in Cambridge organised by my 
advisor, John Coates. I thought that would be a wonderful place. It's my old home town, I'd been a graduate student 
there, be a wonderful place to talk about it if I could get it in good shape. 
JOHN COATES: 

The name of the lectures that he announced was simply 'Elliptic curves and modular forms' There was no 
mention of Fermat's last theorem. 
KEN RIBET: 

Well I was at this conference on L functions and elliptic curves and it was kind of a standard conference and all 
of the people were there, didn't seem to be anything out of the ordinary, until people started telling me that they'd 
been hearing weird rumours about Andrew Wiles's proposed series of lectures. 

I started talking to people and I got more and more precise information. I've no idea how it was spread. 
PETER SARNAK: 

Not from me, not from me. 
JOHN CONWAY: 

Whenever any piece of mathematical news had been in the air, Peter would say oh that's nothing, wait until you 
hear the big news, there's something big going to break. 
PETER SARNAK: 

Maybe some hints, yeah. 
ANDREW WILES: 

People would ask me leading up to my lectures what exactly I was going to say and I said well, come to my 
lecture and see. 
KEN RIBET: 

It's a very charged atmosphere a lot of the major figures of arithmetical, algebraic geometry were there. 
Richard Taylor and John Coates, Barry Mazur. 
BARRY MAZUR: 

Well I'd never seen a lecture series in mathematics like that before. What was unique about those lectures were 
the glorious ideas how many new ideas were presented, and the constancy of his dramatic build-up that was 
suspenseful until the end. 
KEN RIBET: 

There was this marvellous moment when we were coming close to a proof of Fermat's last theorem, the tension 
had built up and there was only one possible punchline. 
ANDREW WILES: 

So after I'd explained the 3/5 switch on the blackboard, I then just wrote up a statement of Fermat's last 
theorem, said I'd proved it, said I think I'll stop there. 
JOHN COATES: 

The next day what was totally unexpected was that we were deluged by enquiries from newspapers, journalists 
from all around the world. 
ANDREW WILES: 

It was a wonderful feeling after seven years to have really solved my problem, I've finally done it. Only later 
did it come out that there was a, a problem at the end. 
NICK KATZ: 

Now it was time for it to be refereed which is to say for people appointed by the journal to go through and 
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make sure that the thing was really correct. 
So for, for two months, July and August, I literally did nothing but go through this manuscript, line by line and 

what, what this meant concretely was that essentially every day, sometimes twice a day, I would E-mail Andrew 
with a question: I don't understand what you say on this page on this line. It seems to be wrong or I just don't 
understand. 
ANDREW WILES: 

So Nick was sending me E-mails and at the end of the summer he sent one that seemed innocent at first. I tried 
to resolve it. 
NICK KATZ: 

It's a little bit complicated so he sends me a fax, but the fax doesn't seem to answer the question, so I E-mail 
him back and I get another fax which I'm still not satisfied with, and this in fact turned into the error that turned out 
to be a fundamental error and that we had completely missed when he was lecturing in the spring. 
ANDREW WILES: 

That's where the problem was in the method of Flach and Kolyvagin that I'd extended, so once I realised that at 
the end of September, that there was really a, a problem with the way I'd made the construction I spent the fall trying 
to think what kind of modifications could be made to the construction. There, are lots of simple and rather natural 
modifications that any one of which might work. 
PETER SARNAK: 

And every time he would try and fix it in one corner it would sort of some other difficulty would add up in 
another corner. It was like he was trying to put a carpet in a room where the carpet had more size than the room, but 
he could put it in in any corner and then when he ran to the other corner it would pop up in this corner and whether 
you could not put the carpet in the room was not something that he was able to decide. 
NICK KATZ: 

I think he externally appeared normal but at this point he was keeping a secret from the world and I think he 
must have been in fact pretty uncomfortable about it. 
JOHN CONWAY: 

Well you know we were behaving a little bit like Kremlinologists. Nobody actually liked to come out and ask 
him how he's getting on with, with the proof, so somebody would say I saw Andrew this morning. Did he smile? 
Well yes, but he didn't look too happy. 
ANDREW WILES: 

The first seven years I'd worked on this problem. I loved every minute of it. However hard it had been there'd 
been, there'd been setbacks often, there'd been things that had seemed insurmountable but it was a kind of private 
and very personal battle I was engaged in. 

And then after there was a problem with it doing mathematics in that kind of rather over-exposed way is 
certainly not my style and I have no wish to repeat it. 
NARRATOR: 

Other mathematicians, including his former student Richard Taylor, tried to help fix the mistake. But after a 
year of failure, Andrew was ready to abandon his flawed proof. 
ANDREW WILES: 

In September, I decided to go back and look one more time at the original structure of Flach and Kolyvagin to 
try and pinpoint exactly why it wasn't working, try and formulate it precisely. One can never really do that in 
mathematics but I just wanted to set my mind at rest that it really couldn't be made to work. And I was sitting here at 
this desk. It was a Monday morning, September 19th and I was trying convincing myself that it didn't work, just 
seeing exactly what the problem was when suddenly, totally unexpectedly, I had this incredible revelation. I, I 
realised what was holding me up was exactly what would resolve the problem I'd had in my Iwasawa theory attempt 
three years earlier was, it was the most, the most important moment of my working life. It was so indescribably 
beautiful, it was so simple and so elegant and I just stared in disbelief for twenty minutes. Then during the day I 
walked round the department, I'd keep coming back to my desk and looking to see it was still there, it was still there. 
Almost what seemed to be stopping the method of Flach and Kolyvagin was exactly what would make horizontally 
Iwasawa theory. My original approach to the problem from three years before would make exactly that work, so out 
of the ashes seemed to rise the true answer to the problem. So the first night I went back and slept on it, I checked 
through it again the next morning and by 11 o'clock I satisfied and I went down, told my wife I've got it, I think I've 
got it, I've found it, and it was so unexpected, she, I think she thought I was talking about a children's toy or 
something and said got what? and I said I've fixed my proof, I, I've got it. 
JOHN COATES: 

I think it will always stand as, as one of the high achievements of number theory. 
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BARRY MAZUR: 
It was magnificent. 

JOHN CONWAY: 
It's not every day that you hear the proof of the century. 

GORO SHIMURA: 
Well my first reaction was: I told you so. 

NARRATOR: 
The Taniyama-Shimura conjecture is no longer a conjecture, and as a result Fermat's last theorem has been 

proved. But is Andrew's proof the same as Fermat's? 
ANDREW WILES: 

Fermat couldn't possibly have had this proof. It's a 20th-century proof. There's no way this could have been 
done before the 20th-century. 
JOHN CONWAY: 

I'm relieved that this result is now settled. But I'm sad in some ways because Fermat's last theorem has been 
responsible for so much. What will we find to take its place? 
ANDREW WILES: 

There's no other problem that will mean the same to me. I had this very rare privilege of being able to pursue in 
my adult life what had been my childhood dream. I know it's a rare privilege but if, if one can do this it's more 
rewarding than anything I could imagine. 
BARRY MAZUR: 

One of the great things about this work is it embraces the ideas of so many mathematicians. I've made a partial 
list: Klein, Fricke, Hurwitz, Hecke, Dirichlet, Dedekind... 
KEN RIBET: 

The proof by Langlands and Tunnell... 
JOHN COATES: 

Deligne, Rapoport, Katz... 
NICK KATZ: 

Mazur's idea of using the deformation theory of Galois representations... 
BARRY MAZUR: 

Igusa, Eichler, Shimura, Taniyama... 
PETER SARNACK: 

Frey's reduction... 
NICK KATZ: 

The list goes on and on... 
BARRY MAZUR: 

Bloch, Kato, Selmer, Frey, Fermat. 
 
 
 

Riemann Paper (1859) Is False 
 
Chun-Xuan. Jiang 
 
P. O. Box3924, Beijing 100854, China 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

In 1859 Riemann defined the zeta function 
( )s . From Gamma function he derived the zeta function with 

Gamma function ( )s . ( )s  and ( )s are the two different functions. It is false that ( )s  replaces ( )s . 

After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 
( )nJ 

 can 
replace RH. 

 
AMS  mathematics subject classification: Primary 11M26. 
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In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



    
 ,       （1） 

where , 1s ti i    ，  and t  are real, P ranges over all primes. RZF is the function of the complex 

variable s  in 
0, 0t  

，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti   .                   （2） 
In 1998 Jiang proved [3] 

( ) 0s 
,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 
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For 0  . On setting 
2t n x , we observe that 
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Hence, with some care on exchanging summation and integration, for 1  , 
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where ( )s  is called Riemann zeta function with gamma function rather than 
( )s

, 

2

( ) : n x

n

x e 






 
,                （7） 

is the Jacobi theta function. The functional equation for ( )x  is 
1

12 ( ) ( ),x x x  
                  （8） 

and is valid for 0x  . 

Finally, using the functional equation of 
( )x

, we obtain 
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   （9） 
From (9) we obtain the functional equation 

1

2 2
1

( ) (1 )
2 2

s ss s
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    .              （10） 

The function ( )s  satisfies the following 
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1. ( )s  has no zero for 1  ; 

2. The only pole of ( )s  is at 1s  ; it has residue 1 and is simple; 

3. ( )s  has trivial zeros at 2, 4, ...s     but ( )s  has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1 / 2  . 

The strip 0 1   is called the critical strip and the vertical line 1 / 2   is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of ( )s  lie on the critical line 1 / 2  , which is 
false. [3] 

( )s  and 
( )s

 are the two different functions. It is false that ( )s  replaces 
( )s

, Pati proved that is not 

all complex zeros of ( )s  lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 

proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, then 

the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime theorems 
including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in primes[7,8]. 

In the same way we have a general formula involving ( )s  

1 1

0 0
1 1

( ) ( )s s

n n

x F nx dx x F nx dx
  

 

 

  
 

1 1

0 0
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1
( ) ( ) ( )s s
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n

y F y dy s y F y dy
n


  

 



   
,       （11） 

where 
( )F y

 is arbitrary. 

From (11) we obtain many zeta functions ( )s  which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 

and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT  which is 
Fermat’s marvelous proof[7, 13]. 

Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3

3 1 22P P P 
. 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( ) 2 1P P  

 if 

1

32 1
P

  (mod P ); 
( ) 2P P   

 if 

1

32 1
P

  (mod P ); 
( ) 1P 

 
otherwise. 
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Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
3 3

2 1 2 1 2 1 2 3( ,3) { , : , , 2 prime}N P P P P N P P P    
 

2 2 2
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3 3 3 3
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J N P P P P N

N P N

  

 

  


 


. 

where 2 P

P


 
 is called primorial, 2

( ) ( 1)
P

P


  
. 

It is the simplest theorem which is called the Heath-Brown problem [15]. 

（2）Let 0n P
 be an odd prime, 

2 m
 and 

0Pm b  . 
we have 

0 0

3 1 2
P PP P mP 

 
We have 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where 
( ) 2P P   

 if 0 0; ( ) ( 1) 2P m P P P P    
 if 

0

1

1

P

Pm



  (mod P ); 

( ) 2P P   
 if 

0

1

1

P

Pm



 (mod P ); 
( ) 1P 

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have 
2

3
2 3 3

0

( )
( ,3) ~ .

2 ( ) log

J N
N

P N

 



  . 

The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 

（1）Let 4n  , We have 
4 2

3 1 2( 1)P P P  
, 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( )P P 

 if 1P   (mod 4); 
( ) 4P P  

 if 1P  （mod 8）; 
( ) 2P P   

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
4 2

2 1 2 1 2 1 2 3( ,3) { , : , , ( 1) prime}N P P P P N P P P     
 

2
3

3 3

( )
~

8 ( ) log

J N

N

 

 . 
It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 
1,2,3,m  

. 
We have Jiang function 
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2
3

3

( ) ( 3 3 ( )) 0
iP P

J P P P 
 

    
, 

where ( ) 4P P m    if 
8 ( 1) ; ( ) 4m P P P  

 if 
8 ( 1)P 

; ( )P P  if 
4 ( 1)P 

; 

( ) 2P P   
 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a generalization 
of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 

2 ( ,3) ~N

2
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3 3

( )

8 ( ) log

J N

m N

 

 . 

（3）Let 2n b .  We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 

2
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3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2P P b    if 
4 ( 1); ( ) 2b P P P  

 if 
4 ( 1)P 

; ( ) 2P P     otherwise. 
We have the best asymptotic formula 

2 ( ,3) ~N
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4 ( ) log

J N
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 . 

（4）Let 0n P
, We have 

0 2
3 1 2( 1)PP P P  

. 

where 0P
 is an odd. Prime. 

we have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where 0( ) 1P P  
 if 0 ( 1); ( ) 0P P P 

 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3
0

( )

2 ( ) log

J N

P N

 


. 

 

The Jiang function 
( )nJ 

 is closely related to 

the prime distribution. Using 
( )nJ 

 we are able to 
tackle almost all prime problems in the prime 
distributions. 
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国外数学家给王元信,请王元支持蒋春暄费马大定理证明。 
 

From: Moshe Klein 
To: ywang@math.ac.cn 
Sent: Wednesday, December 29, 2010 8:21 AM 
Subject: To Prof. Wang Yuan 

 
 

Dear Prof Yuan, 
 
My name is Moshe Klein and I am expert in mathematic education in Kindergarden. 
During the last 4 month I study cheerfully the work of Jiang on Fermat Last Theorem 
I find it very interesting and promising direction. 
 
I think that he need help of  great mathematician like you 
to improve his paper so it will accepted in respective journal 
I ask you please spent some of your  time to look on his paper 
and give us ( I work with him) some helpful hints to improve the presentation 
Please visit my web-site and look on the last version of his paper: 
 
http://www.omath.org.il/112431/FLT 
 

Best regards 
Moshe Klein 

 

王元主编<数学大辞典>2010年 8月由科学出版出版, 华罗庚接班人王元代表中科院中国政府在<数学大

辞典>中宣布费马大定理最后是美国怀尔斯解决的, 不承认中国蒋春暄 1991年证明费马大定理。蒋春暄因首

先证明费马大定理荣获特勒肖-伽利略科学院 2009年度金奖, 但中国不承认这个金奖, 连蒋春暄母校北京航空

航天大学不承认蒋春暄是北航的校友, 蒋春暄成果献给母校被拒绝。怀尔斯因证明费马大定理获国际十五个

大奖包括中国邵逸夫 2005 年百万美元数学大奖。如中国支持蒋春暄这些大奖都应该属于中国的。费马大定
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理证明是 20世纪最大数学成就。怀尔斯证明费马大定理是西方一大批数学家研究成果。他们 

看不起中国人, 他们大多数数学家都看到蒋春暄证明费马大定理比怀尔斯早三年, 但他们仍是支持怀尔

斯。 丘成桐就是坚决支持怀尔斯, 不承认中国人证明费马大定理。王元对蒋春暄成果态度;Dear Prof.Tsang. I 

don't approach Jiang and also don't care of any of his result.  Wang Yuan。王元关心是怀尔斯费马大定理怀尔斯

证明, 他是在中国宣传怀尔斯干将。www.baidu.com点蒋春暄和费马大定理有 13100条, 点蒋春暄和哥德巴赫

猜想有 10900条, 点蒋春暄和黎曼假设有 7160条,这三大数学难题都被蒋春暄彻底解决而且都己发表。 
 
 

The New Prime theorems（991）-（1040） 
 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book 

proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS, 

THES, MPIM, MSRI. In this paper using Jiang function 2 ( )J 
 we prove that the new prime theorems (991)-

（1040) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest 

solution 0( ,2) 1k N 
. This is the Book theorem. 

It will be another million years, at least, before we understand the primes. 
Paul Erdos (1913-1996) 
TATEMENT OF INTENT 
If elected. I am willing to serve the IMU and the international mathematical community as president of the 

IMU. I am willing to take on the duties and responsibilities of this function. 
These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its 

tasks related to organizing the 2014 ICM，fostering the development of mathematics, in particular in developing 
countries and among young people worldwide, representing the interests of our community in contacts with other 
international scientific bodies, and helping the IMU committees in their function. 

--IMU president, Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve 

methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s 
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple 
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: 

(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996 

Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang 
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s 
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and 
Tao theorem is false) to see. 

(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level. 

Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the 
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new 
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(990)]: (http://www.wbabin.net/xuan.htm#chun-
xuan) (http://vixra.org/numth/) 

 
The New Prime theorem（991） 
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1902, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1902jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1902, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1902

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1902jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1902 2
1

( )
( ,2) : ~

(1902) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7k 

 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3, 7k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3, 7k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（992） 
 

1904, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1904jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1904, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1904

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1904jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1904 2
1

( )
( ,2) : ~

(1904) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17,29,113,137,239,953k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,29,113,137,239,953k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17,29,113,137,239,953k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,17,29,113,137,239,953k  ， 
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(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（993） 
 

1906, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1906jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1906, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1906

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1906jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1906 2
1

( )
( ,2) : ~

(1906) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,1907k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,1907k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,1907k  . 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 3,1907k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（994） 
 

1908, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1908jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1908, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1908

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1908jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1908 2
1

( )
( ,2) : ~

(1908) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,107k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,19,37,107k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,19,37,107k 

. 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,19,37,107k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（995） 
 

1910, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1910jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1910, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1910

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1910jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1910 2
1

( )
( ,2) : ~

(1910) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,383k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,383k 

, 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 3,11,383k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11,383k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（996） 
 

1912, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1912jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1912, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1912

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1912jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1912 2
1

( )
( ,2) : ~

(1912) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,479,1913k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 3,5,479,1913k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,479,1913k  . 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,479,1913k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（997） 
 

1914, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1914jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1914, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1914

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1914jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1914 2
1

( )
( ,2) : ~

(1914) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,23,67k 

. From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,7,23,67k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 7,23,67k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 7,23,67k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（998） 
 

1916, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1916jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1916, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1916

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1916jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1916 2
1

( )
( ,2) : ~

(1916) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 
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Example 1. Let 3,5k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（999） 
 

1918, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1918jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1918, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1918

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1918jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1918 2
1

( )
( ,2) : ~

(1918) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（1000） 
 

1920, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1920jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1920, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1920

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1920jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1920 2
1

( )
( ,2) : ~

(1920) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,11,13,17,31,41,61,97,193,241,641k 
 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,17,31,41,61,97,193,241,641k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,11,13,17,31,41,61,97,193,241,641k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,17,31,41,61,97,193,241,641k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1001） 
 

1922, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1922jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1922, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1922

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1922jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1922 2
1

( )
( ,2) : ~

(1922) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1002） 
 

1924, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1924jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1924, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1924

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1924jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1924 2
1

( )
( ,2) : ~

(1924) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,53,149k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,53,149k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,53,149k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,53,149k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1003） 
 

1926, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1926jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1926, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1926

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1926jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1926 2
1

( )
( ,2) : ~

(1926) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,19,643k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19,643k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19,643k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19,643k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1004） 
 

1928, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1928jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1928, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1928

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1928jp

+
k j

 is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1928 2
1

( )
( ,2) : ~

(1928) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1005） 
 

1930, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1930jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1930, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1930

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  
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such that each of 
1930jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1930 2
1

( )
( ,2) : ~

(1930) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,11,1931k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,1931k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11,1931k  . 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11,1931k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1006） 
 

1932, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1932jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1932, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1932

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 



 Academia Arena 2016;8(3s)          http://www.sciencepub.net/academia 

 

142 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1932jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1932 2
1

( )
( ,2) : ~

(1932) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13,29,43,47,139,967,1933k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,29,43,47,139,967,1933k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5, 7,13, 29, 43, 47,139,967,1933k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5, 7,13, 29, 43, 47,139,967,1933k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1007） 
 

1934, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1934jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1934, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1934

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1934jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1934 2
1

( )
( ,2) : ~

(1934) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1008） 
 

1936, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1936jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1936, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 
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1
1936

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1936jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1936 2
1

( )
( ,2) : ~

(1936) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17,23,89k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,23,89k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17,23,89k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,23,89k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1009） 
 

1938, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1938jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1938, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P  
， ( )P  is the number of solutions of congruence 

1
1938

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1938jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1938 2
1

( )
( ,2) : ~

(1938) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,103k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,103k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,103k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,103k  ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1010） 
 

1940, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1940jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1940, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1940

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1940jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1940 2
1

( )
( ,2) : ~

(1940) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,11,971k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11,971k 
, 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,11,971k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,11,971k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1011） 
 

1942, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1942jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1942, ( 1, , 1)P jP k j j k   

.               （1） 
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contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1942

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1942jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1942 2
1

( )
( ,2) : ~

(1942) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1012） 
 

1944, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1944jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
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1944, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1944

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1944jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1944 2
1

( )
( ,2) : ~

(1944) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,109,163,487k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19,37,109,163,487k  , 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,19,37,109,163,487k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,19,37,109,163,487k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1013） 
 

1946, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1946jP k j 

 contain infinitely many prime solutions and no prime 
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solutions. 

Theorem. Let k  be a given odd prime. 
1946, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1946

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1946jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1946 2
1

( )
( ,2) : ~

(1946) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1014） 
 

1948, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1948jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1948, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1948

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1948jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1948 2
1

( )
( ,2) : ~

(1948) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,1949k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,1949k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1949k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1949k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1015） 
 

1950, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
1950jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1950, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1950

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1950jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1950 2
1

( )
( ,2) : ~

(1950) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,11,31,79,131,151,1951k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,11,31,79,131,151,1951k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,31,79,131,151,1951k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,11,31,79,131,151,1951k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1016） 
 

1952, ( 1, , 1)P jP k j j k     
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1952jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1952, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1952

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1952jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1952 2
1

( )
( ,2) : ~

(1952) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17,977k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17,977k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,977k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,977k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1017） 
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1954, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1954jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1954, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1954

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1954jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1954 2
1

( )
( ,2) : ~

(1954) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1018） 
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1956, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1956jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1956, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1956

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1956jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1956 2
1

( )
( ,2) : ~

(1956) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,653k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,653k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,653k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,653k  ， 
(1) contain infinitely many prime solutions 
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he New Prime theorem（1019） 
 

1958, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1958jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1958, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1958

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1958jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1958 2
1

( )
( ,2) : ~

(1958) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3, 23k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3, 23k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,23k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,23k  ， 
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(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1920） 
 

1960, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1960jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1960, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1960

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1960jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1960 2
1

( )
( ,2) : ~

(1960) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,11,29,71,197,491k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11,29,71,197,491k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11,29,71,197,491k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,11,29,71,197,491k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1021） 
 

1962, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1962jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1962, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1962

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1962jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1962 2
1

( )
( ,2) : ~

(1962) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,19k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19k 

. 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 3,7,19k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1022） 
 

1964, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1964jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1964, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1964

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1964jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1964 2
1

( )
( ,2) : ~

(1964) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,983k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,983k  , 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 3,5,983k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,983k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1023） 
 

1966, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1966jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1966, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1966

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1966jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1966 2
1

( )
( ,2) : ~

(1966) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1024） 
 

1968, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1968jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1968, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1968

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1968jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1968 2
1

( )
( ,2) : ~

(1968) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,17,83k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,17,83k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,17,83k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,83k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1025） 
 

1970, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1970jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1970, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1970

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1970jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1970 2
1

( )
( ,2) : ~

(1970) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 
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Example 1. Let 3,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11k  ， 
(2) contain infinitely many prime solutions 
 
 

The New Prime theorem（1026） 
 

1972, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1972jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1972, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1972

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1972jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1972 2
1

( )
( ,2) : ~

(1972) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,59,1973k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,59,1973k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,59,1973k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,59,1973k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1027） 
 

1974, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1974jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1974, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1974

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1974jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1974 2
1

( )
( ,2) : ~

(1974) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,43,283,659k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,43,283,659k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 7,43,283,659k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3, 7,43,283,659k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1028） 
 

1976, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1976jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1976, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1976

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1976jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1976 2
1

( )
( ,2) : ~

(1976) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,53k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,53k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,53k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,53k  ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1029） 
 

1978, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1978jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1978, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1978

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1978jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1978 2
1

( )
( ,2) : ~

(1978) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3, 47,1979k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3, 47,1979k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,47,1979k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,47,1979k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1030） 
 

1980, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1980jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1980, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1980

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1980jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1980 2
1

( )
( ,2) : ~

(1980) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,11,13,19,23,31,37,61,67,199,331,397k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,11,13,19,23,31,37,61,67,199,331,397k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,11,13,19,23,31,37,61,67,199,331,397k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,19,23,31,37,61,67,199,331,397k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1031） 
 

1982, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1982jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1982, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1982

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  
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such that each of 
1982jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1982 2
1

( )
( ,2) : ~

(1982) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1032） 
 

1984, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1984jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1984, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1984

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1984jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1984 2
1

( )
( ,2) : ~

(1984) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1033） 
 

1986, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1986jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1986, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1986

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1986jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1986 2
1

( )
( ,2) : ~

(1986) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,1987k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,1987k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,1987k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,1987k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1034） 
 

1988, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1988jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1988, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 
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1
1988

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1988jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1988 2
1

( )
( ,2) : ~

(1988) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,29k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,29k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,29k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,29k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1035） 
 

1990, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1990jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1990, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P  
， ( )P  is the number of solutions of congruence 

1
1990

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1990jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1990 2
1

( )
( ,2) : ~

(1990) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11k  ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1036） 
 

1992, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1992jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1992, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1992

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1992jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1992 2
1

( )
( ,2) : ~

(1992) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,167,499,997,1993k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,167,499,997,1993k 
, 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,167,499,997,1993k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,167,499,997,1993k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1037） 
 

1994, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1994jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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1994, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1994

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1994jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1994 2
1

( )
( ,2) : ~

(1994) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1038） 
 

1996, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1996jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 
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Theorem. Let k  be a given odd prime. 
1996, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1996

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1996jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1996 2
1

( )
( ,2) : ~

(1996) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,1997k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,1997k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,1997k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1997k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1039） 
 

1998, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1998jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1998, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1998

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1998jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1998 2
1

( )
( ,2) : ~

(1998) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,19,223,1999k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19,223,1999k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19,223,1999k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19,223,1999k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1040） 
 

2000, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
2000jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
2000, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2000

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2000jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2000 2
1

( )
( ,2) : ~

(2000) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,17,41,101,251,401k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,17,41,101,251,401k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,17,41,101,251,401k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11,17,41,101,251,401k 

， 
(1) contain infinitely many prime solutions 
 
 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ   and Jiang prime k -tuple 
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singular series 

1
2 ( ) 1 ( ) 1

( ) 1 (1 )
( )

k
k

k P

J P
J

P P

  


 


 

     
  [1,2], which can count the number of prime 

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series 

( ) 1
( ) 1 (1 ) k

P

P
H

P P


  

    
   is false [3-17], which cannot count the number of prime numbers[3]. 
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Szemer é di’s theorem does not directly to the 
primes, because it cannot count the number of primes.  

Cram é r’s random model cannot prove any prime 

problems. The probability of 
1/ log N

 of being prime 

is false. Assuming that the events “ P  is prime”, 

“ 2P   is prime” and “ 4P   is prime” are 

independent, we conclude that P , 2P  , 4P   are 
simultaneously prime with probability about 

31/ log N . There are about 
3/ logN N  primes less 

than N . Letting N    we obtain the prime 
conjecture, which is false. The tool of additive prime 
number theory is basically the Hardy-Littlewood prime 
tuples conjecture, but cannot prove and count any 
prime problems[6]. 

Mathematicians have tried in vain to discover 
some order in the sequence of prime numbers but we 
have every reason to believe that there are some 
mysteries which the human mind will never penetrate. 

Leonhard Euler(1707-1783) 
 

It will be another million years, at least, before 
we understand the primes. 

Paul Erdos(1913-1996) 
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Jiang’s function 1( )nJ   in prime distribution 
 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 
Dedicated to the 30-th anniversary of hadronic mechanics 
 

Abstract 
We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
              （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 

 
Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 

reason to believe that there are some mysteries which the human mind will never penetrate. 
Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
 
Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as    ，            （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 
1, , ( )i   

. We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 
0,1,2,n  

. 
（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. 

We have 

(mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                （3） 

where ih
denotes the number of primes iP N

 in i iP n h 
 

0,1,2,n  
, 

( )N
 the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 
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prime distribution. 

Let 30   and 
(30) 8 

. From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 

0,1,2,n  
          （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many primes 

1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where ( )P  is called sieve constant and denotes the number of solutions for the following congruence 

1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using 

( )P
 we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

（8）is called a unite prime formula in prime distribution. Let 
1, 0n k 

, 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
 
 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes , 2P P  (300BC). 
From (6) and (7) we have Jiang’s function 
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2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N    in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a prime 

equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations , 2, 6P P P 
. 

From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. Since 

2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime equations. 

Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 
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Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N    in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
             . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P


    

 

3( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. Since 

3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
, 

where 
( ) 3( 1)P P  

 if 

1

32 1(mod )
P

P



; 

( ) 0P 
 if 

1

32 1(mod )
P

P


 ; 
( ) 1P P  

 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
 

where ( ) 2( 1)P P  
 if 

1(mod4)P 
; 

( ) 2( 3)P P  
 if 

1(mod8)P 
; 

( ) 0P 
 otherwise. 
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Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 

3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3, , kP P

 are 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3, , kP P
 

are primes. 
From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
 

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
  

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P   is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n  , 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n   is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n   , 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n    is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n   , 

where 
7 ( ), 2, 4.n b b 
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From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n    is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n  

, 

where 
11 ( ), 3, 4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n    is always divisible by 11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n  
 is always divisible by 13. 

6. 
2 16, , , ,P P n P n P n   , 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n  
 is always divisible by 17. 

7. 
2 18, , , ,P P n P n P n   , 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n    is always divisible by 19. 

Example 10. Let n  be an even number. 

1. , , 1,3,5, ,2 1iP P n i k   , 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

2. 
, , 2, 4,6, ,2iP P n i k  

. 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n  are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is prime 

equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

 

In the same way we can prove 
2

2 3 12P P P 
 which has the same Jiang’s function. 

 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 
primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 

numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
simplest twin primes. They conjecture that the prime 
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distribution is randomness [12-25], because they do not 
understand theory of prime numbers. 
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Abstract 

Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k -

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture. 
 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P  

, ( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 1, , 1q p  .                  （3） 

If ( ) 1P P  
 then 2 ( ) 0J  

. There exist infinitely many primes P  such that each of iP n
 is prime. 

If 
( ) 1P P  

 then 2 ( ) 0J  
. There exist finitely many primes P  such that each of iP n

 is prime. 

2 ( )J 
 is a subset of Euler function 

( ) 
[2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
  （4） 

( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 
2, , 2k P P 

, twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P    if 2P  ,                （6） 
Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 

  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 

Example 2. Let 3, , 2, 4k P P P   . 
From (3) we have 

(2) 0, (3) 2                       （9） 
From (2) we have 

2 ( ) 0J  
.                        （10） 
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It has only a solution 3P  , 2 5P   , 4 7P   . One of , 2, 4P P P   is always divisible by 3. 

Example 3. Let 4, ,k P P n  , where 2,6,8n  . 
From (3) we have 

(2) 0, (3) 1, ( ) 3P      if 3P  .              （11） 
Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 2,6,8,12n  . 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P        if 5P           （14） 
Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 

There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have the 
best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 
2,6,8,12,14n 

. 
From (3) and (2) we have 

2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One of 

P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 

 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 

( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

，  1, ,q P  .             （21） 
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From (21) we have ( )P P   and ( ) 0H k  . For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 
2, , 2k P P  , twin primes theorem 

Frome (21) we have 

( ) 1P 
                     （22） 

Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 3, , 2, 4k P P P  
. 

From (21) we have 

(2) 1, ( ) 2P  
 if 2P                 （25） 

Substituting (25) into (20) we have 
2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

  （27） 
which is false see example 2. 

Conjecutre 3. Let 4k  , 
,P P n

, where 
2,6,8n 

. 
From (21) we have 

(2) 1, (3) 2, ( ) 3P    
 if 3P              （28） 

Substituting (28) into (20) we have 
3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （30） 
Which is false see example 3. 

Conjecture 4. Let 5, ,k P P n  , where 2,6,8,12n   
From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P      
 if 5P               （31） 

Substituting (31) into (20) we have 
4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
Substituting (32) into (19) we have asymptotic formula 
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4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P      
 if 5P         （34） 

Substituting (34) into (20) we have 
5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 
 

Conclusion. The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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Automorphic Functions And Fermat’s Last Theorem(1) 
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Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n    has no integer solutions, all different from 0(i.e., it has only the trivial 

solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an odd prime. 
The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

1
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a n th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order n  with 1n   variables [1-7]. 

1

2
( 1)

1

1 ( 1)
[ 2 ( 1) cos( ( 1) )]j

n

BA i j j
i j

j

i j
S e e

n n











    

    （2） 
where i=1,2,…,n; 

1

1

n

A t






 
,   

1

1

( 1) cos
n

j
j

j
B t

n





 



 
,                     

 （3） 

1
1

1

( 1) ( 1) sin
n

j j
j

j
t

n





 







  
,   

1

2

1

2 0

n

j
j

A B





 
 

(2) may be written in the matrix form 
 

1

2

3

2

1 1 0 0

( 1)
1 cos sin sin

2

2 2 ( 1)1
1 cos sin sin

( 1) ( 1) ( 1)
1 cos sin sin

2

n

nS
n n nS

n
S

n n nn

S
n n n

n n n

  

  

  

 
      

   
   
    
   
   
        

  








    


 

1

1

1

1

1 1

2 2

2 cos

2 sin

2exp sin

A

B

B

n n

e

e

e

B





 

 
 
 
 
 
 
 
  



(4) 
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where ( 1) / 2n   is an even number. 
From (4) we have its inverse transformation 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n n

B
n n n

n n n

  


  


  

 

 
   
  
  
  

   
  
  
          
  








    


 

1

2

3

n

S

S

S

S

 
 
 
 
 
 
 
 



 (5) 
From (5) we have 

1

n
A

i
i

e S


 
, 

1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
 

1
1

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
,                                 （6） 

In (3) and (6) it  and iS
 have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and proved FLT 
[1-7] Substituting (4) into (5) we prove (5). 

 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)1sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n nn

B
n n n

n n n

  


  


  

 

 
   
  
  
  

   
  
  
          
  








    


 

1

1

1

1

1 1
2

2 2

1 1 0 0

( 1)
1 cos sin sin

2 2 cos
2 2 ( 1) 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)

1 cos sin sin
2

A

B

B

n n

en

n n n e
n e

n n n

B
n n n

n n n
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1

1

1

1

1 1

2 2

0 0 0

0 0 0
2 2 cos

1 2 sin0 0 0
2

2exp( )sin( )

0 0 0
2

A

B

B

n n

n

en

e

n e
n

B
n





 

 
   
   
   
   

    
   
   
     
  








    


 

1

1

1

1

1 1

2 2

cos

sin

exp( )sin( )

A

B

B

n n

e

e

e

B





 

 
 
 
   
 
 
  



,                                          （7） 

where 

1
2

1

1 (cos )
2

n

j

j n

n





 
, 

1
2

1

(sin )
2

n

j

j n

n






. 

From (3) we have 
1

2

1

exp( 2 ) 1

n

j
j

A B





 
.                           （8） 

From (6) we have 

1 2 1 1 1 1 11

2
2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )

( ) ( )
exp( 2 )

( ) ( )

n nn

n

j
j

n n n n n n

S S S S S S

S S S S S S
A B

S S S S S S







 

  

 

 

       

 
,        （9） 

where 

( ) i
i j

j

S
S

t





[7]. 

From (8) and (9) we have the circulant determinant 

1 21

2
2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S

S S S
A B

S S S







  





   


          （10） 

If 
0iS 

, where 1,2, ,i n  , then (10) has infinitely many rational solutions. 

Assume 1 0S 
, 2 0S 

, 
0iS 

 where 
3, 4, , . 0ii n S 

 are 2n   indeterminate equations with 

1n   variables. From (6) we have 

1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cosjB j j

e S S S S
n


   

.        （11） 
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From (10) and (11) we have the Fermat equation 
1 1

2 2
2 2

1 2 1 2 1 2 1 2
1

1

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j

j
j

j
A B S S S S S S S S

n


 




         
（12） 

Example[1]. Let 15n  . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t             
 

1 1 14 2 13 3 12 4 11

2 3 4
( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

5 6 7
( )cos ( )cos ( )cos

15 15 15
t t t t t t

  
     

, 

2 1 14 2 13 3 12 4 11

2 4 6 8
( )cos ( ) cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

10 12 14
( )cos ( )cos ( )cos

15 15 15
t t t t t t

  
     

, 

3 1 14 2 13 3 12 4 11

3 6 9 12
( )cos ( ) cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

15 18 21
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

4 1 14 2 13 3 12 4 11

4 8 12 16
( )cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

20 24 28
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

5 1 14 2 13 3 12 4 11

5 10 15 20
( )cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

25 30 35
( )cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

6 1 14 2 13 3 12 4 11

6 12 18 24
( )cos ( ) cos ( )cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

30 36 42
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

7 1 14 2 13 3 12 4 11

7 14 21 28
( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

35 42 49
( )cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 
7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t


     
.                       (13) 

Form (12) we have the Fermat equation 
7

15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S


     
.                   (14) 

From (13) we have 
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5
3 6 5 10exp( 2 2 ) [exp( )]A B B t t   

.                 （15） 
From (11) we have 

5 5
3 6 1 2exp( 2 2 )A B B S S   

.                     (16) 
From (15) and (16) we have the Fermat equation 

5 5 5
3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t     

.                  （17） 
Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 

solutions for exponent 5[1]. 

Theorem 1. [1-7]. Let 3n P ,where 3P   is odd prime. From (12) we have the Fermat’s equation 
3 1

3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1
P

P P P P
j

j

A B S S S S




     
.                (18) 

From (3) we have 
1

2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t





  
.                     (19) 

From (11) we have 
1

2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S





  
.                        (20) 

From (19) and (20) we have the Fermat equation 
1

2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t





    
.           （21） 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 

solutions for 3P   [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

P P Px y z 
                           （22） 

in the form 
2 1( )( )( ) ( )P Px y x ry x r y x r y z                          （23） 

where P  is odd prime, 

2 2
cos sinr i

P P

 
 

. 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 
[8].. 

We consider the Fermat’s equation 
3 3 3P P Px y z                          （24） 

we rewrite (24) 
3 3 3( ) ( ) ( )P P Px y z                        (25) 

From (24) we have 
2 3( )( )( )P P P P P P Px y x ry x r y z                  （26） 

where 

2 2
cos sin

3 3
r i

 
 

 

We assume the divisor of each factor is a P th power. 
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Let 
1

x
S

z


, 
2

y
S

z


. From (20) and (26) we have the Fermat’s equation 

2[ exp( )]P P P
P Px y z t t   

                 (27) 
Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 

solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

3 3 3( ) ( ) ( )P P Px y z 
                  (28) 

Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no 

integer solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

4 4 4P P Px y z                      (29) 
We rewrite (29) 

4 4 4( ) (( ) ( )P P Px y z                  （30） 
4 4 4( ) ( ) ( )P P Px y z                   （31） 

 
Fermat proved that (30) has no integer solutions 

for exponent 4 [8]. Therefore we prove that (31) has no 

integer solutions for all prime exponent P  [2,5,7].This 
is the proof that Fermat thought to have had. 
Remark. It suffices to prove FLT for exponent 4. Let 

4n P , where P  is an odd prime. We have the 

Fermat’s equation for exponent 4P  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be n P  , 2n P   and 

4n P  . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be n P  , 2n P   and 

4n P  . Every factor of exponent n  has Fermat’s 
equation [1-7].Using modular elliptic curves Wiles and 
Taylor prove FLT[9,10].This is not the proof that 
Fermat thought to have had. The classical theory of 
automorphic functions, created by Klein and Poincare, 
was concerned with the study of analytic functions in 
the unit circle that are invariant under a discrete group 
of transformations. Automorphic functions are 
generalization of the trigonometric,hyperbolic,elliptic, 
and certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Automorphic Functions And Fermat’s Last Theorem（2） 
 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 6P  and P , where P  is an odd prime. 
The proof of FLT must be direct .But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

2 1 2
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a 2n th root of unity, 
2 1nJ  , n is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 2n  with 2 1n   variables 

[5,7]. 

1

1

2
( 1)

1

1 ( 1)
2 ( 1) cos ( 1)

2
j

n

i jBA j
i j

j

i j
S e

n n










 
         

  


 

2

1
( 1) 2

( 1) 1

1

( 1) ( 1)
2 ( 1) cos ( 1)

2
j

n
i

DA i j j
j

j

i j
e e

n n







 



 
          

  


 ,       （2） 

where 1,..., 2i n
; 

2 1 2 1 2 1
( 1)

1
1 1 1

, ( 1) cos , ( 1) ( 1) sin
n n n

j j j
j j

j j
A t B t t

n n
 

  
  

   


  


  

       
, 

2 1 2 1
( 1)

2
1 1

( 1) , ( 1) cos
n n

j
j

j
A t D t

n
 

 
 

  


 

    
, 

1
2 1 2

( 1)
1 2

1 1

( 1) ( 1) sin , 2 ( ) 0

n
n

j j
j j j

j

j
t A A B D

n





 







 

       
       （3） 

From (2) we have its inverse transformation[5,7] 
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1 2

2 2
1

1 1

, ( 1)
n n

A A i
i i

i i

e S e S 

 

   
 

2 1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
, 

2 1
( 1)

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
, 

2 1
( 1)

1 1
1

cos ( 1) cosj

n
D j i

j i
i

ij
e S S

n










  
 

2 1
( 1)

1
1

sin ( 1) ( 1) sinj

n
D j j i

j i
i

ij
e S

n










  
                          （4） 

(3) and (4) have the same form. 
From (3) we have 

1

2

1 2
1

exp 2 ( ) 1

n

j j
j

A A B D





 
    
 
  


                   （5） 

From (4) we have 

1 2 21

2
2 1 3

1 2
1

2 2 1 1

exp 2 ( )

nn

j j
j

n n

S S S

S S S
A A B D

S S S







 
    
 
  







   


 

 

1 1 1 1 2 1

2 2 1 2 2 1

2 2 1 2 2 1

( ) ( )

( ) ( )

( ) ( )

n

n

n n n n

S S S

S S S

S S S













   


             (6) 

where 

( ) i
i j

j

S
S

t





[7].. 

From (5) and (6) we have circulant determinant 

1 2 21

2
2 1 3

1 2
1

2 2 1 1

exp 2 ( ) 1

nn

j j
j

n n

S S S

S S S
A A B D

S S S







 
     
 
  







   


          （7） 

If 
0iS
，where ni 2,...,3,2,1 , then (7) have infinitely many rational solutions. 

Let 1n . From (3) we have 11 tA 
 and 12 tA 

. From (2) we have 

11 ch tS 
    12 sh tS 

                 （8） 
we have Pythagorean theorem 

1shch 1
2

1
2  tt                                   （9） 



 Academia Arena 2016;8(3s)          http://www.sciencepub.net/academia 

 

198 

(9) has infinitely many rational solutions. 

Assume 
0,0,0 21  iSSS

, where ni 2,...,3 . 
0iS

 are )22( n  indeterminate equations with 

)12( n
 variables. From (4) we have 

n

j
SSSSeSSeSSe jBAA j


cos)1(2,, 21

2
2

2
1

2

2121
21 

, 

n

j
SSSSe jD j


cos)1(2 1

21
2
2

2
1

2 
                     （10） 

Example. Let 15n . From (3) and (10) we have Fermat’s equation 

1)()()](2exp[ 310
2

310
1

30
2

30
1

7

1
21  



SSSSDBAA jj
j  （11） 

From (3) we have 

5
5

5

1
631 )][exp()22exp( j

j

tBBA 




         （12） 
From (10) we have 

5
2

5
1631 )22exp( SSBBA 

            (13) 
From (12) and (13) we have Fermat’s equation 

5
5

5

1

5
2

5
1631 )][exp()22exp( j

j

tSSBBA 




       (14) 
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational 

solutions for exponent 5. 

Theorem. Let Pn 3  where P  is an odd prime. From (7) and (8) we have Fermat’s equation 

1)()()](2exp( 32
2

32
1

6
2

6
1

2

13

1
21  





PPPP
jj

P

j

SSSSDBAA
  (15) 

From (3) we have 

P

jP
j

j

P

j

tBA








































 






5

1
3

2

1

1
1 exp2exp

              (16) 
From (10) we have 

PP
j

P

j

SSBA 213

2

1

1
1 2exp 

















 





               (17) 
From (16) and (17) we have Fermat’s equation 

P

jP
j

PP
j

P

j

tSSBA








































 






5

1
213

2

1

1
1 exp2exp

    (18) 
 
Euler prove that (15) has no rational solutions for 

exponent 3[8]. Therefore we prove that (18) has no 

rational solutions for prime exponent P [5,7]. 

Remark. It suffices to prove FLT for exponent 4. Let 

Pn 4 , where P  is an odd prime. We have the 

Fermat’s equation for exponent P4  and the Fermat’s 
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equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has 
Fermat’s equation [1-7]. Using modular elliptic curves 
Wiles and Taylor prove FLT [9, 10]. This is not the 
proof that Fermat thought to have had. The classical 
theory of automorphic functions, created by Klein and 
Poincare, was concerned with the study of analytic 
functions in the unit circle that are invariant under a 
discrete group of transformation. Automorphic 
functions are the generalization of trigonometric, 
hyperbolic, elliptic, and certain other functions of 
elementary analysis. The complex trigonometric 
functions and complex hyperbolic functions have a 
wide application in mathematics and physics. 
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Automorphic Functions And Fermat’s Last Theorem（3）(Fermat’s Proof of FLT) 
 
Chun-Xuan Jiang 
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jiangchunxuan@sohu.com 
 

Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, 

or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous 
proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n    has no integer solutions, all different from 0(i.e., it has only the trivial 

solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 4P  and P , where P  is an odd prime. 
We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of  FLT is disbelieving. 

 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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4 1 4
1

1 1

exp
m m

i i
i i

i i

t J S J




 

 
 

 
 

,                        （1） 

where J  denotes a 4m th root of unity, 
4 1mJ  , m=1,2,3,…, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 4m  with 4 1m   variables 

[2,5,7]. 

1

1

1

1 ( 1) ( 1)
2 cos 2 cos

4 2 2
j

m
BA H

i j
j

i i j
S e e e

m m

 
 





     
        

    


 

2

( 1) 1

1

( 1) ( 1)
2 cos

4 2
j

i m
DA

j
j

i j
e e

m m




 



   
    

  


         （2） 

where 1,..., 4i m ; 
 

4 1 4 1

1 2
1 1

, ( 1)
m m

A t A t 
 

 

 

 

   
,    

2 1 2

2 2 1
1 1

( 1) , ( 1)
m m

H t t 
 

 





 

    
, 

4 1 4 1

1 1

cos , sin ,
2 2

m m

j j

j j
B t t

m m
 

 

   


 

 

   
 

4 1 4 1

1 1

( 1) cos , ( 1) sin
2 2

m m

j j

j j
D t t

m m
 

 
 

   


 

 

    
, 

1

1 2
1

2 2 ( ) 0
m

j j
j

A A H B D




    
.                                  （3） 

From (2) we have its inverse transformation[5,7] 

1 2

4 4
1

1 1

, ( 1)
m m

A A i
i i

i i

e S e S 

 

   
 

2 2
1

2 1 2
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cos ( 1) , sin ( 1)
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i i
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e S e S 


 

    
, 

4 1 4 1

1 1 1
1 1

cos cos , sin sin
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j j

m m
B B

j i j i
i i

ij ij
e S S e S

m m

 
 

 

 
 

    
, 

4 1 4 1

1 1 1
1 1

cos ( 1) cos , sin ( 1) sin
2 2

j j

m m
D Di i

j i j i
i i

ij ij
e S S e S

m m

 
 

 

 
 

     
.（4） 

(3) and (4) have the same form. 
From (3) we have 

1

1 2
1

exp 2 2 ( ) 1
m

j j
j

A A H B D




 
     

 


                （5） 
From (4) we have 

1 4 2

1
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1
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1 1 1 1 4 1

2 2 1 2 4 1

4 4 1 4 4 1

( ) ( )

( ) ( )

( ) ( )

m

m

m m m m

S S S

S S S

S S S













   


    (6) 

where 

( ) i
i j

j

S
S

t





[7] 

From (5) and (6) we have circulant determinant 

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( ) 1

m

m

j j
j

m m

S S S

S S S
A A H B D

S S S







 
      

 






   


   （7） 

Assume 1 20, 0, 0iS S S  
, where 3,..., 4 .i m  

0iS 
 are (4 2)m   indeterminate equations with 

(4 1)m   variables. From (4) we have 
1 2 2 2 2

1 2 1 2 1 2, ,A A He S S e S S e S S     
 

2 2 2
1 2 1 22 cos

2
jB j

e S S S S
m


  

,  

2 2 2
1 2 1 22 cos

2
jD j

e S S S S
m


  

   （8） 

Example [2]. Let 4 12m  . From (3) we have 

1 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t          
, 

2 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t           
, 

2 10 4 8 6( ) ( )H t t t t t     
, 

1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( )cos ( ) cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( ) cos ( ) cos ( )cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( )cos ( ) cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( ) cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

1 2 1 2 1 22( ) 0A A H B B D D      
,  2 2 3 6 92 3( )A B t t t    

.               （9） 
From (8) and (9) we have 

12 12 3 4 3 4
1 2 1 2 1 2 1 2 1 2exp[ 2( )] ( ) ( ) 1A A H B B D D S S S S          

.     (10) 
From (9) we have 

3
2 2 3 6 9exp( 2 ) [exp( )]A B t t t    

.                  (11) 
From (8) we have 

2 2 3 3
2 2 1 2 1 2 1 2 1 2exp( 2 ) ( )( )A B S S S S S S S S      

.             (12) 
From (11) and (12) we have Fermat’s equation 
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3 3 3
2 2 1 2 3 6 9exp( 2 ) [exp( )]A B S S t t t      

.                (13) 
Fermat proved that (10) has no rational solutions for exponent 4 [8]. 
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2] 

Theorem . Let 4 4m P , where P  is an odd prime, 
( 1) / 2P 

 is an even number. 
From (3) and (8) we have 

1
4 4 4 4

1 2 1 2 1 2
1

exp[ 2 2 ( )] ( ) ( ) 1
P

P P P P
j j

j

A A H B D S S S S




        
. (14) 

From (3) we have 
1

4

2 4 2 4 2 3
1
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P
j j P P P

j

A B D t t t
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From (8) we have 
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From (15) and (16) we have Fermat’s equation 
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Fermat proved that (14) has no rational solutions 

for exponent 4 [8]. Therefor we prove that (17) has no 

rational solutions for prime exponent P . 
 

Remark. Mathematicians said Fermat could not 
possibly had a proof, because they do not understand 

FLT.In complex hyperbolic functions let exponent n  

be n P  ，  2n P   and 4n P  . Every 

factor of exponent n  has Fermat’s equation [1-7]. 
Using modular elliptic curves Wiles and Taylor prove 
FLT [9,10]. This is not the proof that Fermat thought to 
have had. The classical theory of automorphic 
functions,created by Klein and Poincare, was 
concerned with the study of analytic functions in the 
unit circle that are invariant under a discrete group of 
transformation. Automorphic functions are the 
generalization of trigonometric, hyperbolic elliptic, and 
certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Fermat's Last Theorem 
Fermat's last Theorem: There is no positive integers x, y, z, and n > 2 such that x n+ yn = zn 

was broadcast on 15 January 1996 
At the age of ten, browsing through his public library, Andrew Wiles stumbled across the world's greatest 

mathematical puzzle. Fermat's Last Theorem had baffled mathematicians for over 300 years. But from that day, little 
Andrew dreamed of solving it. Tonight's HORIZON tells the story of his obsession, and how, thirty years later, he 
gave up everything to achieve his childhood dream. 

Deep in our classroom memories lies the enduring notion that "the square of the hypotenuse is equal to the sum 
of the squares of the other two sides": Pythagoras's Theorem for right-angled triangles. Written down, it is also the 
simplest of mathematical equations: x 2+ y2 = z2 

In 1637, a French mathematician, Pierre de Fermat said that this equation could not be true for x3 + y3 = z3 or 
for any equation xn + yn = zn where n is greater than 2. Tantalisingly, he wrote on his Greek text: "I have discovered 
a truly marvellous proof, which this margin is too narrow to contain." No one has found the proof, and for 350 years 
attempts to prove "F.L.T." attracted huge prizes, mistaken and eccentric claims, but met with failure. 

Simon Singh and John Lynch's film tells the enthralling and emotional story of Andrew Wiles. A quiet English 
mathematician, he was drawn into maths by Fermat's puzzle, but at Cambridge in the '70s, FLT was considered a 
joke, so he set it aside. Then, in 1986, an extraordinary idea linked this irritating problem with one of the most 
profound ideas of modern mathematics: the Taniyama-Shimura Conjecture, named after a young Japanese 
mathematician who tragically committed suicide. The link meant that if Taniyama was true then so must be FLT. 
When he heard, Wiles went after his childhood dream again. "I knew that the course of my life was changing." 
For seven years, he worked in his attic study at Princeton, telling no one but his family. "My wife has only known 
me while I was working on Fermat", says Andrew. In June 1993 he reached his goal. At a three-day lecture at 
Cambridge, he outlined a proof of Taniyama - and with it Fermat's Last Theorem. Wiles' retiring life-style was 
shattered. Mathematics hit the front pages of the world's press. 

Then disaster struck. His colleague, Dr Nick Katz, made a tiny request for clarification. It turned into a gaping 
hole in the proof. As Andrew struggled to repair the damage, pressure mounted for him to release the manuscript - to 
give up his dream. So Andrew Wiles retired back to his attic. He shut out everything, but Fermat. 

A year later, at the point of defeat, he had a revelation. "It was the most important moment in my working 
life. Nothing I ever do again will be the same." The very flaw was the key to a strategy he had abandoned years 
before. In an instant Fermat was proved; a life's ambition achieved; the greatest puzzle of maths was no more. 
PROF. ANDREW WILES: 

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark mansion. One 
goes into the first room and it's dark, completely dark, one stumbles around bumping into the furniture and then 
gradually you learn where each piece of furniture is, and finally after six months or so you find the light switch, you 
turn it on suddenly it's all illuminated, you can see exactly where you were. 

At the beginning of September I was sitting here at this desk when suddenly, totally unexpectedly, I had this 
incredible revelation. It was the most, the most important moment of my working life. Nothing I ever do again will... 
I'm sorry. 
NARRATOR: 

This is the story of one man's obsession with the world's greatest mathematical problem. For seven years 
Professor Andrew Wiles worked in complete secrecy, creating the calculation of the century. It was a calculation 
which brought him fame, and regret. 
ANDREW WILES: 

So I came to this. I was a 10-year-old and one day I happened to be looking in my local public library and I 
found a book on math and it, it told a bit about the history of this problem that someone had resolved this problem 
300 years ago, but no-one had ever seen the proof, no-one knew if there was a proof, and people ever since have 
looked for the proof and here was a problem that I, a 10-year-old, could understand, but none of the great 
mathematicians in the past had been able to resolve, and from that moment of course I just, just tried to solve it 
myself. It was such a challenge, such a beautiful problem. 
This problem was Fermat's last theorem. 
NARRATOR: 
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Pierre de Fermat was a 17th-century French mathematician who made some of the greatest breakthroughs in 
the history of numbers. His inspiration came from studying the Arithmetica, that Ancient Greek text. 
PROF. JOHN CONWAY: 

Fermat owned a copy of this book, which is a book about numbers with lots of problems, which presumably 
Fermat tried to solve. He studied it, he, he wrote notes in the margins. 
NARRATOR: 

Fermat's original notes were lost, but they can still be read in a book published by his son. It was one of these 
notes that was Fermat's greatest legacy. 
JOHN CONWAY: 

And this is the fantastic observation of Master Pierre de Fermat which caused all the trouble. "Cubum autem in 
duos cubos" 
NARRATOR: 

This tiny note is the world's hardest mathematical problem. It's been unsolved for centuries, yet it begins with 
an equation so simple that children know it off by heart. 
CHILDREN: 

The square of the hypotenuse is equal to the sum of the squares of the other two sides. 
JOHN CONWAY: 

Yes well that's Pythagoras's theorem isn't it, that's what we all did at school. So Pythagoras's theorem, the 
clever thing about it is that it tells us when three numbers are the sides of a right-angle triangle. That happens just 
when x squared plus y squared equals z squared. 
ANDREW WILES: 

X squared plus y squared equals zee squared, and you can ask: well what are the whole numbers solutions of 
this equation? And you quickly find there's a solution 3 squared plus 4 squared equals 5 squared. Another one is 5 
squared plus 12 squared is 13 squared, and you go on looking and you find more and more. So then a natural 
question is, the question Fermat raised: supposing you change from squares, supposing you replace the two by three, 
by four, by five, by six, by any whole number 'n', and Fermat said simply that you'll never find any solutions, 
however, however far you look you'll never find a solution. 
NARRATOR: 

You will never find numbers that fit this equation, if n is greater than 2. That's what Fermat said, and what's 
more, he said he could prove it. In a moment of brilliance, he scribbled the following mysterious note. 
JOHN CONWAY: 

Written in Latin, he says he has a truly wonderful proof "Demonstrationem mirabilem" of this fact, and then 
the last words are: "Hanc marginis exigiutas non caperet" - this margin is too small to contain this. 
NARRATOR: 

So Fermat said he had a proof, but he never said what it was. 
JOHN CONWAY: 

Fermat made lots of marginal notes. People took them as challenges and over the centuries every single one of 
them has been disposed of, and the last one to be disposed of is this one. That's why it's called the last theorem. 
NARRATOR: 

Rediscovering Fermat's proof became the ultimate challenge, a challenge which would baffle mathematicians 
for the next 300 years. 
JOHN CONWAY: 

Gauss, the greatest mathematician in the world... 
BARRY MAZUR: 

Oh yes, Galois... 
JOHN COATES: 

Kummer of course... 
KEN RIBET: 

Well in the 18th-century Euler didn't prove it. 
JOHN CONWAY: 

Well you know there's only been the one woman really... 
KEN RIBET: 

Sophie Germain 
BARRY MAZUR: 

Oh there are millions, there are lots of people 
PETER SARNAK: 
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But nobody had any idea where to start. 
ANDREW WILES: 

Well mathematicians just love a challenge and this problem, this particular problem just looked so simple, it 
just looked as if it had to have a solution, and of course it's very special because Fermat said he had a solution. 
NARRATOR: 

Mathematicians had to prove that no numbers fitted this equation but with the advent of computers, couldn't 
they check each number one by one and show that none of them fitted? 
JOHN CONWAY: 

Well how many numbers are there to beat that with? You've got to do it for infinitely many numbers. So after 
you've done it for one, how much closer have you got? Well there's still infinitely many left. After you've done it for 
1,000 numbers, how many, how much closer have you got? Well there's still infinitely many left. After you've done 
a few million, there's still infinitely many left. In fact, you haven't done very many have you? 
NARRATOR: 

A computer can never check every number. Instead, what's needed is a mathematical proof. 
PETER SARNAK: 

A mathematician is not happy until the proof is complete and considered complete by the standards of 
mathematics. 
NICK KATZ: 

In mathematics there's the concept of proving something, of knowing it with absolute certainty. 
PETER SARNAK: 

Which, well it's called rigorous proof. 
KEN RIBET: 

Well rigorous proof is a series of arguments... 
PETER SARNAK: 

...based on logical deductions. 
KEN RIBET: 

...which just builds one upon another. 
PETER SARNAK: 

Step by step. 
KEN RIBET: 

Until you get to... 
PETER SARNAK: 

A complete proof. 
NICK KATZ: 

That's what mathematics is about. 
NARRATOR: 

A proof is a sort of reason. It explains why no numbers fit the equation without haaving to check every number. 
After centuries of failing to find a proof, mathematicians began to abandon Fermat in favour of more serious maths. 

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles was just beginning his career as a 
mathematician. He went to Cambridge as a research student under the supervision of Professor John Coates. 
JOHN COATES: 

I've been very fortunate to have Andrew as a student, and even as a research student he, he was a wonderful 
person to work with. He had very deep ideas then and it, it was always clear he was a mathematician who would do 
great things. 
NARRATOR: 

But not with Fermat. Everyone thought Fermat's last theorem was impossible, so Professor Coates encouraged 
Andrew to forget his childhood dream and work on more mainstream maths. 
ANDREW WILES: 

The problem with working on Fermat is that you could spend years getting nothing so when I went to 
Cambridge my advisor, John Coates, was working on Iwasawa theory and elliptic curves and I started working with 
him. 
NARRATOR: 

Elliptic curves were the in thing to study, but perversely, elliptic curves are neither ellipses nor curves. 
BARRY MAZUR: 

You may never have heard of elliptic curves, but they're extremely important. 
JOHN CONWAY: 
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OK, so what's an elliptic curve? 
BARRY MAZUR: 

Elliptic curves - they're not ellipses, they're cubic curves whose solution have a shape that looks like a 
doughnut. 
PETER SARNAK: 

It looks so simple yet the complexity, especially arithmetic complexity, is immense. 
NARRATOR: 

Every point on the doughnut is the solution to an equation. Andrew Wiles now studied these elliptic equations 
and set aside his dream. What he didn't realise was that on the other side of the world elliptic curves and Fermat's 
last theorem were becoming inextricably linked. 
GORO SHIMURA: 

I entered the University of Tokyo in 1949 and that was four years after the War, but almost all professors were 
tired and the lectures were not inspiring. 
NARRATOR: 

Goro Shimura and his fellow students had to rely on each other for inspiration. In particular, he formed a 
remarkable partnership with a young man by the name of Utaka Taniyama. 
GORO SHIMURA: 

That was when I became very close to Taniyama. Taniyama was not a very careful person as a mathematician. 
He made a lot of mistakes, but he, he made mistakes in a good direction and so eventually he got right answers and I 
tried to imitate him, but I found out that it is very difficult to make good mistakes. 
NARRATOR: 

Together, Taniyama and Shimura worked on the complex mathematics of modular functions. 
NICK KATZ: 

I really can't explain what a modular function is in one sentence. I can try and give you a few sentences to 
explain it. 
PETER SARNAK: 

LAUGHS 
NICK KATZ: 

I really can't put it in one sentence. 
PETER SARNAK: 

Oh it's impossible. 
ANDREW WILES: 

There's a saying attributed to Eichler that there are five fundamental operations of arithmetic: addition, 
subtraction, multiplication, division and modular forms. 
BARRY MAZUR: 

Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many 
internal symmetries that their mere existence seem like accidents, but they do exist. 
NARRATOR: 

This image is merely a shadow of a modular form. To see one properly your TV screen would have to be 
stretched into something called hyperbolic space. Bizarre modular forms seem to have nothing whatsoever to do 
with the humdrum world of elliptic curves. But what Taniyama and Shimura suggested shocked everyone. 
GORO SHIMURA: 

In 1955 there was an international symposium and Taniyama posed two or three problems. 
NARRATOR: 

The problems posed by Taniyama led to the extraordinary claim that every elliptic curve was really a modular 
form in disguise. It became known as the Taniyama-Shimura conjecture. 
JOHN CONWAY: 

The Taniyama-Shimura conjecture says, it says that every rational elliptic curve is modular and that's so hard to 
explain. 
BARRY MAZUR: 

So let me explain. Over here you have the elliptic world the elliptic curve, these doughnuts, and over here you 
have the modular world, modular forms with their many, many symmetries. The Shirmura-Taniyama conjecture 
makes a bridge between these two worlds. These worlds live on different planets. 

It's a bridge, it's more than a bridge, it's really a dictionary, a dictionary where questions, intuitions, insights, 
theorems in the one world get translated to questions, intuitions in the other world. 
KEN RIBET: 
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I think that when Shirmura and Taniyama first started talking about the relationship between elliptic curves and 
modular forms people were very incredulous. I wasn't studying mathematics yet. By the time I was a graduate 
student in 1969 or 1970 people were coming to believe the conjecture. 
NARRATOR: 

In fact, Taniyama-Shimura became a foundation for other theories which all came to depend on it. But 
Taniyama-Shimura was only a conjecture, an unproven idea, and until it could be proved, all the maths which relied 
on it was under threat. 
ANDREW WILES: 

Built more and more conjectures stretched further and further into the future but they would all be completely 
ridiculous if Taniyama-Shimura was not true. 
NARRATOR: 

Proving the conjecture became crucial, but tragically, the man whose idea inspired it didn't live to see the 
enormous impact of his work. In 1958, Taniyama committed suicide. 
GORO SHIMURA: 

I was very much puzzled. Puzzlement may be the best word. Of course I was sad that, see it was so sudden and 
I was unable to make sense out of this. 
NARRATOR: 

Taniyama-Shimura went on to become one of the great unproven conjectures. But what did it have to do with 
Fermat's last theorem? 
ANDREW WILES: 

At that time no-one had any idea that Taniyama-Shimura could have anything to do with Fermat. Of course in 
the 80s that all changed completely. 
NARRATOR: 

Taniyama-Shimura says: every elliptic curve is modular and Fermat says: no numbers fit this equation. What 
was the connection? 
KEN RIBET: 

Well, on the face of it the Shimura-Taniyama conjecture which is about elliptic curves, and Fermat's last 
theorem have nothing to do with each other because there's no connection between Fermat and elliptic curves. But in 
1985 Gerhard Frey had this amazing idea. 
NARRATOR: 

Frey, a German mathematician, considered the unthinkable: what would happen if Fermat was wrong and there 
was a solution to this equation after all? 
PETER SARNAK: 

Frey showed how starting with a fictitious solution to Fermat's last equation if such a horrible, beast existed, he 
could make an elliptic curve with some very weird properties. 
KEN RIBET: 

That elliptic curve seems to be not modular, but Shimura-Taniyama says that every elliptic curve is modular. 
NARRATOR: 

So if there is a solution to this equation it creates such a weird elliptic curve it defies Taniyama-Shimura. 
KEN RIBET: 

So in other words, if Fermat is false, so is Shimura-Taniyama, or said differently, if Shimura-Taniyama is 
correct, so is Fermat's last theorem. 
NARRATOR: 

Fermat and Taniyama-Shimura were now linked, apart from just one thing. 
KEN RIBET: 

The problem is that Frey didn't really prove that his elliptic curve was not modular. He gave a plausibility 
argument which he hoped could be filled in by experts, and then the experts started working on it. 
NARRATOR: 

In theory, you could prove Fermat by proving Taniyama, but only if Frey was right. Frey's idea became known 
as the epsilon conjecture and everyone tried to check it. One year later, in San Francisco, there was a breakthrough. 
KEN RIBET: 

I saw Barry Mazur on the campus and I said let's go for a cup of coffee and we sat down for cappuccinos at this 
caf頡 nd I looked at Barry and I said you know, I'm trying to generalise what I've done so that we can prove the full 
strength of Serre's epsillon conjecture and Barry looked at me and said well you've done it already, all you have to 
do is add on some extra gamma zero of m structure and run through your argument and it still works, and that gives 
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everything you need, and this had never occurred to me as simple as it sounds. I looked at Barry, I looked to my 
cappuccino, I looked back at Barry and said my God, you're absolutely right. 
BARRY MAZUR: 

Ken's idea was brilliant. 
ANDREW WILES: 

I was at a friend's house sipping iced tea early in the evening and he just mentioned casually in the middle of a 
conversation: by the way, do you hear that Ken has proved the epsilon conjecture? And I was just electrified. I, I 
knew that moment the course of my life was changing because this meant that to prove Fermat's last theorem I just 
had to prove Taniyama-Shimura conjecture. From that moment that was what I was working on. I just knew I would 
go home and work on the Taniyama-Shimura conjecture. 
NARRATOR: 

Andrew abandoned all his other research. He cut himself off from the rest of the world and for the next seven 
years he concentrated solely on his childhood passion. 
ANDREW WILES: 

I never use a computer. I sometimes might scribble, I do doodles I start trying to, to find patterns really, so I'm 
doing calculations which try to explain some little piece of mathematics and I'm trying to fit it in with some previous 
broad conceptual understanding of some branch of mathematics. Sometimes that'll involve going and looking up in a 
book to see how it's done there, sometimes it's a question of modifying things a bit, sometimes doing a little extra 
calculation, and sometimes you realise that nothing that's ever been done before is any use at all, and you, you just 
have to find something completely new and it's a mystery where it comes from. 
JOHN COATES: 

I must confess I did not think that the Shimura-Taniyama conjecture was accessible to proof at present. I 
thought I probably wouldn't see a proof in my lifetime. 
KEN RIBET: 

I was one of the vast majority of people who believe that the Shimura-Taniyama conjecture was just 
completely inaccessible, and I didn't bother to prove it, even think about trying to prove it. Andrew Wiles is 
probably one of the few people on earth who had the audacity to dream that you can actually go and prove this 
conjecture. 
ANDREW WILES: 

In this case certainly for the first several years I had no fear of competition. I simply didn't think I or any one 
else had any real idea how to do it. But I realised after a while that talking to people casually about Fermat was, was 
impossible because it just generates too much interest and you can't really focus yourself for years unless you have 
this kind of undivided concentration which too many spectators will have destroyed. 
NARRATOR: 

Andrew decided that he would work in secrecy and isolation. 
PETER SARNAK: 

I often wondered myself what he was working on. 
NICK KATZ: 

Didn't have an inkling. 
JOHN CONWAY: 

No, I suspected nothing. 
KEN RIBET: 

This is probably the only case I know where someone worked for such a long time without divulging what he 
was doing, without talking about the progress he had made. It's just unprecedented. 
NARRATOR: 

Andrew was embarking on one of the most complex calculations in history. For the first two years, he did 
nothing but immerse himself in the problem, trying to find a strategy which might work. 
ANDREW WILES: 

So it was now known that Taniyama-Shimura implied Fermat's last theorem. What does Taniyama-Shimura 
say? It, it says that all elliptic curves should be modular. Well this was an old problem been around for 20 years and 
lots of people would try to solve it. 
KEN RIBET: 

Now one way of looking at it is that you have all elliptic curves and then you have the modular elliptic curves 
and you want to prove that there are the same number of each. Now of course you're talking about infinite sets, so 
you can't just can't count them per say, but you can divide them into packets and you could try to count each packet 
and see how things go, and this proves to be a very attractive idea for about 30 seconds, but you can't really get 
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much further than that, and the big question on the subject was how you could possibly count, and in effect, Wiles 
introduced the correct technique. 
NARRATOR: 

Andrew's trick was to transform the elliptic curves into something called Galois representations which would 
make counting easier. Now it was a question of comparing modular forms with Galois representations, not elliptic 
curves. 
ANDREW WILES: 

Now you might ask and it's an obvious question, why can't you do this with elliptic curves and modular forms, 
why couldn't you count elliptic curves, count modular forms, show they're the same number? Well, the answer is 
people tried and they never found a way of counting, and this was why this is the key breakthrough, that I found a 
way to count not the original problem, but the modified problem. I found a way to count modular forms and Galois 
representations. 
NARRATOR: 

This was only the first step, and already it had taken three years of Andrew's life. 
ANDREW WILES: 

My wife's only known me while I've been working on Fermat. I told her a few days after we got married. I 
decided that I really only had time for my problem and my family and when I was concentrating very hard and I 
found that with young children that's the best possible way to relax. When you're talking to young children they 
simply aren't interested in Fermat, at least at this age, they want to hear a children's story and they're not going to let 
you do anything else. 

So I'd found this wonderful counting mechanism and I started thinking about this concrete problem in terms of 
Iwasawa theory. Iwasawa theory was the subject I'd studied as a graduate student and in fact with my advisor, John 
Coates, I'd used it to analyse elliptic curves. 
NARRATOR: 

Andrew hopes that Iwasawa theory would complete his counting strategy. 
ANDREW WILES: 

Now I tried to use Iwasawa theory in this context, but I ran into trouble. I seemed to be up against a wall. I just 
didn't seem to be able to get past it. Well sometimes when I can't see what to do next I often come here by the lake. 
Walking has a very good effect in that you're in this state of concentration, but at the same time you're relaxing, 
you're allowing the subconscious to work on you. 
NARRATOR: 

Iwasawa theory was supposed to help create something called a class number formula, but several months 
passed and the class number formula remained out of reach. 
ANDREW WILES: 

So at the end of the summer of '91 I was at a conference. John Coates told me about a wonderful new paper of 
Matthias Flach, a student of his, in which he had tackled a class number formula, in fact exactly the class number 
formula I needed, so Flach using ideas of Kolyvagin had made a very significant first step in actually producing the 
class number formula. So at that point I thought this is just what I need, this is tailor-made for the problem. I put 
aside completely the old approach I'd been trying and I devoted myself day and night to extending his result. 
NARRATOR: 

Andrew was almost there, but this breakthrough was risky and complicated. After six years of secrecy, he 
needed to confide in someone. 
NICK KATZ: 

January of 1993 Andrew came up to me one day at tea, asked me if I could come up to his office, there was 
something he wanted to talk to me about. I had no idea what, what this could be. Went up to his office. He closed 
the door, he said he thought he would be able to prove Taniyama-Shimura. I was just amazed, this was fantastic. 
ANDREW WILES: 

It involved a kind of mathematics that Nick Katz is an expert in. 
NICK KATZ: 

I think another reason he asked me was that he was sure I would not tell other people, I would keep my mouth 
shut, which I did. 
JOHN CONWAY: 

Andrew Wiles and Nick Katz had been spending rather a lot of time huddled over a coffee table at the far end 
of the common room working on some problem or other. We never knew what it was. 
NARRATOR: 
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In order not to arouse any more suspicion, Andrew decided to check his proof by disguising it in a course of 
lectures which Nick Katz could then attend. 
ANDREW WILES: 

Well I explained at the beginning of the course that Flach had written this beautiful paper and I wanted to try to 
extend it to prove the full class number formula. The only thing I didn't explain was that proving the class number 
formula was most of the way to Fermat's last theorem. 
NICK KATZ: 

So this course was announced. It said calculations on elliptic curves, which could mean anything. Didn't 
mention Fermat, didn't mention Taniyama-Shimura, there was no way in the world anyone could have guessed that 
it was about that, if you didn't already know. None of the graduate students knew and in a few weeks they just 
drifted off because it's impossible to follow stuff if you don't know what it's for, pretty much. It's pretty hard even if 
you do know what's it for, but after a few weeks I was the only guy in the audience. 
NARRATOR: 

The lectures revealed no errors and still none of his colleagues suspected why Andrew was being so secretive. 
PETER SARNAK: 

Maybe he's run out of ideas. That's why he's quiet, you never know why they're quiet. 
NARRATOR: 

The proof was still missing a vital ingredient, but Andrew now felt confident. It was time to tell one more 
person. 
ANDREW WILES: 

So I called up Peter and asked him if I could come round and talk to him about something. 
PETER SARNAK: 

I got a phone call from Andrew saying that he had something very important he wanted to chat to me about, 
and sure enough he had some very exciting news. 
ANDREW WILES: 

Said I, I think you better sit down for this. He sat down. I said I think I'm about to prove Fermat's last theorem. 
PETER SARNAK: 

I was flabbergasted, excited, disturbed. I mean I remember that night finding it quite difficult to sleep. 
ANDREW WILES: 

But there was still a problem. Late in the spring of '93 I was in this very awkward position and I thought I'd got 
most of the curves to be modular, so that was nearly enough to be content to have Fermat's last theorem, but there 
was this, these few families of elliptic curves that had escaped the net and I was sitting here at my desk in May of 
'93 still wondering about this problem and I was casually glancing at a paper of Barry Mazur's and there was just 
one sentence which made a reference to actually what's a 19th-century construction and I just instantly realised that 
there was a trick that I could use, that I could switch from the families of elliptic curves I'd been using, I'd been 
studying them using the prime three, I could switch and study them using the prime five. It looked more complicated, 
but I could switch from these awkward curves that I couldn't prove were modular to a different set of curves which 
I'd already proved were modular and use that information to just go that one last step and I just kept working out the 
details and time went by and I forgot to go down to lunch and it got to about teatime and I went down and Nada was 
very surprised that I'd arrived so late and then, then she, I told her that I, I believed I'd solved Fermat's last theorem. 

I was convinced that I had Fermat in my hands and there was a conference in Cambridge organised by my 
advisor, John Coates. I thought that would be a wonderful place. It's my old home town, I'd been a graduate student 
there, be a wonderful place to talk about it if I could get it in good shape. 
JOHN COATES: 

The name of the lectures that he announced was simply 'Elliptic curves and modular forms' There was no 
mention of Fermat's last theorem. 
KEN RIBET: 

Well I was at this conference on L functions and elliptic curves and it was kind of a standard conference and all 
of the people were there, didn't seem to be anything out of the ordinary, until people started telling me that they'd 
been hearing weird rumours about Andrew Wiles's proposed series of lectures. 

I started talking to people and I got more and more precise information. I've no idea how it was spread. 
PETER SARNAK: 

Not from me, not from me. 
JOHN CONWAY: 

Whenever any piece of mathematical news had been in the air, Peter would say oh that's nothing, wait until you 
hear the big news, there's something big going to break. 
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PETER SARNAK: 
Maybe some hints, yeah. 

ANDREW WILES: 
People would ask me leading up to my lectures what exactly I was going to say and I said well, come to my 

lecture and see. 
KEN RIBET: 

It's a very charged atmosphere a lot of the major figures of arithmetical, algebraic geometry were there. 
Richard Taylor and John Coates, Barry Mazur. 
BARRY MAZUR: 

Well I'd never seen a lecture series in mathematics like that before. What was unique about those lectures were 
the glorious ideas how many new ideas were presented, and the constancy of his dramatic build-up that was 
suspenseful until the end. 
KEN RIBET: 

There was this marvellous moment when we were coming close to a proof of Fermat's last theorem, the tension 
had built up and there was only one possible punchline. 
ANDREW WILES: 

So after I'd explained the 3/5 switch on the blackboard, I then just wrote up a statement of Fermat's last 
theorem, said I'd proved it, said I think I'll stop there. 
JOHN COATES: 

The next day what was totally unexpected was that we were deluged by enquiries from newspapers, journalists 
from all around the world. 
ANDREW WILES: 

It was a wonderful feeling after seven years to have really solved my problem, I've finally done it. Only later 
did it come out that there was a, a problem at the end. 
NICK KATZ: 

Now it was time for it to be refereed which is to say for people appointed by the journal to go through and 
make sure that the thing was really correct. 

So for, for two months, July and August, I literally did nothing but go through this manuscript, line by line and 
what, what this meant concretely was that essentially every day, sometimes twice a day, I would E-mail Andrew 
with a question: I don't understand what you say on this page on this line. It seems to be wrong or I just don't 
understand. 
ANDREW WILES: 

So Nick was sending me E-mails and at the end of the summer he sent one that seemed innocent at first. I tried 
to resolve it. 
NICK KATZ: 

It's a little bit complicated so he sends me a fax, but the fax doesn't seem to answer the question, so I E-mail 
him back and I get another fax which I'm still not satisfied with, and this in fact turned into the error that turned out 
to be a fundamental error and that we had completely missed when he was lecturing in the spring. 
ANDREW WILES: 

That's where the problem was in the method of Flach and Kolyvagin that I'd extended, so once I realised that at 
the end of September, that there was really a, a problem with the way I'd made the construction I spent the fall trying 
to think what kind of modifications could be made to the construction. There, are lots of simple and rather natural 
modifications that any one of which might work. 
PETER SARNAK: 

And every time he would try and fix it in one corner it would sort of some other difficulty would add up in 
another corner. It was like he was trying to put a carpet in a room where the carpet had more size than the room, but 
he could put it in in any corner and then when he ran to the other corner it would pop up in this corner and whether 
you could not put the carpet in the room was not something that he was able to decide. 
NICK KATZ: 

I think he externally appeared normal but at this point he was keeping a secret from the world and I think he 
must have been in fact pretty uncomfortable about it. 
JOHN CONWAY: 

Well you know we were behaving a little bit like Kremlinologists. Nobody actually liked to come out and ask 
him how he's getting on with, with the proof, so somebody would say I saw Andrew this morning. Did he smile? 
Well yes, but he didn't look too happy. 
ANDREW WILES: 
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The first seven years I'd worked on this problem. I loved every minute of it. However hard it had been there'd 
been, there'd been setbacks often, there'd been things that had seemed insurmountable but it was a kind of private 
and very personal battle I was engaged in. 

And then after there was a problem with it doing mathematics in that kind of rather over-exposed way is 
certainly not my style and I have no wish to repeat it. 
NARRATOR: 

Other mathematicians, including his former student Richard Taylor, tried to help fix the mistake. But after a 
year of failure, Andrew was ready to abandon his flawed proof. 
ANDREW WILES: 

In September, I decided to go back and look one more time at the original structure of Flach and Kolyvagin to 
try and pinpoint exactly why it wasn't working, try and formulate it precisely. One can never really do that in 
mathematics but I just wanted to set my mind at rest that it really couldn't be made to work. And I was sitting here at 
this desk. It was a Monday morning, September 19th and I was trying convincing myself that it didn't work, just 
seeing exactly what the problem was when suddenly, totally unexpectedly, I had this incredible revelation. I, I 
realised what was holding me up was exactly what would resolve the problem I'd had in my Iwasawa theory attempt 
three years earlier was, it was the most, the most important moment of my working life. It was so indescribably 
beautiful, it was so simple and so elegant and I just stared in disbelief for twenty minutes. Then during the day I 
walked round the department, I'd keep coming back to my desk and looking to see it was still there, it was still there. 
Almost what seemed to be stopping the method of Flach and Kolyvagin was exactly what would make horizontally 
Iwasawa theory. My original approach to the problem from three years before would make exactly that work, so out 
of the ashes seemed to rise the true answer to the problem. So the first night I went back and slept on it, I checked 
through it again the next morning and by 11 o'clock I satisfied and I went down, told my wife I've got it, I think I've 
got it, I've found it, and it was so unexpected, she, I think she thought I was talking about a children's toy or 
something and said got what? and I said I've fixed my proof, I, I've got it. 
JOHN COATES: 

I think it will always stand as, as one of the high achievements of number theory. 
BARRY MAZUR: 

It was magnificent. 
JOHN CONWAY: 

It's not every day that you hear the proof of the century. 
GORO SHIMURA: 

Well my first reaction was: I told you so. 
NARRATOR: 

The Taniyama-Shimura conjecture is no longer a conjecture, and as a result Fermat's last theorem has been 
proved. But is Andrew's proof the same as Fermat's? 
ANDREW WILES: 

Fermat couldn't possibly have had this proof. It's a 20th-century proof. There's no way this could have been 
done before the 20th-century. 
JOHN CONWAY: 

I'm relieved that this result is now settled. But I'm sad in some ways because Fermat's last theorem has been 
responsible for so much. What will we find to take its place? 
ANDREW WILES: 

There's no other problem that will mean the same to me. I had this very rare privilege of being able to pursue in 
my adult life what had been my childhood dream. I know it's a rare privilege but if, if one can do this it's more 
rewarding than anything I could imagine. 
BARRY MAZUR: 

One of the great things about this work is it embraces the ideas of so many mathematicians. I've made a partial 
list: Klein, Fricke, Hurwitz, Hecke, Dirichlet, Dedekind... 
KEN RIBET: 

The proof by Langlands and Tunnell... 
JOHN COATES: 

Deligne, Rapoport, Katz... 
NICK KATZ: 

Mazur's idea of using the deformation theory of Galois representations... 
BARRY MAZUR: 

Igusa, Eichler, Shimura, Taniyama... 
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PETER SARNACK: 
Frey's reduction... 

NICK KATZ: 
The list goes on and on... 

BARRY MAZUR: 
Bloch, Kato, Selmer, Frey, Fermat. 
 

这是西方顶尖数学家证明费马大定理过程, 他们硬把椭园曲线帽子戴在费马大定理头上, 研究椭园曲线

就证明了费马大定理, 这是玩骗人的魔术, 只有他们相信但全界数学家跟他们起哄也相信, 中国不承认蒋春暄

1991年简单清楚的费马大定理证明. 没有办法现把蒋春暄和怀尔斯证明费马大定理列出来以供比较。让历史

去评价. 蒋春暄单枪匹马打天下, 斗不过国内外反华势力, 只好写文章上网让全世界所有人知道这个中国最大

丑闻。国内华罗庚接班人王元 2010-08主编<数学大辞典>王元宣布费马大定理是由怀尔斯解决, 蒋春暄去天

津访问陈省身被拒绝, 给他写信不回信, 陈省身是在中国宣传怀尔斯干将, 给去看望他的人放宣传怀尔斯的录

相带。1993年怀尔斯宣布他证明费马大定理,丘成桐 1993-12就在香港举办宣传怀尔斯国际会议. 
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Abstract 

In 1859 Riemann defined the zeta function 
( )s . From Gamma function he derived the zeta function with 

Gamma function ( )s . ( )s  and ( )s are the two different functions. It is false that ( )s  replaces ( )s . 

After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 
( )nJ 

 can 
replace RH. 

 
AMS  mathematics subject classification: Primary 11M26. 
In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



    
 ,       （1） 

where , 1s ti i    ，  and t  are real, P ranges over all primes. RZF is the function of the complex 

variable s  in 
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，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti  
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In 1998 Jiang proved [3] 

( ) 0s  ,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 
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where ( )s  is called Riemann zeta function with gamma function rather than 
( )s
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is the Jacobi theta function. The functional equation for ( )x  is 
1

12 ( ) ( ),x x x  
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and is valid for 0x  . 

Finally, using the functional equation of 
( )x , we obtain 
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From (9) we obtain the functional equation 
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The function ( )s  satisfies the following 

1. ( )s  has no zero for 1  ; 

2. The only pole of ( )s  is at 1s  ; it has residue 1 and is simple; 

3. ( )s  has trivial zeros at 2, 4, ...s     but ( )s  has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1 / 2  . 

The strip 0 1   is called the critical strip and the vertical line 1 / 2   is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of ( )s  lie on the critical line 1 / 2  , which is 
false. [3] 

( )s  and 
( )s

 are the two different functions. It is false that ( )s  replaces 
( )s

, Pati proved that is not 

all complex zeros of ( )s  lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 
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proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, then 

the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime theorems 
including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in primes[7,8]. 

In the same way we have a general formula involving ( )s  
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where ( )F y  is arbitrary. 

From (11) we obtain many zeta functions ( )s  which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 

and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT  which is 
Fermat’s marvelous proof[7, 13]. 

Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3
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We have the best asymptotic formula 
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It is the simplest theorem which is called the Heath-Brown problem [15]. 

（2）Let 0n P
 be an odd prime, 

2 m
 and 
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we have 

0 0

3 1 2
P PP P mP 

 
We have 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 



 Academia Arena 2016;8(3s)          http://www.sciencepub.net/academia 

 

216 

where 
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The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 

（1）Let 4n  , We have 
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We have Jiang function 
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Where 
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 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 
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It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 1,2,3,m   . 
We have Jiang function 
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if 

4 ( 1)P 
; 

( ) 2P P   
 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a generalization 
of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 
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（3）Let 2n b .  We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 
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Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 
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The Jiang function 
( )nJ 

 is closely related to 

the prime distribution. Using 
( )nJ 

 we are able to 
tackle almost all prime problems in the prime 
distributions. 
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Abstract 
Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book 

proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS, 

THES, MPIM, MSRI. In this paper using Jiang function 2 ( )J 
 we prove that the new prime theorems (991)-

（1040) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest 

solution 0( ,2) 1k N 
. This is the Book theorem. 

It will be another million years, at least, before we understand the primes. 
Paul Erdos (1913-1996) 
TATEMENT OF INTENT 
If elected. I am willing to serve the IMU and the international mathematical community as president of the 

IMU. I am willing to take on the duties and responsibilities of this function. 
These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its 

tasks related to organizing the 2014 ICM，fostering the development of mathematics, in particular in developing 
countries and among young people worldwide, representing the interests of our community in contacts with other 
international scientific bodies, and helping the IMU committees in their function. 

--IMU president, Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve 

methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s 
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple 
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: 

(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996 

Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang 
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s 
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and 
Tao theorem is false) to see. 

(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level. 

Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the 
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new 
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(990)]: (http://www.wbabin.net/xuan.htm#chun-
xuan) (http://vixra.org/numth/) 

 
 

The New Prime theorem（991） 
 

1902, ( 1, , 1)P jP k j j k     
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1902jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1902, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1902

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1902jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1902 2
1

( )
( ,2) : ~

(1902) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7k   
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 7k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 7k 
， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（992） 
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1904, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1904jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1904, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1904

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1904jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1904 2
1

( )
( ,2) : ~

(1904) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17,29,113,137,239,953k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,29,113,137,239,953k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,29,113,137,239,953k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,29,113,137,239,953k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（993） 
 

1906, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1906jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1906, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1906

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1906jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1906 2
1

( )
( ,2) : ~

(1906) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,1907k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,1907k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,1907k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,1907k  ， 
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(1) contain infinitely many prime solutions 
 

The New Prime theorem（994） 
 

1908, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1908jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1908, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1908

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1908jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1908 2
1

( )
( ,2) : ~

(1908) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,107k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19,37,107k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,19,37,107k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,7,13,19,37,107k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（995） 
 

1910, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1910jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1910, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1910

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1910jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1910 2
1

( )
( ,2) : ~

(1910) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,383k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,383k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11,383k 

. 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 3,11,383k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（996） 
 

1912, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1912jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1912, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1912

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1912jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1912 2
1

( )
( ,2) : ~

(1912) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,479,1913k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,479,1913k  , 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 3,5,479,1913k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,479,1913k 

， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（997） 
 

1914, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1914jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1914, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1914

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1914jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1914 2
1

( )
( ,2) : ~

(1914) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,23,67k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,23,67k 
, 
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(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3, 7,23,67k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 7,23,67k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（998） 
 

1916, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1916jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1916, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1916

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1916jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1916 2
1

( )
( ,2) : ~

(1916) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k  . 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（999） 
 

1918, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1918jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1918, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1918

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1918jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1918 2
1

( )
( ,2) : ~

(1918) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 
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Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

The New Prime theorem（1000） 
 

1920, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1920jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1920, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1920

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1920jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1920 2
1

( )
( ,2) : ~

(1920) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 
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Example 1. Let 3,5,7,11,13,17,31,41,61,97,193,241,641k   
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,17,31,41,61,97,193,241,641k  , 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,11,13,17,31,41,61,97,193,241,641k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,17,31,41,61,97,193,241,641k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1001） 
 

1922, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1922jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1922, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1922

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1922jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1922 2
1

( )
( ,2) : ~

(1922) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1002） 
1924, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1924jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1924, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1924

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1924jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1924 2
1

( )
( ,2) : ~

(1924) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,53,149k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,53,149k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,53,149k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,53,149k  ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1003） 
 

1926, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1926jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1926, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1926

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1926jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1926 2
1

( )
( ,2) : ~

(1926) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,19,643k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19,643k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19,643k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19,643k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1004） 
 

1928, ( 1, , 1)P jP k j j k   
 

 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1928jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1928, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1928

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1928jp + k j  is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1928 2
1

( )
( ,2) : ~

(1928) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1005） 
 

1930, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1930jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1930, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1930

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1930jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1930 2
1

( )
( ,2) : ~

(1930) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,1931k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11,1931k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,1931k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11,1931k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1006） 
 

1932, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1932jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1932, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1932

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1932jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1932 2
1

( )
( ,2) : ~

(1932) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,29,43,47,139,967,1933k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,29,43,47,139,967,1933k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5, 7,13, 29, 43, 47,139,967,1933k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5, 7,13, 29, 43, 47,139,967,1933k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1007） 
 

1934, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1934jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1934, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 
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1
1934

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1934jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1934 2
1

( )
( ,2) : ~

(1934) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1008） 
 

1936, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1936jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1936, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P  
， ( )P  is the number of solutions of congruence 

1
1936

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1936jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1936 2
1

( )
( ,2) : ~

(1936) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,17,23,89k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17,23,89k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17,23,89k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,23,89k  ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1009） 
 

1938, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1938jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1938, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1938

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1938jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1938 2
1

( )
( ,2) : ~

(1938) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,103k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,103k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,103k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,103k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1010） 
 

1940, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1940jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
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1940, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1940

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1940jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1940 2
1

( )
( ,2) : ~

(1940) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,11,971k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11,971k  , 

(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,11,971k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,11,971k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1011） 
 

1942, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
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Using Jiang function we prove that 
1942jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1942, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1942

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1942jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1942 2
1

( )
( ,2) : ~

(1942) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1012） 
 

1944, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
1944jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1944, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1944

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1944jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1944 2
1

( )
( ,2) : ~

(1944) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,19,37,109,163,487k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,19,37,109,163,487k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,19,37,109,163,487k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,19,37,109,163,487k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1013） 
 

1946, ( 1, , 1)P jP k j j k     
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1946jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1946, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1946

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1946jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1946 2
1

( )
( ,2) : ~

(1946) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1014） 
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1948, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1948jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1948, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1948

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1948jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1948 2
1

( )
( ,2) : ~

(1948) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,1949k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,1949k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1949k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,1949k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（1015） 
 

1950, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1950jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1950, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1950

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1950jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1950 2
1

( )
( ,2) : ~

(1950) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,11,31,79,131,151,1951k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,11,31,79,131,151,1951k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,31,79,131,151,1951k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,7,11,31,79,131,151,1951k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1016） 
 

1952, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1952jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1952, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1952

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1952jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1952 2
1

( )
( ,2) : ~

(1952) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17,977k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17,977k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17,977k  . 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,977k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1017） 
 

1954, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1954jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1954, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1954

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1954jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1954 2
1

( )
( ,2) : ~

(1954) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
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(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1018） 
 

1956, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1956jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1956, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1956

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1956jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1956 2
1

( )
( ,2) : ~

(1956) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13,653k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 3,5,7,13,653k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,653k  . 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,653k  ， 
(1) contain infinitely many prime solutions 
 
 

he New Prime theorem（1019） 
 

1958, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1958jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1958, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1958

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1958jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1958 2
1

( )
( ,2) : ~

(1958) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3, 23k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3, 23k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,23k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,23k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1920） 
 

1960, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1960jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1960, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1960

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P  
 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1960jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1960 2
1

( )
( ,2) : ~

(1960) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 
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Example 1. Let 3,5,11,29,71,197,491k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11,29,71,197,491k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,11,29,71,197,491k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,11,29,71,197,491k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1021） 
 

1962, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1962jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1962, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1962

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1962jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1962 2
1

( )
( ,2) : ~

(1962) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,19k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,19k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1022） 
 

1964, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1964jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1964, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1964

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1964jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1964 2
1

( )
( ,2) : ~

(1964) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,983k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,983k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,983k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,983k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1023） 
 

1966, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1966jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1966, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1966

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1966jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1966 2
1

( )
( ,2) : ~

(1966) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1024） 
 

1968, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1968jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1968, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1968

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1968jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1968 2
1

( )
( ,2) : ~

(1968) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,13,17,83k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,17,83k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,17,83k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,83k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1025） 
 

1970, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1970jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1970, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1970

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1970jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1970 2
1

( )
( ,2) : ~

(1970) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,11k 

， 
(3) contain infinitely many prime solutions 
 
 

The New Prime theorem（1026） 
 

1972, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1972jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1972, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1972

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1972jp

+
k j

 is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1972 2
1

( )
( ,2) : ~

(1972) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,59,1973k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,59,1973k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,59,1973k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,59,1973k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1027） 
 

1974, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1974jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1974, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1974

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1974jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1974 2
1

( )
( ,2) : ~

(1974) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,7,43,283,659k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,43,283,659k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 7,43,283,659k 
. 

From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3, 7,43,283,659k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1028） 
 

1976, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1976jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1976, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1976

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1976jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1976 2
1

( )
( ,2) : ~

(1976) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,53k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,53k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,53k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,53k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1029） 
 

1978, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1978jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1978, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1978

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1978jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1978 2
1

( )
( ,2) : ~

(1978) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3, 47,1979k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3, 47,1979k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,47,1979k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,47,1979k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1030） 
 

1980, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1980jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1980, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 
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1
1980

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1980jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1980 2
1

( )
( ,2) : ~

(1980) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,7,11,13,19,23,31,37,61,67,199,331,397k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,19,23,31,37,61,67,199,331,397k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,11,13,19,23,31,37,61,67,199,331,397k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,19,23,31,37,61,67,199,331,397k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1031） 
 

1982, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1982jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1982, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1982

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1982jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1982 2
1

( )
( ,2) : ~

(1982) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1032） 
 

1984, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1984jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
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1984, ( 1, , 1)P jP k j j k   
.               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1984

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1984jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1984 2
1

( )
( ,2) : ~

(1984) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,17k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,17k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1033） 
 

1986, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 
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Using Jiang function we prove that 
1986jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1986, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1986

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1986jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1986 2
1

( )
( ,2) : ~

(1986) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,1987k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,1987k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,1987k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,1987k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1034） 
 

1988, ( 1, , 1)P jP k j j k   
 

 
Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1988jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1988, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1988

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1988jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1988 2
1

( )
( ,2) : ~

(1988) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,5,29k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,29k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,29k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,29k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1035） 
 



 Academia Arena 2016;8(3s)          http://www.sciencepub.net/academia 

 

265 

1990, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1990jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1990, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1990

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1990jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1990 2
1

( )
( ,2) : ~

(1990) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,11k 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11k  ， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（1036） 
 

1992, ( 1, , 1)P jP k j j k   
 

 
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1992jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1992, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1992

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1992jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1992 2
1

( )
( ,2) : ~

(1992) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,7,13,167,499,997,1993k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,167,499,997,1993k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,167,499,997,1993k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,7,13,167,499,997,1993k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1037） 
 

1994, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1994jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1994, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1994

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1994jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1994 2
1

( )
( ,2) : ~

(1994) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
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From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1038） 
 

1996, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
1996jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1996, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
1996

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1996jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1996 2
1

( )
( ,2) : ~

(1996) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,5,1997k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,1997k 

, 
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(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1997k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1997k 

， 
(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1039） 
 

1998, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1998jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1998, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
，

( )P
 is the number of solutions of congruence 

1
1998

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
1998jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P  
. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1998 2
1

( )
( ,2) : ~

(1998) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 3,7,19,223,1999k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19,223,1999k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19,223,1999k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,19,223,1999k 

， 
(1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1040） 
 

2000, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 
2000jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
2000, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P  
， ( )P  is the number of solutions of congruence 

1
2000

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes P  

such that each of 
2000jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

2000 2
1

( )
( ,2) : ~

(2000) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( ,2) 1k N 
. 

Example 1. Let 
3,11,17,41,101,251,401k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,11,17,41,101,251,401k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,17,41,101,251,401k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11,17,41,101,251,401k  ， 
(1) contain infinitely many prime solutions 
 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ   and Jiang prime k -tuple 

singular series 

1
2 ( ) 1 ( ) 1

( ) 1 (1 )
( )

k
k

k P

J P
J

P P

  


 


 

     
  [1,2], which can count the number of prime 

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series 

( ) 1
( ) 1 (1 ) k

P

P
H

P P


  

    
   is false [3-17], which cannot count the number of prime numbers[3]. 
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Szemer é di’s theorem does not directly to the 
primes, because it cannot count the number of primes.  

Cram é r’s random model cannot prove any prime 

problems. The probability of 
1/ log N

 of being prime 

is false. Assuming that the events “ P  is prime”, 

“ 2P   is prime” and “ 4P   is prime” are 

independent, we conclude that P , 2P  , 4P   are 

simultaneously prime with probability about 
31/ log N . There are about 

3/ logN N  primes less 

than N . Letting N    we obtain the prime 
conjecture, which is false. The tool of additive prime 
number theory is basically the Hardy-Littlewood prime 
tuples conjecture, but cannot prove and count any 
prime problems[6]. 

Mathematicians have tried in vain to discover 
some order in the sequence of prime numbers but we 
have every reason to believe that there are some 
mysteries which the human mind will never penetrate. 

Leonhard Euler(1707-1783) 
 

It will be another million years, at least, before 
we understand the primes. 

Paul Erdos(1913-1996) 
 
 

 

Jiang’s function 1( )nJ   in prime distribution 
 

Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 
Dedicated to the 30-th anniversary of hadronic mechanics 
 

Abstract 
We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
              （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 

 
 
Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 

reason to believe that there are some mysteries which the human mind will never penetrate. 
Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
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Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as    ，            （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 1, , ( )i    . We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 0,1,2,n   . 

（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. 
We have 

(mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                （3） 

where ih
denotes the number of primes iP N

 in i iP n h 
 0,1,2,n   , ( )N  the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 

prime distribution. 

Let 30   and (30) 8  . From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 

0,1,2,n  
          （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many primes 

1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where ( )P  is called sieve constant and denotes the number of solutions for the following congruence 

1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using ( )P  we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
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Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

（8）is called a unite prime formula in prime distribution. Let 1, 0n k  , 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes , 2P P  (300BC). 
From (6) and (7) we have Jiang’s function 

2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N    in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a prime 

equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N
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2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations 
, 2, 6P P P 

. 
From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. Since 

2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime equations. 

Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 






 

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N    in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
             . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P


    

 

3( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. Since 

3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 
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Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
, 

where 
( ) 3( 1)P P  

 if 

1

32 1(mod )
P

P



; 

( ) 0P 
 if 

1

32 1(mod )
P

P


 ; 
( ) 1P P  

 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 


      
 

where 
( ) 2( 1)P P  

 if 
1(mod4)P 

; 
( ) 2( 3)P P  

 if 
1(mod8)P 

; 
( ) 0P 

 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 

3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3, , kP P

 are 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3, , kP P
 

are primes. 
From (8) we have the best asymptotic formula 
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 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
 

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
  

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P   is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n 

, 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n 
 is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n  

, 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n    is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n  

, 

where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n    is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n  

, 

where 
11 ( ), 3, 4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n    is always divisible by 11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n    is always divisible by 13. 

6. 
2 16, , , ,P P n P n P n  

, 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n    is always divisible by 17. 

7. 
2 18, , , ,P P n P n P n  

, 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n  
 is always divisible by 19. 

Example 10. Let n  be an even number. 

1. 
, , 1,3,5, ,2 1iP P n i k  

, 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

2. 
, , 2, 4,6, ,2iP P n i k  

. 
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From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is prime 

equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

 
 
 

In the same way we can prove 
2

2 3 12P P P 
 

which has the same Jiang’s function. 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 
primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 
numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
simplest twin primes. They conjecture that the prime 
distribution is randomness [12-25], because they do not 
understand theory of prime numbers. 
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The Hardy-Littlewood prime k-tuple conjecture is false 
 
Chun-Xuan Jiang 
 
P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k -

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture. 
 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P  

, 
( )P

 is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 
1, , 1q p 

.                  （3） 

If ( ) 1P P    then 2 ( ) 0J  
. There exist infinitely many primes P  such that each of iP n

 is prime. 

If 
( ) 1P P  

 then 2 ( ) 0J  
. There exist finitely many primes P  such that each of iP n

 is prime. 

2 ( )J 
 is a subset of Euler function ( )  [2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
  （4） 
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( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 
2, , 2k P P 

, twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P    if 2P  ,                （6） 
Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 

  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 

Example 2. Let 3, , 2, 4k P P P   . 
From (3) we have 

(2) 0, (3) 2                       （9） 
From (2) we have 

2 ( ) 0J  
.                        （10） 

It has only a solution 3P  , 2 5P   , 4 7P   . One of 
, 2, 4P P P 

 is always divisible by 3. 

Example 3. Let 
4, ,k P P n  , where 2,6,8n  . 

From (3) we have 

(2) 0, (3) 1, ( ) 3P      if 3P  .              （11） 
Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 
2,6,8,12n 

. 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P        if 5P           （14） 
Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 

There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have the 
best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 
2,6,8,12,14n 

. 
From (3) and (2) we have 
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2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One of 

P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 

 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 

( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P
 is the number of solutions of congruence 

1

1
( ) 0 (mod )

k

i
i

q n P



  

，  1, ,q P  .             （21） 

From (21) we have ( )P P   and ( ) 0H k  . For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 
2, , 2k P P  , twin primes theorem 

Frome (21) we have 

( ) 1P                       （22） 
Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 
3, , 2, 4k P P P  

. 
From (21) we have 

(2) 1, ( ) 2P    if 2P                 （25） 
Substituting (25) into (20) we have 

2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

  （27） 
which is false see example 2. 
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Conjecutre 3. Let 4k  , ,P P n , where 2,6,8n  . 
From (21) we have 

(2) 1, (3) 2, ( ) 3P      if 3P              （28） 
Substituting (28) into (20) we have 

3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （30） 
Which is false see example 3. 

Conjecture 4. Let 
5, ,k P P n 

, where 
2,6,8,12n 

 
From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P      
 if 5P               （31） 

Substituting (31) into (20) we have 
4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
Substituting (32) into (19) we have asymptotic formula 

 
4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P      
 if 5P         （34） 

Substituting (34) into (20) we have 
5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 
 
 

Conclusion.  

The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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