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Abstract: We define that prime equations

fl(Pl”R)”fk(PI’R) (5)
o o . PP . o
are polynomials (with integer coefficients) irreducible over integers, where " are all prime. If Jiang’s

Jn+1 (a)) = O Jn+1 (a)) * O

function

I

then (5) has finite prime solutions. If then there are infinitely many primes

> >7 7 such that fl’ fk are primes. We obtain a unite prime formula in prime distribution

7, (N,n+1) =|{Pl,--~,Pn SN:fio fi arekprimes}|

k k n
— H (degj;)—l ~ Jn+llga))a) ]Z[
i1 nlg™" (@) log™" N (8)

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6].
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough
to be useful.

(1+o0(1)).
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Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every
reason to believe that there are some mysteries which the human mind will never penetrate.
Leonhard Euler

1t will be another million years, at least, before we understand the primes.
Paul Erdos

Suppose that Euler totient function

#w) =T (P-D)=o0

s @0, (D
w=I1P
where 2<P s called primorial.
Suppose that (@,7)=1 , Where =1 4(@) . We have prime equations
B=on+l,, F, =on+h, 2
n=0,1,2,
where

(2) is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions.
We have
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) _ (V)
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P=h; (mod @)

——(I+o(1)).

) (3
VA ) < ) = . = .
where ~ % denotes the number of primes F<N in F=anth n=0,12, , 7(N) the number of
primes less than or equal to N

We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in
prime distribution.

Let @ =30 and #(30)=8 . From (2) we have eight prime equations
B =30n+1 P, =30n+7 P, =30n+l11 P, = 30n+13 P = 30n+17

P = 30n+19 P = 30n+23 B = 30n+29 n=0,12,-

D)
Every equation has infinitely many prime solutlons.
THEOREM. We define that prime equations
fi(})l”})n)”f;{(})l”})n) (5)

are polynomials (with integer coefficients) irreducible over integers, where ~ !’

Sy (@) #0

>*n are primes. If Jiang’s
function Sp(@)=0

ok such that each Je is a prime.
PROOF. Firstly, we have Jiang’s function [1-11]

Jya(@) = TI[(P=1)" = (P)]
) (6)
where £ (P) is called sieve constant and denotes the number of solutions for the following congruence
k
gfi(%a"'aqn) =0 (mOdP)

, D
where & =1,---,P—1,--,q, =1,...,p_1'

(@) denotes the number of sets of LB prime

S(Byes B fi(Boros B)

then (5) has finite prime solutions. If then there exist infinitely many primes

equations  such  that
are prime equations. If e 1(0)) =0 then (5) has finite prime solutions. If
”*1(0)) 0 using x(P) we sift out from (2) prime equations which can not be represented Pl’.”’P” , then

residual prime equations of (2) are LT prime equations such that KB B fi(Beo B are

prime equations. Therefore we prove that there exist infinitely many primes LT
BBy fiRossB)
Secondly, we have the best asymptotic formula [2,3,4,6]

7, (N,n+1) =|{Pl,--~,Pn SN:fio fi arekprimes}|

— ‘ -1 % Jn+1(0))wk Nn
—1_1[ (deg /i) <~ 57 (o) Tog™ AR

such that

(8

(8) is called a unite prime formula in prime distribution. Let n=Lk=0 , £ (@) = §(w)
have prime number theorem

. N
7,(N,2)=[{ B < N : Bis prime}| =@(1+0(1)).

. From (8) we

9
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Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this
old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by
this theorem.

Example 1. Twin primes P.P+2 (300BC).
From (6) and (7) we have Jiang’s function

Jy(@)=I(P-2) %0
J,(@)#0 . '

Since in (2) exist infinitely many P prime equations such that P+2 s a prime equation.

Therefore we prove that there are infinitely many primes P suchthatP+2 isa prime.

Let @ =30 and £ (30)=3 . From (4) we have three P prime equations
P, =30n+11, P =30n+17, £ =30n+29

From (8) we have the best asymptotic formula

7,(N,2) =|{P< N': P+2 prime}| = (@ N

¢ () log’ N

1 N
- 23%[1— T j e (1+0(1)).

In 1996 we proved twin primes conjecture [1]

(1+o())

©__N_ 1o

2 2
Remark. £ (@) denotes the number of P prime equations, ¢ (@) log" N

the number of

solutions of primes for every P prime equation.

N=F+P,

Example 2. Even Goldbach’s conjecture 2. Every even number N 26 s the sum of two primes.

From (6) and (7) we have Jiang’s function

P-1
Jy@)=(P-2)11

#0

J,(w)#0 .

. : e . . -P . .
Since s N>y (2) exist infinitely many A prime equations such that N-R 1S a prime

equation. Therefore we prove that every even number N 26 s the sum of two primes.
From (8) we have the best asymptotic formula

. Jy (o N
7,(N,2) = ‘{Pl <N,N-PR prlme}‘ = ;2((63) o ¥ (1+o(1)).
—onfi-—t g el (1+0(1))
2 2
3<P (P-1)" JpN P-2log" N
In 1996 we proved even Goldbach’s conjecture [1]
E . . P,P+2 P+6
xample 3. Prime equations .

From (6) and (7) we have Jiang’s function
Jy(@) = [I(P=3)%0

>

J,(®)
J,(w)#0

is denotes the number of P rime equations such that P+2 and P+6 are prime equations. Since
p q p q

in (2) exist infinitely many P prime equations such that P+2 and P+6 e prime equations.



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

Therefore we prove that there are infinitely many primes P such that P+2 and P+0 are primes.
=30, J,(30)=2

. From (4) we have two P prime equations

P,=30n+11, P.=30n+17

From (8) we have the best asymptotic formula

Let

J,(w)o®> N
¢’ (@) log’ N

,(N,2) = |{P <N:P+2,P+6are primes}| = (1+o0(1)).

Example 4. Odd Goldbach’s conjecture N=R+h+h . Every odd number N 29 is the sum of three primes.

From (6) and (7) we have Jiang’s function

_ 2 _ 1
J3(a))—31;IP(P 3P+3))11:]Iv(1 m}to
Since J3(@)#0
N-P-P

2 is a prime equation. Therefore we prove that every odd number N 29 is the sum of three primes.
p
From (8) we have the best asymptotic formula

as N> i (2) exist infinitely many pairs of A and F prime equations such that

Jy(w)o N°
2¢° (o) log’ N

1 1 N?
=T l+—— [[T| 1-— — (1+0(1))
3<P (P-1)" )rv P’ -3P+3)log’ N

Example 5. Prime equation B =RpE+2 .
From (6) and (7) we have Jiang’s function

J3(a)):3lgu(P2—3P+2)¢O

7,(N,3)=|{B,P, <N :N-P - P, prime}| = (1+o(1))

J(w . P, P . . P . . . .
3( ) denotes the number of pairs of *! and ~ 2 prime equations such that ~ 3 is a prime equation. Since

Jy(@)#0 .

e . P P . . P . . .
in (2) exist infinitely many pairs of “! and ~ 2 prime equations such that ~3 is a prime equation.

Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula

Jy(w)o N°
4¢’(w) log’ N

7,(N,3)=|[{B,P, < N:BP, +2 prime}| = (1+o(1)).

Note. deg (PIPZ) =2 .

_ p3 3
Example 6 [12]. Prime equation B=F+2F .

From (6) and (7) we have Jiang’s function

Ji(@)= [ (P=1) = z(P)] %0

<P
L} L}
where y(P)=3(P-1) i 23 =1(mod P) : y(P)=0 " 23 #1(mod P) : y(P)=P-1 otherwise.
. J(@)#0 . . P . . P
Since 3 in (2) there are infinitely many pairs of ~! and ~ 2 prime equations such that 3 is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula
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. Ji(w)o N°
— . p3 3 _ Y3
7,(N3)=[{R,P, <N: P +2P, prime}| = o7 @) og' N (1+0(1)).
_ p4 2
Example 7 [13]. Prime equation B=R+(H+]) .
From (6) and (7) we have Jiang’s function
Jy(@)=TL[(P=1) = 2(P)]#0

where X(P)=2(P=1) ., P=1(mod4) : x(P)=2(P-3) ., P=1(mod8) : X(P)=0 4 owise.
Since /5 (@)#0 in (2) there are infinitely many pairs of A and F prime equations such that l is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula

2
S@o NT_ o),
8¢ (w) log” N
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of
length k.
P.P,=P+d,P,=F+2d, P, =P +(k-1d.(Bd)=1
From (8) we have the best asymptotic formula

7,(N2)={{P, <N:B,P, +d, P +(k—1)d are primes}|

7,(N,3)=[{B,B,<N: P, prime}|=

aom

J ()™ N
= 2(k ) — (1 +o0(1)).
¢ (0) log' N
If Jy(@)=0 then (10) has finite prime solutions. If Jy(@) %0 then there are infinitely many primes ~!

such that By By are primes.
To eliminate 4 from (10) we have
P=2P P, P=(j-DB-(j-2)R.3<j<k
From (6) and (7) we have Jiang’s function
Jy(@)= I (P=1) IL(P=T)(P—k+1)#0
/5 (@)#0 in (2) there are infinitely many pairs of A and F prime equations such that IR are

..’B{

Since

. . e . . P P, P,
prime equations. Therefore we prove that there are infinitely many pairs of primes ~ ! and ~ 2 such that™ 3’
are primes.

From (8) we have the best asymptotic formula

7, (N.3)=[{B,P, < N:(j—)P, - (j—2)B, prime,3 < j <k}
k-2 2 1 Pk—z Pk—z P_ 1 2
SO (o) =3 I o )
2¢" (w) log" N 22<P<k (P—1)"" k<P (P-1) log" N

P,P+2,P+2*

(1+o(1))

Example 9. It is a well-known conjecture that one of is always divisible by 3. To generalize

above to the K — primes, we prove the following conjectures. Let 7 be a square-free even number.

| P.P+n,P+n’
3|(n+1)

>

where

P,P+n,P+n’

From (6) and (7) we have /,(3)=0 , hence one of is always divisible by 3.
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) P,P+n,P+n’,--,P+n’

whepe Jl(n+0).b=2.3.

>

_ 5 .y
From (6) and (7) we have JZ(S)_O,henceoneofP’P+”ap+n oo, P+n
3 P,P+n,P+n’,--,P+n°
where 7|(I’l+b),b:2,4_

is always divisible by 5.

>

6

— 2
From (6) and (7) we have S,(N=0 , hence one of P,P+n,P+n’, -, P+n is always divisible by 7.

g P.P+n,Ptn’,e Ptn”
 |(n+b),b=3,4,5,9.
From (6) and (7) we have S, =0
s P,P+n,P+n’,--,P+n"

. 13|(n+6),6=2,6,7,11.
From (6) and (7) we have /,(13)=0
¢ P P+n,P+n’, - P+n'

. 17|(n+b),b=3,5,6,7,10,11,12,14,15.
From (6) and (7) we have 17 =0
5 P,P+n,P+n’,--,P+n"
,19|(n+b),=4,5,6,9,16.17.
From (6) and (7) we have /,(19)=0

Example 10. Let /7 be an even number.

1 P,P+n',i=1,3,5,--2k+1
J,(w)#0

wher

P,P+n,P+n’,---,P+n"

, hence one of is always divisible by 11.

wher

P,P+n,P+n’,--,P+n"

, hence one of is always divisible by 13.

wher

P,P+n,P+n’,---,P+n'"

, hence one of is always divisible by 17.

wher

P,P+n,P+n’,--,P+n"

, hence one of is always divisible by 19.

From (6) and (7) we have

P,P+n . k
arc primes fOl' any .
, P.P+n',i=2,4,6,-,2k

Jz(wj #0

. Therefore we prove that there exist infinitely many primes P such that

From (6) and (7) we have
P,P+n

. Therefore we prove that there exist infinitely many primes P such that
are primes for any k.

Example 11. Prime equation 2PZ - Pl + P3
From (6) and (7) we have Jiang’s function

J3(a)):3<1'£(P2—3P+2)¢0
Jy(@)#0 .

Since in (2) there are infinitely many pairs of A and F prime equations such that B is prime

equations. Therefore we prove that there are infinitely many pairs of primes A and F such that l is a prime.
From (8) we have the best asymptotic formula
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7,(N.3)=|{R. P, <N : P, prime}| =

2P} =P, +P

In the same way we can prove

Jiang’s function is accurate sieve function. Using
it we can prove any irreducible prime equations in
prime distribution. There are infinitely many twin
primes but we do not have rigorous proof of this old
conjecture by any method [20]. As strong as the
numerical evidence may be, we still do not even know
whether there are infinitely many pairs of twin primes
[21]. All the prime theorems are conjectures except the
prime number theorem, because they do not prove the
simplest twin primes. They conjecture that the prime
distribution is randomness [12-25], because they do not
understand theory of prime numbers.
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The Hardy-Littlewood prime k-tuple conjecture is false
Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan@vip.sohu.com
Abstract
Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k.

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture.

(A) Jiang prime k -tuple theorem [1, 2].
We define the prime k -tuple equation
p,pt+n ’ QP)
An,i=1,k—1
where | !

we have Jiang function [1, 2]

Jo(@) =TI(P=1=(P) o

o=I1P

where P x(P) is the number of solutions of congruence

k-1
Hg+n)=0 odP) ¢y .

g XP)<P-1, J,(@)#0
If x(P)=P-1 then J,(0)=0

J2 (a)) is a subset of Euler function ¢(a)) [2].

e . P+n . .
. There exist infinitely many primes P such that each of " 1S prime.

. There exist finitely many primes P such that each of Pn, is prime.

If £ (@) #0 , then we hae the best asymptotic formula of the number of prime P [1,2]
J N N
7, (N,2)=[{P< N:P+n = prime}|~ =2 (f’)w = C(k)—
¢ (w) log" N log" N (4

Hw) =T1(P-1)

Clk) = H(l—wj (1—%
, P P

(5
Example 1. Let k=2,P,P+2

From (3) we have
X2)=0, x(P)=1;p>2 6
Substituting (6) into (2) we have
Jy(@)=T1(P=2)%0

, twin primes theorem.

7

There exist infinitely many primes P such that P+2 is prime. Substituting (7) into (4) we have the best
asymptotic pormula
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1 N
7, (N,2)=fP<N:P+2=prime;|~211(1- .
{2 primel|~2J1( (P—l)z)logzN (8

Example 2. Let k=3, P’P+2’P+4.

From (3) we have

2(2)=0, x(3)=2 9)

From (2) we have

So(@) =0 (10)

It has only a solution P:3, P+2:5, P+4=T 0Oneof P, P+2,P+4 is always divisible by 3.
Example 3. Let k=4, P’P+n,where n =2’6’8.

From (3) we have

}{(2)=0,){(3)=1,){(P)=3ifP>3' (1

Substituting (11) into (2) we have

Jy(@)=11(P-4)#0
(@) =[P4 20 .

There exist infinitely many primes P such that each of P +7 is prime.
Substituting (12) into (4) we have the best asymptotic formula

3
7,(N,2) =‘{PS N:P+n =prime} ~£H P (P_44) ]Y
3 /5 (P-1)" log" N (13)
Example 4. Let k= S, P, P+n yhere " =2’6’8’12.
From (3) we have
2(2)=0,7Q)=1 () =3, (P)=4 4, P>5 (14)
Substituting (14) into (2) we have
Jy(w)= E7(P—5) =0

15

There exist infinitely many primes P such that each of P +7 is prime. Substituting (15) into (4) we have the
best asymptotic formula

15 _(P-5P" N

7[5(N,2)=HPSN:P+n=prime} ~%1_>[( )5 -

2 P21 (P-1) log’ N (16)

Example 5. Let k:6, P, P+n,where n=2’6’8’12’14.

From (3) and (2) we have

;((2)=(), 1(3)=17 Z(S)=47 JZ(S):O (17)

It has only @ solution P=5’ P+2:7’ P+6=ll’ P+8=l3’ P+12=l7’ P+14=19 o0pe of
P+n i always divisible by 5.

(B) The Hardy-Littlewood prime k -tuple conjecture[3-14].
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999).

We define the prime k -tuple equation
P,P+n,

20n,i=1 k-1
where .
In 1923 Hardy and Littlewood conjectured the asymptotic formula

18
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7zk(N,2)=‘{PSN:P+nl. =prime}‘ ~ H (k) ]\k/
log" N (19
where
—k
H(k):H(l—V(P)j(l—lj
3 P P (20)

v(P) is the number of solutions of congruence
k-1

M(g+n)=0 (modP) 4y . p o
v(P)<P  H(k)#0

From (21) we have . For any prime k -tuple equation there exist infinitely many

primes P such that each of P +n is prime, which is false.
Conjectore 1. Let k=2,P,P+2
Frome (21) we have

, twin primes theorem

v(P)=1 (22)
Substituting (22) into (20) we have
P
HQ2)=T1—
P P-1 (23)
Substituting (23) into (19) we have the asymptotic formula
P N
7,(N,2)=[{P<N:P+2= prime}|~ T———
P P-1log" N (24)
which is false see example 1.
Conjecture 2. Let k=3,P,P+2, P+ 4.
From (21) we have
v(2)=1, V(P)=2ifp>2 (25)
Substituting (25) into (20) we have
P*(P-2
HE)=4n L2
P (P=) (26
Substituting (26) into (19) we have asymptotic formula
2 J—
7r3(N,2)=|{PsN;P+2=prime,P+4=prim}|~4g3%log% )
B B (27
which is false see example 2.
Conjecutre 3. Let k= 4, P,P+n , where n=2,6,8 .
From (21) we have
v(2)=1 v(3)=2, v(P)=3 if P>3 (28)
Substituting (28) into (20) we have
27 P (P—
H(4) = 27T (—f’)
2 7 (P-]) (29)

Substituting (29) into (19) we have asymptotic formula
2 PY(P-
27 (Pl logt N (30)

Which is false see example 3.

10
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Conjecture 4. Let k=5 P,P+tn , Where n=2,6,812
From (21) we have
v(2)=1 v(3)=2, v(5)=3, V(P)=4 ;1 P>5 a1
Substituting (31) into (20) we have
15* PY (P-4
H(5) = is I (—5)
4 s (P (32)
Substituting (32) into (19) we have asymptotic formula
15 P (P-4 N
7z5(N,2)=HPSN:P+n=prime}‘~—5H ( 5) :
4" rs (P=1) log” N (33,
Which is false see example 4.
Conjecutre 5. Let k= 6, P P+n,where n= 2’6’8’12’14.
From (21) we have
V(2)=17 V(3)=27 V(5)=47 V(P)=5 lfP>5 (34)
Substituting (34) into (20) we have
15° (P- 5)13‘5
H(6)= - [M1—
27 (P (35)
Substituting (35) into (19) we have asymptotic formula
15 _(P-5P N
7[6(N,2)=‘{P£N:P+n=prime}‘~TH( )6 -
27 p>s (P-1) log” N (36)

which is false see example 5.

Conclusion. The Hardy-Littlewood prime k -tuple
conjecture is false. The tool of addive prime number
theory is basically the Hardy-Littlewood prime tuples

conjecture. Jiang prime k -tuple theorem can replace

Hardy-Littlewood prime k -tuple Conjecture. There
cannot be really modern prime theory without Jiang
function.
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Automorphic Functions And Fermat’s Last Theorem(1)
Chun-Xuan Jiang

P.O.Box 3924,Beijing 100854,China
jiangchunxuan@sohu.com

Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous

proof, which this margin is too small to contain.”
This means: ~ +y'=2'(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 3P ang P , Where P isan odd prime.
The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[ri tiJij=Zn: SJ
i=1 i=1

1
where J denotes a 7 th root of unity, J' =1 , I is an odd number, f are the real numbers.

i is called the automorphic functions(complex hyperbolic functions) of order / with 7 —1 variables [1-7].

n-1

2 N
Sl.:l[e/‘+22 (-1 " cos(0j+(—l)j—(l DIy,
n j=1 n

2
where i=1,2,...,n;
n—1 n—1 .
A=>"t, B, => t,(-D)¥ cos ZL%
a-1 s a=1 n ’
3)
n-1
n—l . 2
0,=(-D"Y 1, (-1 sin=I% A+2) B, =0
a=1 Jj=1

>

(2) may be written in the matrix form

12
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1 1 0 0
S, 1 —cosZ —sinZ —sinL_l)ﬁ r 4 T
s n n 2n e
’ 27 .27 . (n-Drx 2¢" cos 6,
S |=—| 1 COs— sin— -+ —sin——— 5 .
n n n n 2e" sin g,
5, (n-Dr (n-Dr (n-1’zn ;
1 cos sin o —sin—2 7% | | 2exp B, sind,
L n n 2n L 2 2 4)
where (n=1)/2 is an even number.
From (4) we have its inverse transformation
M1 1 1 1 7 _S _
e’ z 27 n-rx 1
1 —Ccos— cos— ce COS———
e” cos 6, n n n S2
e’ sing, =0 —sinZ sin 2z sin (n=Dr S
n n n 3
exp(B,_,)sin(0, ) 5
2 2 0 _Sin(n—l)iz' sin (n-DHrx o —sin (n-D'x S
_ 2 . TERRET )
From (5) we have
n n—1 .
A _ B‘- _ ij Uﬂ
e —ZSI. e ’cosHJ—SI+ZSH1.(—1) COS—
=l i=1 n
B n—1 ljﬂ.
e’ sind, =(-1)/" Y8, (1) sin=—
= n (6

In (3) and (6) l and S, have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT.

Using (4) and (5) in 1991 Jiang invented that every factor of exponent ” has the Fermat equation and proved FLT
[1-7] Substituting (4) into (5) we prove (5).

1 1 1 ... 1
_ ) _ , .
5 ¢ 1 —cosZ cos & cosu
e cosb, n n n
e” sin 6, _ 1 0 _sinZ sinz—ﬁ o sin (n-Dr y
n n n n
exp(B,_,)sin(0, ) 2
L 2 P 0 —sin (n-Dr (n-Drx sin (n=1)"7
L 2n n 2n |
1 1 0 0 T
_ ) _
1 —cos— —sin= _sinM Be
n n 2n 2¢" cos 6,
1 cosz—ﬁ sinz_ﬁ .. _Sinw 2¢” sin 6,
n n n
|| 2exp(8, ,)sin(o, )
1 COS (n _ 1)7[ Sin (l’l _ 1)7[ _Sinw = 2 2
L n n n

13
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[n 0 0 - 0]
n | e’ |
0O — 0 -+ 0 R
2 2e” cos O,
Lo oo 2 0 2¢" sin g
n 2
2 exp(Bn—l )Sin(en—l )
0 0 0 2t : 2
L 2]
eA
e’ cos o,
— e’ sin 6,
exp(B,_,)sin(@, )
L 2 2 , 7
n—1 : n—1 :
14y (cosEy? =2 (sinZZy =2
where /7! n 2 , = n 2 '
From (3) we have
n-1

2
exp(4+2)_ B,)=1
j=l . (8)
From (6) we have

nt S8 o SIS S o (S,
< S, S - 5SS S
eXp(A+2ZB]): 2 1 3 _ 2 ( 2)1 ( Z)n—l
Sn Sn—l Sl Sn (Sn)l (Sn)n—l , (9)
oS,
(Si)j = a_l‘l
where i [7].
From (8) and (9) we have the circulant determinant
. S S S
2. S S ... S
exp(4+2) B)=| > 3=
= :
Su Sua S (10)
If S =0 , Where i=12n , then (10) has infinitely many rational solutions.

%0 S,#0 S=0 4 i=34n5=0 . )

Assume here indeterminate equations with

n =1 yarjables. From (6) we have

2B 2 2 ‘ J7
4 _ e =8+8,+2S5S,(-1) cos—
e —S1+S2’ e 172 n (11

14
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From (10) and (11) we have the Fermat equation

n-1 nl

exp(A+2ZB) (S, +S)H(S2+S2+2SS( l)]cos ) S'+8) =1

Jj=1 (12)

Example[1]. Let 72 = 15 From (3) we have
A=(t+1,)+(, +t13)+(t +1,)+ (@, +1,)F () (1) + (8, + 1)

2 RY/4 4
B, =—(t, +t,)cos— + t, +t.)cos——(t, +t,,)cos—+ (¢, +t,,)coOS—
—(t, +1,) T (1, +15) T —(t,+1,) T (t,+1,) T

57 6r T
t.+t,)cos—+(t. +¢,)cos— — (¢, + 1, ) cOS—
—(t; + 1) T (ts+1,) T —(t,+4) T

>

2z 4r 67 kY4
=(t,+t,)cos— s +(t, +¢,)cos— T +(t, +1,)cos— T +(t, +¢,)cos— T

107 127 147
+(t5 +1,,) COS——+ (£ +1,) COS——+ (¢, +1;) COS——
(5 fig) COS—r=+ (fg 4y ) cOs—=+ (1 +1 ) cos—

>

R4 6r Or 127
=—(t,+t,)cos— T +(t, +t,;)cos— T —( +l‘12)COSE+(l‘4 +t11)cosF

157 187 21r
t,+t,)cos——+(t, +1,)cos———(t, +1;) cos—
s hyg )OS+ (fg F£5) COS = = (1 + £y ) COS—

>

4r 87 127 7
=(t,+t,)cos— T +(t, +1;)cos— T +(t, +1,)cos— s +(t, +t11)cosF

207 24 28x
+(t, +1,,) cos——+ (¢, +1,) coOS——+ (¢, +1;) cOS——
(5 + iy ) COS == (F +15) COS ==+ (f + ) cos —

>

57 107 157 20z
=—(t,+t,)cos— T +(t, +1,;)cos— T —(t, +1t,)cos— T +(t, +t11)cosF

257 307 357
t,+1t,)cos——+(t, +1,) cos———(t, +1;) cos——
s H19) COS ==+ (f F1y) COS = = (£ + £y ) cOS—

>

or 127 187 V1
=(t, +t,)cos— T +(t, +1,;)cos— s +(t,+1t,)cos— T +(t, +t11)cosF

30z 36 42
+(t;, +1,,) coOsS——— + (¢, +1,) cOS——+ (¢, + 1) COS——
(5 + i) COS—= (£ +1, ) cOS—o+ (5 + £y Jeos——

>

T 147 21r 28n
t,+1t,)c08s——+(t, +1,;)cosS———(¢; +1,,) cOS——+ (¢, +1,,) COS——
= (0 + 1) 05+ (1 +43) C0S—m =l 11, ) COS = (4 +yy ) c0s —

>

357 42 497
t,+1,)cos——+(t; +1,)cos——— (¢, +1;) cOS——
s Htg) cOS == (fg +1y ) eos === (I +fy ) cos——

;

A+2) B, =0,  A+2B,+2B =5(t;+1,)
J=1

Form (12) we have the Fermat equation

g
exp(A+2) B)=5"+8"=(8) +(5;)’ =1

J=1

(13)

(14)

From (13) we have

15
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exp(A+2B, +2B,) =[exp(t, +1,,)]’ ' (15)
From (11) we have

exp(A+2B, +2B,)=S; +S; 16)
From (15) and (16) we have the Fermat equation

exp(A+2B, +2B,) =] +S; =[exp(t; +1,)]" am

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational

solutions for exponent 5[1].
Theorem 1. [1-7]. Let = 3P,Where P >3 i50dd prime. From (12) we have the Fermat’s equation

3P-1
exp(A+2) B)=8"+8"=(S") +(8)) =1
/A : (18)

From (3) we have
P-1

2
exp(4+2) By ) =[exp(t, +1,,)]"
= ) (19)

From (11) we have
P-1

2
exp(A+2) B, ) =58+,
J= . (20)
From (19) and (20) we have the Fermat equation
P
2
P P P
exp(A+2) B, ) =8 +8; =[exp(t, +1,,)]
/= . 2D
Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational

solutions for £ >3 [1, 3-7].
Theorem 2. In 1847 Kummer write the Fermat’s equation

xU =zt (22)
in the form
(x+x+m)x+r7p)-(x+ry)=2" (23)

2 .. 2m

r =CcoSs—+iI1SsIn—

where P is odd prime, P P

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100

[8]..

We consider the Fermat’s equation

3p 3p 3p
Ay =z (24)
we rewrite (24)
(Y + (1) =) o5
From (24) we have
(xP +yP)(xP +fj/P)(xP +r2yP) — Z3P (26>

T .. 27
r =CcosS—+i1sin—
where 3 3
We assume the divisor of each factor is a £ th power.

16
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Let z,
x” +yP =[zxexp(t, +t2P)]P

Z . From (20) and (26) we have the Fermat’s equation

(27)

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer

solutions for prime exponent P,

Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24)

() + () =)

(28)

Euler proved that (25) has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no

integer solutions for all prime exponent P [1-7].
We consider Fermat equation

4P +y4P _ 4P
We rewrite (29)

) (O ="
D"+ =Y

Fermat proved that (30) has no integer solutions
for exponent 4 [8]. Therefore we prove that (31) has no

integer solutions for all prime exponent P [2,5,7].This
is the proof that Fermat thought to have had.
Remark. It suffices to prove FLT for exponent 4. Let

n=4p , where P is an odd prime. We have the
Fermat’s equation for exponent 4P and the Fermat’s

equation for exponent P [2,5,7]. This is the proof that
Fermat thought to have had. In complex hyperbolic

functions let exponent /? be 77 = IIP n=2IIP 4

n=4l1pP Every factor of exponent /? has the
Fermat’s equation [1-7]. In complex trigonometric

functions let exponent /? be 77 = IIP n=2IIP 4

n=A4llP Every factor of exponent /2 has Fermat’s
equation [1-7].Using modular elliptic curves Wiles and
Taylor prove FLT[9,10].This is not the proof that
Fermat thought to have had. The classical theory of
automorphic functions, created by Klein and Poincare,
was concerned with the study of analytic functions in
the unit circle that are invariant under a discrete group
of transformations. Automorphic functions are
generalization of the trigonometric,hyperbolic,elliptic,
and certain other functions of elementary analysis. The
complex trigonometric functions and complex
hyperbolic functions have a wide application in
mathematics and physics.
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Automorphic Functions And Fermat’s Last Theorem (2)
Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan(@vip.sohu.com

Abstract

In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”

This means: ~ +y'=2"(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 6P ang P , Where P isan odd prime.
The proof of FLT must be direct .But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[zi:l tiJij=i S.J"!
i=1 i=1

1
J 2n . S =1, t
where ¥ denotes a th root of unity, , n is an odd number, “/ are the real numbers.

Si is called the automorphic functions(complex hyperbolic functions) of order 2n with 2n—-1 variables
[5,7].

n—1
1 < 1B, (i-1)jx
S,=—r/e"+2 -1 ]’cos(9.+ -1)) ————
G ]Z:, (-D L+ (=D "
n-1
_1NGDb 2 o (=17
+—( D e® +2Z (=)D " cos(¢j +(= (-hjz l)ﬂzj
2n = n
: (2)
where 1= 1,...,2]’1;
2n-1 2n-1 ) ajﬂ. . 2n-1 o a]ﬂ.
4= t, B, => t(-DYcos——,0,=(-D"""> 1 (-1)*sin——
a=1 a=1 n a=1 n ,
2n—1 2n-1 ) a]ﬂ.
4= 1,1 D= 1, (=) cos— =
a=1 a=1
E 2
'Zn—l ) : 2
g, = (=1 Y 1 (-1 sin%,/g +4,+2> (B,+D,)=0
a=1 J=1 (3)

From (2) we have its inverse transformation|[5,7]

18
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2n 2n

et =) S, e"=> S(-n"
i=1 i=1
2n-1 o]
e’ cosf, =8+ S, (-1 cos L%
i=1 n

. . '+ 2n71 1" . i.ﬂ-
e”sin@, =(-DU"Y S, (-1)" s1n]7
i=1

>

2n-1

e’ cos g, =8+ Z S
i=1

1+i

(=D cos yr
n

2n-1 o]
¢’ sing, = (=1 Y S, (- sin%

i=1

(4)
(3) and (4) have the same form.
From (3) we have
n—1
2.
exp| 4 +4,+2) (B, +D))|=1
j=1
(5
From (4) we have
el S8, 5
< S S S
exp| 4 +4,+2) (B, +D)|=| > ’
=
S2n SZn—l e Sl
Si S (S
_ S (&) (8
S2n (SZn)l e (SZn )Zn—l (6)
oS,
G =%,
where I [7]..
From (5) and (6) we have circulant determinant
ael S, S S,
2 S S ... S
exp| A +4,+2). (B,+D))|=| * =1
=
S2n SZn—l Sl (7>
If 5 #0 » where 1=123,..2n , then (7) have infinitely many rational solutions.
Let 7 =1 From (3) we have A=t 30q 42 =1 From (2) we have
S, =chy, S, =shy,
we have Pythagorean theorem
ch’t, —sh’t, =1 (9)

19
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(9) has infinitely many rational solutions.

S, #0,5,#0,8, #0 i=3,..2n S;=0__(2n-2)
, . are

Assume where indeterminate equations with
(2n-1) variables. From (4) we have
et =S +S,, et =S8 -8, % =82 +52+28,8,(-1) cos?Z
n
e =82+ 82 +28.8,(~1)/" cosZZ
n (100
Example. Let 77 = 15 From (3) and (10) we have Fermat’s equation
7
expld, +4,+2>. (B, +D)]=5" -5 =(5) -(5,’)’ =1
=1 an
From (3) we have
5
exp(4, +2B, +2B,) = [exp(z ls; 7
=1 a2

From (10) we have
exp(4, +2B, +2B,) =S +S; (13

From (12) and (13) we have Fermat’s equation

5
5 5 5
exp(4, +2B; +2B) =5} +5; =[exp(D’ ;)]
= (14)
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational
solutions for exponent 5.
Theorem. Let 7 =3P where P is an odd prime. From (7) and (8) we have Fermat’s equation

3p-1
2
exp(4, +4, +2) (B, +D )] =8 -85 =(S") -(5;") =1
= (15)
From (3) we have
i} P
2 5
exp| 4, + 22 B, |= exp(z tjPJ
J=1 J=1
(16)
From (10) we have
i}
2
exp| 4, +2) B, |=S8]+8;
j=1
(17
From (16) and (17) we have Fermat’s equation
i) P
2 5
exp| 4,+2). B, |=S+S8) = exp(z t/.PJ
j=1 j=1
(18)
Euler prove that (15) has no rational solutions for Remark. It suffices to prove FLT for exponent 4. Let
exponent 3[8]. Therefore we prove that (18) has no n= 4P’ where P is an odd prime. We have the
rational solutions for prime exponent P [5.7]- Fermat’s equation for exponent 4P and the Fermat’s

equation for exponent P [2,5,7]. This is the proof that

20
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Automorphic Functions And Fermat’s Last Theorem (3)
(Fermat’s Proof of FLT)

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jlangchunxuan(@sohu.com

Abstract

In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”

This means: ~ +y'=2"(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 4P ang P , Where P isan odd prime.
We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields
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z S.J

i=1

4m-1
exp[z tJ' j

4m
where 7 denotes a 47 th root of unity, J

>

=1 =123,

(D

t.
i are the real numbers.

i is called the automorphic functions(complex hyperbolic functions) of order 4m with 4m—1 yariables

J=1

m—1

2m

S, = ! { Ay 26" cos(ﬂ+(‘_2l)ﬂ)+22 e’ cos(é’ +—(l l)ﬂzﬂ

[2,5,7].
)" S (i=jr
e?+2 e’ cos -
Z ¢ 2m
where
4m-1 4m—-1 2m—1
A= 1, A=) 1,(-D°
a=1 a=1
B —4531 t cosﬂ
E T
4m—-1

D, = Z t,(=1)" cosz— ¢, =

m—1
A +A4,+2H+2) (B,+D,)=0

J=1

H=Y" 1,1,
a=1

2
Lam

>

i=1,..

2m

p= Z t2a71(_1)a

Z t,sin ]7[,
a=1 2m
4m—1
= Z t,(=1)%sin aJ
a=1

. (3
From (2) we have its inverse transformation[5,7]
4m
eAl — Z Si’ eAz — Z Si (_1)1+1
i=1 i=1
2m ) 2m )
ecos f=Y S, (D", esinp=> S8, (-1
i=1 i=1
5 4m-1 ]72' B . 4m-1 ’
e’ cosf, =5 + 2—1: S cos%, e’sinf, = Z S s1n
D 4m-1 ) Uﬂ. 4m-1 ’
e” cosg, =S+ > 8, (-1)cosz—, e”sing, = Z S,,.(=1) s1n—
p 2m mo@
(3) and (4) have the same form.
From (3) we have
m—1
exp| 4 + A4, +2H+2)" (B,+D,)|=1
/= (5

From (4) we have
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Sl S4m S2
m-1 S S e S
exp| 4 +4,+2H+2). (B,+D,)|=| ° : }
Jj=1
S4m S4m—1 Sl
Sl (Sl)l (Sl )4mfl
_ Sz (Sz )1 (S2)4m—1
S4m (S4m )1 e (S4m )4m—1 (6)
where
(), =—+
%
From (5) and (6) we have circulant determinant
Sl S4m U SZ
m—1 S S e S
exp| 4 + 4, +2H +2) (B;+D,)|=| * =1
j=1
S4m S4m—1 .” Sl (7>
Assume 5 #0,5, 0,5, = O, where i=3,..4m. 5, =0 are (4m—2) indeterminate equations with

(4m—1) variables. From (4) we have
e =S +S,, e"=8-5, &"=S'+S;

e =82 +82+288S, cosZ ¢ = S;+S; -28,S, cos =
2m 2m (8)

>

Example [2]. Let 4m =12 grom (3) we have
A = +8)+ (G + )+ (G + 1)+ (1, + )+ +1) + i

Az = _(tl +t11)+(t2 +t10)_(t3 +t9)+(t4 +t8)_(t5 +t7)+t6
H = _(tz +t10)+(t4 +t8)_t6

2 4
=(t, +t11)cos +(t, +¢,,)cos—+(t, +¢, )cos3—+(t +1,)cos—+ (¢ +t )cossx L,
6 6 6 6 6
=(f +t11)c0s2 +(t, +t10)c0s4?+(t +1 )cos%+(t +1 )cos%+(t +t )cos%ﬂw
D, =—(¢, +tll)cos 6 +(t, +1,)cos 26” (t, +1¢ )COS36 +(t, +t;)cos 46” (t5+t7)coss?”—t6,

2z 4
D, =—(t, +1¢,)cos— + (¢, +t10)cos?ﬂ—(t +1 )cos%+(t +1 )cos?ﬂ—(t +1, )cosT+t6,

A+A4,+2H+B +B,+D+D,)=0 A,+2B, =3(—t; +t,—t,) 9)

From (8) and (9) we have
exp[4, + 4, +2(H + B, + B, + D, + D,)] = 8" = 8, =(5))" = (S;)" =1 (10)

From (9) we have
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exp(d, +2B,) =[exp(t; +1,—1,)

From (8) we have

exp(4, +2B,)=(S, - S,)(S” +5; +S8,5,) =S, - Sj.

From (11) and (12) we have Fermat’s equation

exp(4, +2B,) =8, =8, =[exp(~t, +1,—1,)]"

(11)

(12)

(13)

Fermat proved that (10) has no rational solutions for exponent 4 [8].
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2]

Theorem . Let 4m =4P , where P isan odd prime,
From (3) and (8) we have

(P-1)/2

is an even number.

P-1
expld, + 4, +2H +2) (B, +D)]=8 — 5 =(S7)' —(57)" =1

J=1

From (3) we have
P-1

4
exp[4, +2z (B, + D, )] =[exp(—tp +1,, —1;,)]"
= ,

From (8) we have
P-1

4
expl4, +2), (B,,,+D,)]=8-8;
j=1

From (15) and (16) we have Fermat’s equation
P-1

4
exp[4, +2z (B, + D, )= S1P _S; =[exp(—t, +1,, _tzp)]P

J=1

Fermat proved that (14) has no rational solutions
for exponent 4 [8]. Therefor we prove that (17) has no

rational solutions for prime exponent P,
Remark. Mathematicians said Fermat could not
possibly had a proof, because they do not understand

FLT.In complex hyperbolic functions let exponent /2
be n=IIP ~ n=2I1P ,,q n=411P Every

factor of exponent /7 has Fermat’s equation [1-7].
Using modular elliptic curves Wiles and Taylor prove
FLT [9,10]. This is not the proof that Fermat thought to
have had. The classical theory of automorphic
functions,created by Klein and Poincare, was
concerned with the study of analytic functions in the
unit circle that are invariant under a discrete group of
transformation. ~Automorphic functions are the
generalization of trigonometric, hyperbolic elliptic, and
certain other functions of elementary analysis. The
complex trigonometric functions and complex
hyperbolic functions have a wide application in
mathematics and physics.
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Riemann Paper (1859) Is False
Chun-Xuan. Jiang

P. O. Box3924, Beijing 100854, China
Jiangchunxuan@yvip.sohu.com

Abstract
In 1859 Riemann defined the zeta function §(S) From Gamma function he derived the zeta function with
Gamma function é/(S) ¢ (s) and g(s) are the two different functions. It is false that ¢ (s) replaces C(S)

After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 7, (@) can

replace RH.
AMS mathematics subject classification: Primary 11M26.

In 1859 Riemann defined the Riemann zeta function (RZF)[1]

TN |
S()=TI1-P") " =3 —
g = n“
: , (D
where S = T ti,i=~-1 , O and ! arereal, P ranges over all primes. RZF is the function of the complex

variable $ in @ 20,120 » which is absolutely convergent.
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2]

CA+t)#0 (2)
In 1998 Jiang proved [3]
£(s)#0 (3)

where 00 <1
Riemann paper (1859) is false [1] We define Gamma function [1, 2]

Ky o S
F(—j = et at
2 0
2
For >0 on setting t=n"7mx , we observe that

7% S —s ® %il —n’zx
T Fan‘=.[0 x2 e " "dx

4

(5

Hence, with some care on exchanging summation and integration, for O > 1 ,

s s \— 0 S x .
Vs 2F(;Jg(s)=.|‘o x?2 [; e jdx
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g (20
0 2

) (6)
where 5 (s) is called Riemann zeta function with gamma function rather than §(s) ,
Y(x)=> e
== D

>

9x) s

is the Jacobi theta function. The functional equation for
1

P _ -1
29(x) = 9™, o
and is valid for X >0 .

Finally, using the functional equation of 9(x) , we obtain

N

Zo) = { I(x”””) (9(x> Ly }
I—*( j ( _l) !
2

9

From (9) we obtain the functional equation

[ j;(s> — [ j;(l )
10)

The function g(s) satisfies the following
1. ¢(s) has no zero for @ > 1 ;

2. The only pole of g(s) isat § =1 ; it has residue 1 and is simple;

_27 - 47 “* but ;(S) has no zeros;

4. The nontrivial zeros lie inside the region 0<o <1l and are symmetric about both the vertical line

oc=1/2

The strip 0<0 <1 jscalled the critical strip and the vertical line O = 1/2 is called the critical line.

3. é’(S) has trivial zeros at §

Conjecture (The Riemann Hypothesis). All nontrivial zeros of g(s) lie on the critical line & =1 /2 , which is
false. [3]

g(s) and ¢(s) are the two different functions. It is false that g(s) replaces &(s) , Pati proved that is not

all complex zeros of ¢(s) lie on the critical line: O = 1/2 [4].
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly
related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang

discovered Jiang function /(@) which can replace RH, Riemann zeta function and L-function in view of its

J (0)#0 J (0)=0 h

then the prime equation has infinitely many prime solutions; and if

the prime equation has finitely many prime solutions. By using 7, (@) Jiang proves about 600 prime theorems
including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in primes[7,8].

proved feature: if

In the same way we have a general formula involving g(s)

J:O x“"li (nx)dXZi J:O X' F (nx)dx
n=1 n=1
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[°e] 1 - . _ » B
=Y [ Py =C6) v F()dy
et , an

where F(y) is arbitrary.

From (11) we obtain many zeta functions g (s) which are not directly related to the number theory.
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly
related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green

and Tao prove that there exist infinitely many arithmetic progressions of length k consisting only of primes which
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT which is
Fermat’s marvelous proof[7, 13].

Primes Represented by B +mP; [14]
(D) Let "=3 and M =2 We have
P =F +2F
We have Jiang function .

Ji(@)=]] (P*-3P+3-x(P))#0

3<p
i} =
Where A(P)=2P=1 30 25 =1 (o9 Py, X(P)==P+2 4 27 21 (g Py, 2(P)=1
otherwise.
Since /, () # O, there exist infinitely many primes A and F such that lE is a prime.

We have the best asymptotic formula
7,(N,3)=[{P, P, : B, P, <N, B’ +2P, = P, prime}
_J(@o N’ _11-[ P(P*-3P+3-y(P)) N’
60 (w)log’ N 335 (P-1)° log’ N
o=]] P (@) =[] (P-D

where <P is called primorial, 2<p .
It is the simplest theorem which is called the Heath-Brown problem [15].

= 2 By
(2) Let " h be an odd prime, |m and M#£b™

we have
P, =B+ mP}
We have
Ji(@)=]] (P*-3P+3-x(P))#0
3<p
E 2
P-1

X(P)=-P+2 if M b 1(modp); x(P)=1 otherwise.

Since /, (@)#0 , there exist infinitely many primes A and F such that B is a prime.
We have
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J(@)w N’
2P®* (w) log’ N
"+ (P, +1)’

”2(Na3) ~

The Polynomial A
(1) Let 7= 4, We have

Captures Its Primes [14]

P =B +(P,+1)
We have Jiang function ’

J(@)=]] (P*-3P+3-x(P))#0

3<P

>

Where x(P)y=PpP if P=1 (mod 4); x(P)=P-4 if P=1 (mod 8) ; X(P)=-P+2 otherwise.

Since /, (@)#0 , there exist infinitely many primes A and kB such that B is a prime.
We have the best asymptotic formula

7,(N.3)=[{B,P,: B,P, < N,B* +(P,+1)’ = P, prime}
Ji(w)o N?
8d°(w) log’ N
It is the simplest theorem which is called Friedlander-Iwaniec problem [16].

(2) Let n=4m , We have

P, =B +(P, +1)

where m=1,2,3,-

We have Jiang function

Ji@)= ] (P*-3P+3—x(P)#0

3<P<P
where x(P)=P—4m if 8m|(P—l);)((P)=P—4 if 8|(P_1) . x(P)=P if 4|(P_1) .
X (P):_P+2 otherwise.

. Jy(@)=#0 N . P P, P . . . o
Since 3( ) , there exist infinitely many primes ~ ! and ~ 2 such that ~3 is a prime. It is a generalization

of Euler proof for the existence of infinitely many primes.
We have the best asymptotic formula

Jy(w)o N?
7,(N,3) ~ 8m®*(w) log* N

(3) Let " =2b we have

P =R"+(P,+1)

where b is an odd.
We have Jiang function

Ji@) =[] (P*-3P+3-x(P))#0
3<pP
Where £(P)=P=2b . 4b|(P-1); x(P)=P-2 . 4(P-1) 2(P)=-P+2
We have the best asymptotic formula
Jy(w)o N?
7,(N,3) ~ 4b®* (w) log’ N

otherwise.
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(4) Let '~ PO, We have

P, =R +(P+1)

where ~ 0 is an odd. Prime.
we have Jiang function

Ji(@)=]] (P*-3P+3-y(P))#0

3<P

2(P)=PB+1 R |(P-1; 2(P)=0

>

where otherwise.

. e . P P, . .
Since J3(@)#0 , there exist infinitely many primes ~ ! and ~ 2 such that ~ 3 is also a prime.
We have the best asymptotic formula

J(@wo N’
7,(N,3)~ 2P®’(w) log’ N

/(@) is closely related to

the prime distribution. Using /(@) we are able to
tackle almost all prime problems in the prime
distributions.

The Jiang function
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From: Moshe Klein

To: ywang@math.ac.cn

Sent: Wednesday, December 29, 2010 8:21 AM
Subject: To Prof. Wang Yuan

Dear Prof Yuan,

My name is Moshe Klein and I am expert in mathematic education in Kindergarden.
During the last 4 month I study cheerfully the work of Jiang on Fermat Last Theorem
I find it very interesting and promising direction.

I think that he need help of great mathematician like you

to improve his paper so it will accepted in respective journal

I ask you please spent some of your time to look on his paper

and give us (I work with him) some helpful hints to improve the presentation
Please visit my web-site and look on the last version of his paper:

http://www.omath.org.il/112431/FLT

Best regards
Moshe Klein
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FER R AN AN M 2 U AR A, 5 T S R BR S BEA AR 28 . PR 30y DT AR W 9% 15 DK B3R ] B+ A
KEAFEPEARGRK 2005 FH HFEITTEYKE ., b E SRR IE IR LR AN 28 T E . 9% 508
FHAE W2 20 a0 e KRB o . MR IR 2% 5 K B V0 7 — KB K R R . AT

EARPEN, AR 28807 G 25 AN UE B 2 5 K€ BELL P R B B =4, (R ARAT M2 SCRFMOR
Hro  Frpin He W P SCREPR R BT, AR EUEIT 9% 5 R E B . o) 94 50 il RS & ; Dear Prof. Tsang. 1
don't approach Jiang and also don't care of any of his result. Wang Yuan. F705%/C A& MR 8 2 B e H#M /R
UE A, A2 7E R E B A MR8 . www.baidu.com 3§77 1E A9k 5 KB A 13100 2%, A 36 7 HE A0 5] 48 2
TEARA 10900 2%, mEFRIE AR 2 BB 7160 2,1 = KA A AU 4% R e ARt ok i HL AT LA

The New Prime theorems (1041) - (1090)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book
proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS,

THES, MPIM, MSRI. In this paper using Jiang function £ (@) we prove that the new prime theorems (1041)-
(1090) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest

solution 7 (Ny,2) 21 . This is the Book theorem.

1t will be another million years, at least, before we understand the primes.

Paul Erdos (1913-1996)

TATEMENT OF INTENT

If elected. I am willing to serve the IMU and the international mathematical community as president of the
IMU. I am willing to take on the duties and responsibilities of this function.

These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its
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tasks related to organizing the 2014 ICM, fostering the development of mathematics, in particular in developing
countries and among young people worldwide, representing the interests of our community in contacts with other
international scientific bodies, and helping the IMU committees in their function.

--IMU president, Ingrid Daubechies—

Satellite conference to ICM 2010

Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve
methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false:

(http://www.wbabin.net/math/xuan77.pdf)

(http://vixra.org/pdf/1003.0234v1.pdf).

The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996
Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress.
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and
Tao theorem is false) to see.

(http://www.wbabin.net/math/xuan39e.pdf)

(http://www.vixra.org/pdf/0904.0001v1.pdf).

There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level.
Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(1040)]: (http://www.wbabin.net/xuan.htm#chun-
xuan) (http://vixra.org/numth/)

The New Prime theorem (1041)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
P02 | p
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP*" k= j(j =1, k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j]|=0 (modP),g =1,---,P~1
7= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
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2002
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2002)" ¢" (@) log" N (4,

7 (N.2)=[{P< N: jP™ +k = j = prime}| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=323, 2003. From (2) and(3) we have
J2(@) =0 €
we prove that for k=3,23,2003
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3, 2003.
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,2003 )
(1) contain infinitely many prime solutions

The New Prime theorem (1042)

P, jP*™ +k—j(j=1,,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 152004

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152004 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j]|=0 (mod P),g =1,---,P~1
=1 (3)

1t XP)SP=2 4o from (2) and (3) we have
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Jy(@)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

20
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2004)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

Hw) =T1(P=1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,7,13 . From (2) and(3) we have

J2(@) =0 €

we prove that for k=3,5,7,13 )

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k # 3’5’7913'

From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,7,13 )
(1) contain infinitely many prime solutions

The New Prime theorem (1043)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
P20 |
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP™ +k—j(j=1--,k-1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=T[P-1- (P)]

(D

@)
o=I1P

where P, X (P) is the number of solutions of congruence
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k-1

H[jqzooe +k—j]50 (mod P),q =1,---,P—1

=
£ X(P)SP-2
J,(w)#0

3
then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 2006
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 sk k
(2006)" ¢" (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3 From (2) and(3) we have
J,(0)=0

D
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1044)

P, jP* +k—j(j=1,-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

P20 | p
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.

Theorem. Let X bea given odd prime.
P, jP*™ +k—j(j=1,-,k-1)

Q)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P
(@) =TI[P=1- 7(P)] o
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o=I1P

where P, X (P) is the number of solutions of congruence
k-1
[ jg™* +k-j]=0 (modP),g=1,--,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2008 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J2 (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2008)" ¢" (@) log" N (4,

7,(N,2) =‘{PS N:jP*® +k—j :prime}‘ ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,503

J,(@)=0

. From (2) and(3) we have

D
we prove that for k=3,5,503 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,503 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,5,503 )
(1) contain infinitely many prime solutions

The New Prime theorem (1045)

P,jP"" +k—j(j=1,,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52010 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*" +k—j(j=1,,k-1)

contain infinitely many prime solutions and no prime solutions.

(D
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Proof. We have Jiang function [1,2]
Jy (@)= TI[P=1- £(P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jqzo“’ +k=j]|=0 (modP),g =1,---,P~1
J= (3
1t X(P)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2010 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 sk k
(2010)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP +k = j = prime]| ~

where o) = 11_’[(P b .

7Z'k(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,11,31,2011

J,(w)=0

. From (2) and(3) we have

7
we prove that for k=371 1’31’2011,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,11,31,2011
From (2) and (3) we have

J,(w)#0 (2)
We prove that for k#3,7,11,31,201 1,

(1) contain infinitely many prime solutions

The New Prime theorem (1046)

P, jP*" k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
- 52012
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
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P, jP* k= j(j =1,k =1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k=j]|=0 (modP),g =1,---,P~1
J= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2012 .
such that each of /P + k= is a prime.
sing Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2012)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=35 . From (2) and(3) we have
Jy(@)=0 D
we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (1047)

P, jP" k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
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. 2014
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 52014 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j]|=0 (mod P),g =1,---,P~1
j=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

. 2014
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2014)" ¢" (@) log" N (¢,

7 (N.2)=[{P< N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,107 . From (2) and(3) we have

J2(@) =0 €

we prove that for k=3,107 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,107 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3107 )
(1) contain infinitely many prime solutions

The New Prime theorem (1048)

P, jP" k= j(j =1 k=1)
Chun-Xuan Jiang

38



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

Jiangchunxuan@vip.sohu.com

Abstract
. 152016

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152016 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg**+k-j]|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2016
such that each of /2 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(2016) ¢ (@) log" N (4,

7 (N.2)=[{P<N: jP +k = j = prime]| ~

Hw) =T1(P=1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017 ' (2) and(3)

we have

k=3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017
we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2, Lot k7 3:5,7:13,17,19,29,37,43,73,97,113,127,337,673,1009,2017
From (2) and (3) we have
J,(w)#0 ()
W k#3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017
e prove that for ,

(1) contain infinitely many prime solutions

The New Prime theorem (1049)
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P, jP"" +k—j(j=1,--,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152018

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152018 Lo
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j]|=0 (modP),g=1,--,P~1
Jj=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2018
such that each of /2 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2018)" ¢"(w) log" N (¢,

7 (N.2)=[{P<N: jP" +k— j = prime]| ~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
J,(w)=0

D
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions
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The New Prime theorem (1050)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152020

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP k= j(j =1,k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
nl[jqz‘m +k=j]|=0 (modP),g =1,---,P~1
/= (3)
1t XP)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2020 .
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(2020)" ¢ (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,511
. From (2) and(3) we have

- D)
we prove that for k= 3,5,11’

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,11 .
From (2) and (3) we have

J,(w)#0 (2)
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We prove that for k#3,5,11 )
(1) contain infinitely many prime solutions

The New Prime theorem (1051)

P, jP*? +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
pO2 | f
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
g g p y y p p
solutions.

Theorem. Let X bea given odd prime.
- 152022 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*” +k-j|=0 (mod P),g =1,---,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2022 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If /) (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2022)" ¢ (@) log" N (4,

7 (N.2)=[{P< N: jP*™ +k = j = prime]| ~

H@)=1(P-1)

whe

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=37 . From (2) and(3) we have

Jo(@) =0 @)

we prove that for k=37 ,
(1) contain no prime solutions. 1 is not a prime.
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Example 2. Let k#3,7 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,7 )
(1) contain infinitely many prime solutions

The New Prime theorem (1052)

P, jP"* +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52024

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152024 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),g =1,---,P~1
J=1 3
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2024 .
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2024)" ¢" (@) log" N (¢,

7 (N.2)=[{P< N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,23,47, 89. From (2) and(3) we have
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o= 7
we prove that for k=3,5,23, 47’89,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,23,47, 89.
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,23,47,89 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1053)
P, jP"™ t k= j(j =1,k ~1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

. 52026 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
- 152026 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j]|=0 (mod P),g =1,---,P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2026 .
such that each of /P + k=] is a prime.
Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2026)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~
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Hw) =T1(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,2027

J,(@)=0

. From (2) and(3) we have
D

we prove that for k=3,2027 ’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,2027 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,2027 )
(1) contain infinitely many prime solutions

The New Prime theorem (1054)

P, jP* k= j(j =1+ k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

PO |
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 12028 Lo
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j|=0 (mod P),g =1,--,P~1
=1 (3)
1t X(P)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2028 .
such that each of /P + k= is a prime.

x(P)=P-1 . Substituting it into (2) we have

(5

Using Fermat’s little theorem from (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]
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If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2028)" ¢"(w) log" N (¢,

7,(N,2) =HPS N:jP +k—j :prime}‘ ~

#) =TI(P-1)

where

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,7,13,53,79,157,677,2029 . From (2) and(3) we have

J2(@) =0 €
k=3,5,7,13,53,79,157,677,2029

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2, Let K # 3:5:7,13,53,79,157,677,2029.
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,7,13,53,79,157,671,2029

(1) contain infinitely many prime solutions

The New Prime theorem (1055)

P,jP*" +k—j(j=1,-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152030

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP k= j(j =1,k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where rp, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j]|=0 (modP),g =1,---,P~1
7= (3)
1t X(P)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2030 .
such that each of /P + k= is a prime.
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Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2030)'¢" (@) log" N ¢,

7 (N,2) =[{(P<N: P +k = j = prime}| ~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,11,59,71 . From (2) and(3) we have

Jo(@) =0 @)

we prove that for k=3,11,59,71 ’

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,11,59,71 .

From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,11,59,71 )

(1) contain infinitely many prime solutions

The New Prime theorem (1056)

P, jP* k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 152032 ;
Using Jiang function we prove that JPT Ak contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
- 152032 .o
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*” +k-j|=0 (mod P),g =1,---,P~1
=1 (3)

1t XP)SP=2 4o from (2) and (3) we have
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Jy(@)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

2032
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2032)" ¢" (@) log" N (4,

7 (N.2)=[{P< N: jP™ +k = j = prime]| ~

Hw) =T1(P=1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,17,509 . From (2) and(3) we have

J2(@) =0 €

k=3,5,17,509

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3.5, 17’509.

From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,17,509 )
(1) contain infinitely many prime solutions

The New Prime theorem (1057)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
P |
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP* k= j(j =1, k=1) (0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P
(@) =TI[P~1- 7(P)] o
w=11P

where p, X (P) is the number of solutions of congruence

48



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

k1
H[jq2034 +k—j}50 (mod P),q =1,---,P—1

J=1

£ X(P)SP-2
J,(w)#0

3
then from (2) and (3) we have

4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2034

such that each of /P + k=] is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
J,(w)#0 .
If then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 sk k
(2034)" ¢" (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

where

#) =TI(P-1)
7Z'k(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,19,227

J,(w)=0

. From (2) and(3) we have

7
W€ prove that for k= 3’ 7919, 227 ’

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,19,227 .

From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,7,19,227 )

(1) contain infinitely many prime solutions

The New Prime theorem (1058)

P, jP*" +k—j(j=1,,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 152036
Using Jiang function we prove that JPTT Ak -

J contain infinitely many prime solutions and no prime
solutions.

Theorem. Let X bea given odd prime.
P, jP* +k—j(j=1,,k-1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(D
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Jy(@)= TI[P—1- £(P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
[ jg** +k-j]=0 (mod P),g =1,--,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2036 .
such that each of /P + k=] is a prime.
Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2036)" ¢ (w) log" N (4,

7, (N,2) = ‘{P SN P k- j= pr,-me}‘ -

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,1019 . From (2) and(3) we have

J,(0)=0 (7

we prove that for k= 3’5’1019’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,1019 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,5,1019 )
(1) contain infinitely many prime solutions

The New Prime theorem (1059)

P, jP* +k—j(j=1-,k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52038

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
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P, jP k= j(j =1,k =1) ()

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
[ jg** +k-j]=0 (modP),g =1,--,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2038 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2038)" ¢"(w) log" N (4,

7,(N,2) =HPS N:jP*" +k—j :prime}‘ ~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1060)

P, jP"™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152040

Using Jiang function we prove that J

+k—j

contain infinitely many prime solutions and no prime
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solutions.
Theorem. Let X bea given odd prime.
- 152040 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
[ jg™° +k-j]=0 (modP),g =1,-+,P-1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2040 .
such that each of /P + k=J is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2040)" ¢" (@) log" N (4,

7, (N,2)= HP SN:jP"™ +k—j= prime}\ ~
w)=I1(P-1

where ) P ( ) .

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

k=3,5,7,11,13,31,41,61,103,137,409 . From (2) and(3) we have

P

Example 1. Let

J(0)=0
k=3,57,1113,31,41,61,103,137,409

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,7,11,13,31,41,61,103,137,409
From (2) and (3) we have

J,(w)#0 ()

k#3,5,7,11,13,31,41,61,103,137,409
We prove that for ,
(1) contain infinitely many prime solutions
The New Prime theorem (1061)

P, jP* k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
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Abstract
. 52042

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 12042 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2042 .
such that each of /P + k=] is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If /) (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2042)" ¢" (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1062)

P, jP k= j(j =1 k=1)
Chun-Xuan Jiang
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Jiangchunxuan@vip.sohu.com

Abstract
- 52044
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*" +k—j(j=1,,k-1)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P

(@) =TI[P=1- 7(P)] o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
[ jg™ +k-j]=0 (modP),g =1,--,P-1
=1 (3
1t XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2044

such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2044)" ¢" (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

Hw) =T1(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=35, 29. From (2) and(3) we have

J2(@) =0 €

we prove that for k=35, 29,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,29 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,29 )
(1) contain infinitely many prime solutions

The New Prime theorem (1063)
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P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
- 52046
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P, jP* k= j(j =1,k =1)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(w)=T11[P-1-y(P

(@) =TI[P=1- 7(P)] o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
Hl[jqzo‘“’ +k=j]|=0 (modP),g =1,---,P~1
7= 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2046 .
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2046)" ¢ (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,7,23,67,683 . From (2) and(3) we have

J,(w)=0

D
we prove that for k= 3’ 7’23’ 67’ 683 s
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,23,67,683 .
From (2) and (3) we have
J,(w)#0 ()
k#3,7,23,67,683

We prove that for
(1) contain infinitely many prime solutions
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The New Prime theorem (1064)

P, jP*™ +k—-j(j=L1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
- 152048
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P,jP2048 +k—j(j=1a"‘ak_1)'

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(w)=T11[P-1-y(P

(@) =TI[P=1- 7(P)] o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
[ jg™* +k-j]=0 (modP),g=1,--,P-1
j=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2048 .
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(2048)" ¢"(w) log" N (¢,

7,(N,2) =‘{PS N:jP™ +k—j :prime}‘ ~

Hw) =11(P=1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,17,257 . From (2) and(3) we have

J,(@)=0

D
we prove that for k=3,517,257 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,17,257 .
From (2) and (3) we have
J,(w)#0 ()
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We prove that for k#3,5,17,257 )

(1) contain infinitely many prime solutions

The New Prime theorem (1065)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52050 .
Using Jiang function we prove that JP +k_]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152050 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- y(P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
[ jg*° +k-j]=0 (modP),g =1,-+,P-1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2050 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If /) (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2050)" ¢ (@) log" N (4,

7 (N.2)=[{P<N: jP*™ +k = j = prime}| ~

where o) = I;I(P_l) .
7, (N,,2) 2 I

From (6) we are able to find the smallest solution

Example 1. Let k=311,83 . From (2) and(3) we have

J,(0)=0 (7)

we prove that for k=3,1183 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11,83 .

57



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,11,83 )

(1) contain infinitely many prime solutions
The New Prime theorem (1066)

P, jP* +k—j(j=1,,k=1)

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
Abstract

P2 |

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 152052 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*” +k-j|=0 (mod P),g =1,---,P~1
j=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2052 .
such that each of /P + k= is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(2052) ¢ (@) log" N (4,

7 (N.2)=[{P< N: jP* +k = j = prime]| ~

) =11(P-1)
where P .
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

k=3,5,7,13,19,37,109,2053

Example 1. Let . From (2) and(3) we have

J2(@) =0 €

k=3,5,7,13,19,37,109,2053

we prove that for
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let ¥ #3:5,7:13,19,37,109,2053
From (2) and (3) we have
J,(w)#0 (8)

We prove that for K #35,7:13,19,37,109,2053

(1) contain infinitely many prime solutions

The New Prime theorem (1067)

P, jP™ +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52054

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 52054 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j]|=0 (mod P),g =1,---,P~1
J=1 3
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2054 .
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2054)" ¢" (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
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J,(0)=0 (7)
we prove that for k= 3,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1068)

P, jP*™ +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152056

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152056 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j]|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2056
such that each of /2 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2056)" ¢ (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where
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7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5 . From (2) and(3) we have

J,(0)=0 (7

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5 .
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

he New Prime theorem (1069)

P, jP*™ +k—j(j=L1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

. 52058 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y P p

solutions.
Theorem. Let X bea given odd prime.
- 152058 Lo
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j|=0 (mod P),g=1,--,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

2058 p
such that each of /P + J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]
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J,(w)o"™ N
k-1 1k k
(2058)" ¢"(w) log" N (4,

7,(N,2) =HPS N:jP™ +k—j :prime}‘ ~

where o) = 11_’[(P D .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3,7,43 . From (2) and(3) we have

Jo(@) =0 )
we prove that for k=3,7,43 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,43 .
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,7,43 )
(1) contain infinitely many prime solutions

The New Prime theorem (1070)

P, jP* +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152060

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152060 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

2
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j]|=0 (mod P),g =1,---,P~1
j=l (3
1t X(P)SP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2060 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J(0)=0 (5)
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We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2060)" 9" (@) log" N (4,

7 (N,2)=|(P<N: jP™ +k— j = prime]| ~

L Aoy =11(P=1)

whe

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,11,1031 . From (2) and(3) we have

J,(w)=0

D
we prove that for k=3,5,11103 1,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,11,103 1.
From (2) and (3) we have
J,(w)#0 (8)
k#3,511,1031

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1071)

P, jP" k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152062

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* k= j(j =1,k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

2
where “= 11_’[ P , X (P) is the number of solutions of congruence
':r_lj[jq2°62+k—j]zo (modP),g =1,---,P—1 o
1t X(P)SP=2 4 o from (2) and (3) we have
J,(@)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

. 2062
such that each of /2 +%7J isa prime.
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Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2062)" ¢ (w) log" N (4,

7 (N,2) =[{(P<N: jP*? 4k = j = prime}| ~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

k=3,2063

Example 1. Let . From (2) and(3) we have

J(0)=0 7

we prove that for k=3, 2063,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3, 2063.
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,2063 )
(1) contain infinitely many prime solutions

The New Prime theorem (1072)

P, jP* +k—j(j=1,,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 52064 .
Using Jiang function we prove that JPTT k=] contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
- 52064 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j|=0 (mod P),g =1,---,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4
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We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

L
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2064)" ¢ (w) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

Hw) =TI(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,7,13,17,1033 . From (2) and(3) we have

J2(@) =0 €

k=3,5,7,13,17,1033
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Lot K #35:7:13,17,1033.

From (2) and (3) we have

J,(w)#0 (2)
We prove that for k#3,5,7,13,17,1033 )

(1) contain infinitely many prime solutions

The New Prime theorem (1073)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
- 152066
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P, jP™ v k= j(j =1 k=1)

(D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
=II[P-1-y(P
Jy(@)=T[P-1- y(P)] o
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j]|=0 (mod P),g =1,---,P~1
A (3
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1t X(P)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

2066 p i
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1966)" ¢"(w) log" N (¢,

7, (N,2)=[{P< N : jP™ +k j = prime}| ~

where o) = 11_’[(P b .

7Z'k(N0,2)21'

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
Jo(@) =0 )

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1074)

P, P k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

. 52068 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
- 152068 Lo
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)] o

o=I1P

where p, X (P) is the number of solutions of congruence

66



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

k1
H[jqzoeé% +k—j]50 (mod P),qg=1,---,P—1

J=1

£ X(P)SP-2
J,(w)#0

3
then from (2) and (3) we have

4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2068

such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 sk k
(2068)" ¢" (@) log" N (4,

7,(N,2) =‘{PS N:jP* +k—j :prime}‘ ~

where

#) =TI(P-1)
7Z'k(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,23,2069

J,(w)=0

. From (2) and(3) we have

7
we prove that for k= 3,5,23, 2069

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,23,2069 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,23,2069 )

(1) contain infinitely many prime solutions

The New Prime theorem (1075)

P,jP"" +k—j(j=1,,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

jP2070 ko

Using Jiang function we prove that J contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P, jP* +k—j(j=1,-,k-1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(D
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Jy(@)= TI[P—1- £(P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k=j]|=0 (modP),g =1,---,P~1
J= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2070 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2070)" ¢ (@) log" N (4,

7, (N,2) = ‘{P <N P fk—j= pr,-me}‘ -

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,11,19,31,139 . From (2) and(3) we have

J2(@) =0 €

k=3,7,11,19,31,139
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let K #37:1119,31,139
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,7,11,19,31,139 ,

(1) contain  infinitely
many prime solutions

The New Prime theorem (1076)

P, jP" 4 k= j(j =1 k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 152072

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
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P, jP*" k= j(j =1,k =1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jqz‘m +k=j]|=0 (modP),g =1,---,P~1
J= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2072 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2072)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k = j = prime]| ~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,29, 149. From (2) and(3) we have

J2(@) =0 €
we prove that for k= 3’5’29’149,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,29,149 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,5,29,149 )

(1) contain infinitely many prime solutions

The New Prime theorem (1077)

PP k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
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- 52074
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152074 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2074
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2074)" ¢"(w) log" N (4,

7 (N.2)=[{P<N: jP +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1078)

P, jP*" k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
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Abstract
. 152076

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152076 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j]|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2076
such that each of /2 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2076)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP +k = j = prime]| ~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,7,13,347,1039 . From (2) and(3) we have

J,(@)=0

@)
we prove that for k= 3’5a7>13,347,1039’
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k+#3,5,7,13, 347,1039'
From (2) and (3) we have
J,(w)#0 o
k# 3,5,7,13,347,1039’

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1079)

P, jP*" +k—j(j=L1-,k-1)
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Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
- >2078
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

PP v k= j(j =1 k=)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P

(@) =TI[P~1- 7(P)] o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k=j|=0 (mod P),g =1,--,P~1
=1 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

078
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2078)" ¢"(w) log" N (4,

7,(N,2) =‘{PS N:jP" +k—j :prime}‘ ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1080)
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P,jP* +k—j(j=1,,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
- 152080
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP k= j(j =1,k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jqzogo +k=j]|=0 (modP),g =1,---,P~1
J= (3)
1t X(P)SP=2 4o from (2) and (3) we have
J,(0)#0 (4
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 2080
such that each of /2 +%7J isa prime.
sing Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2080)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

) =11(P-1)
where P .
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

k=3,511,17,41,53,131,521,2081

Example 1. Let . From (2) and(3) we have

J2(@) =0 7

k=3,511,17,41,53,131,521,2081
we prove that for ,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,511,17,41,53,131,521, 2081'

From (2) and (3) we have

J,(w)#0 ()
We prove that for k#3,511,17,41,53,131,521,2081 ’

(1) contain infinitely many prime solutions

The New Prime theorem (1081)
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P, jP* +k—j(j=1,-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52082

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152082 .o
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),g =1,---,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2082
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
J2 (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2082)" ¢ (w) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,2083 . From (2) and(3) we have

Jo(@)=0 D)
k=3,7,2083

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,2083 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,7,2083 )

(1) contain infinitely many prime solutions
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The New Prime theorem (1082)

P, jP*™ +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52084

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*™ k= j(j =1, k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[jqz‘)*“‘ +k=j]|=0 (modP),g =1,---,P~1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2084
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2084)" ¢ (w) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

Hw) =11(P=1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5 . From (2) and(3) we have
Jo(@) =0 @
we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5 .
From (2) and (3) we have
J,(w)#0 ()
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We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (1083)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52086 .
Using Jiang function we prove that JP +k_]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152086 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- y(P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j]|=0 (mod P),g =1,---,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2086 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If /) (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2086)" 9" (w) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

where o) = I;I(P_l) .
7, (N,,2) 2 I

From (6) we are able to find the smallest solution

Example 1. Let k=3,2087 . From (2) and(3) we have

J2(@) =0 €

we prove that for k= 3,2087’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,2087 .
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From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,2087 )
(1) contain infinitely many prime solutions

The New Prime theorem (1084)

P, jP* +k—j(j=L1-,k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 152088 ;
Using Jiang function we prove that JPT k=] contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP k= j(j =1,k =1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=T[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq”*‘*‘ +k—j]=0 (modP),q=1,---,P-1
J= (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2088 .
such that each of /P + k= is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2088)" ¢"(w) log" N (4,

7, (N,2) = ‘{P SN:jP™ +k—j= prime}\ ~
w)=TI(P-1
where ¢( ) P( )

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,7,13,19,37,59,73,233,349,523,2089 . From (2) and(3) we have

J2(@) =0 €
k=3,5,7,13,19,37,59,73,233,349,523,2089

we prove that for
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,7,13,19,37,59,73,233,349,523,2089 '
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,7,13,19,37,59,73,233,349,523,2089

(1) contain infinitely many prime solutions

The New Prime theorem (1085)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152090

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152090 .o
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j]|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2090
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
J,(w)#0 .
If then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(2090)" ¢ (@) log" N (4,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

where o) = I;I(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

k=3,11,23,191,419

Example 1. Let . From (2) and(3) we have
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=0 )
we prove that for k=31 1’23’191’419,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,1 1,23,191,419.

From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,11,23,191,419 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1086)

P, jP* +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52092

Using Jiang function we prove that J
solutions.

k-] contain infinitely many prime solutions and no prime
Theorem. Let K bea given odd prime.
- 152092 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*” +k-j|=0 (mod P),g =1,---,P~1
/=l 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 2092 .
such that each of /P + k=] is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2092)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

Hw) =T1(P=1)

where
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7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5 . From (2) and(3) we have

J,(0)=0 (7

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5 .
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (1087)

P, jP*™ +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

. 152094 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y P p

solutions.
Theorem. Let X bea given odd prime.
- 52094 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j]|=0 (mod P),g =1,---,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

2%
such that each of /P + J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]
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J,(w)o"™ N
k-1 1k k
(2094)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

H@)=1(P-1)

whe
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=37 . From (2) and(3) we have
Jy(@)=0 @)
we prove that for k=37 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,7 )
(1) contain infinitely many prime solutions

The New Prime theorem (1088)

P, jP*™ +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 152096

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 152096 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

2
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j|=0 (mod P),g =1,---,P~1
j=l (3
1t X(P)SP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 2096 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J(0)=0 (5)
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We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2096)" 9" (@) log" N (4,

7 (N,2)=|(P<N: jP™ +k— j = prime]| ~

L Aoy =11(P=1)

whe

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,517, 263’1049. From (2) and(3) we have

J,(w)=0

D
we prove that for k=3,517, 263’1049,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Lot K # 3:3,17,263,1049
From (2) and (3) we have
J,(w)#0 (2)
k#3,5,17,263,1049

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1089)

P, jP*™ k= j(j =1+ k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 52098

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*" k= j(j =1k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

2
where “= 11_’[ P , X (P) is the number of solutions of congruence
':r_lj[jq2°°8+k—j]zo (modP),g=1,---,P—1 o
1t X(P)SP=2 4 o from (2) and (3) we have
J,(@)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

. 2098
such that each of /2 +%7J isa prime.
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Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(2098)'g" (w) log" N ¢,

7,(N,2) =HPS N:jP™ +k—j :prime}‘ ~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

k=3,2099

Example 1. Let . From (2) and(3) we have

J(0)=0 7

we prove that for k=3,2099 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,2099 .
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,2099 )
(1) contain infinitely many prime solutions

The New Prime theorem (1090)

P, jP" +k—j(j=1,-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 152100 .
Using Jiang function we prove that JPT Ak contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
- 152100 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j]|=0 (mod P),g =1,---,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4
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We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

2100
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(2100) "' ¢* (@) log" N (¢,

7 (N.2)=[{P<N: jP"™ +k = j = prime]| ~

) =11(P-1)
where P .
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Lot =35 7.11L13,31,61,71,151,211,1051

J,(@)=0

. From (2) and(3) we have

D
k=3,57,11,13,31,61,71,151,211,1051
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let K # 35 7,11,13,31,61,71,151,211,1051
From (2) and (3) we have

J,(w)#0 (2)

We prove that for K # 35 T:11,13,31,61,71,151,211,1031

(1) contain infinitely many prime solutions

Jn+1 (0))

Remark. The prime number theory is basically to count the Jiang function and Jiang prime k -tuple

o()) =2 @0 _ H(l JLrah) ;‘) (P)j(l—%)"

k
singular series ¢ (o) P

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series

a<H>=1}(1—V(P)j<1—l>k

[1,2], which can count the number of prime

P P is false [3-17], which cannot count the number of prime numbers[3].
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Szemer é di’s theorem does not directly to the
primes, because it cannot count the number of primes.
Cram é1’s random model cannot prove any prime

1/log N

problems. The probability of of being prime

is false. Assuming that the events “ P s prime”,
« P+2 is prime” and “ P+4 is prime” are

independent, we conclude that P P+2 P+4 g
simultaneously —prime with  probability about

1/log’ N N /log’ N

than &V . Letting N =0 we obtain the prime
conjecture, which is false. The tool of additive prime
number theory is basically the Hardy-Littlewood prime
tuples conjecture, but cannot prove and count any
prime problems[6].

Mathematicians have tried in vain to discover
some order in the sequence of prime numbers but we
have every reason to believe that there are some
mysteries which the human mind will never penetrate.

Leonhard Euler(1707-1783)

. There are about primes less

It will be another million years, at least, before
we understand the primes.
Paul Erdos(1913-1996)

Dedicated to the 30-th anniversary of hadronic mechanics

Abstract
We define that prime equations

S(Byees B)ses (B )

are polynomials (with integer coefficients) irreducible over integers, where ~ !

Jn+1 (0)) = O

function

A

then (5) has finite prime solutions. If

(5

ok are all prime. If Jiang’s

Jn+1 (0)) * O

then there are infinitely many primes

> ?7m such that fl’ fk are primes. We obtain a unite prime formula in prime distribution

7, (N,n+1) =|{Pl,--~,Pn SN:fio fi arekprimes}|
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k k n
— H (degj;)—l ~ Jn+llga))a) ]Z[
i1 nl¢™" (@) log™" N (8)

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6].
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough
to be useful.

(1+o0(1)).

Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every
reason to believe that there are some mysteries which the human mind will never penetrate.

Leonhard Euler

1t will be another million years, at least, before we understand the primes.

Paul Erdos

Suppose that Euler totient function

#o)= (P~ =00

s >0, (D
w=I1P
where 2<P s called primorial.
Suppose that (,7) =1 , Where =L 4(@) . We have prime equations
R=wn+l,, P, =on+h, (2)
n=0,1,2,-

where

(2) is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions.
We have

3 _7(N)
7, = PZV 1 s (1+0(1)).
P=h;(mod w) 3)

RN B=on+h n=012,

T .
where ~  denotes the number of primes , 7(N) the number of

primes less than or equal to N

We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in
prime distribution.

Let @ =30 and #(30) = 8. From (2) we have eight prime equations
B =30n+1 P, =30n+7 P, =30n+11 P,=30n+13 P.=30n+17

P =30n+19 P, =30n+23 E=30n+29 n=0,12,---

D)

Every equation has infinitely many prime solutions.
THEOREM. We define that prime equations

fi(})l”})n)”f;{(})l”})n) (5)

I o . PP . .

are polynomials (with integer coefficients) irreducible over integers, where " are primes. If Jiang’s
function Su(@)=0 then (5) has finite prime solutions. If Sy (@) =0 then there exist infinitely many primes
LT such that each Je is a prime.

PROOF. Firstly, we have Jiang’s function [1-11]

J (@)= TP =1)" = 7(P)] 6)

where £ (P) is called sieve constant and denotes the number of solutions for the following congruence
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k
Ellfi(qla""qn)EO (mOdP)
- , 7

where & =1,---,P=1,-,q, =1’...’p_1'

(@) denotes the number of sets of 1> >%n  prime  equations such that

fl(R”Pn)”ﬁc(Pl”Pn) J,Hl(a))=0

are prime equations. If then (5) has finite prime solutions. If

e l(a)) #0 using x(P) we sift out from (2) prime equations which can not be represented LT , then

SR B), fi(Bo B

. : : P,--- P . :
residual prime equations of (2) are "> " # prime equations such that

prime equations. Therefore we prove that there exist infinitely many primes LTRE such that
FAVREN SRR AC RN B
Secondly, we have the best asymptotic formula [2,3,4,6]

7, (N,n+1) =|{Pl,--~,Pn SN:fio fi arekprimes}|

k k n
— H (degj;)—l ~ Jn+1]§a))a) ]Z[
i n!¢""(w) log"™" N

(1+o(1)).

(8)
(8) is called a unite prime formula in prime distribution. Let n=Lk=0 , £ (@) = p(w)
have prime number theorem

L N
7,(N,2)=[{ B < N : Bis prime}| =@(1+0(1)).

. From (8) we

D)

Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this
old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by
this theorem.

Example 1. Twin primes P,P+2 (300BC).
From (6) and (7) we have Jiang’s function

Jy(@)=I(P~2) %0
J,(@)#0 . '

Since in (2) exist infinitely many P prime equations such that P+2 s a prime equation.

Therefore we prove that there are infinitely many primes P suchthatP+2 isa prime.

Let @ =30 and £ (30)=3 . From (4) we have three P prime equations
P, =30n+11, P =30n+17, F=30n+29

From (8) we have the best asymptotic formula

7,(N,2)=|{P< N': P+2 prime}| = S (@o N

¢ () log’ N

1 N
- 23%[1— T j Y (1+o0(1)).

In 1996 we proved twin primes conjecture [1]

(1+o(1))

©__N_ 1o

2 2
Remark. £ (@) denotes the number of P prime equations, ¢ (@) log" N

solutions of primes for every P prime equation.

the number of
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Example 2. Even Goldbach’s conjecture =hR+h . Every even number N 26 s the sum of two primes.

From (6) and (7) we have Jiang’s function

P
J@)=(P-2) 11~

J,(w)#0 .

. : e . . -P . .
Since s N>y (2) exist infinitely many A prime equations such that N-R 1S a prime

equation. Therefore we prove that every even number N 26 s the sum of two primes.
From (8) we have the best asymptotic formula

,(N,2)=|{B < N,N - B, prime}| = Jy(@o N

) Tog oW

:21'[[1 ! jnp_l NN(1+0(1))

3<P (P-1)* )Pv P—2 log’
In 1996 we proved even Goldbach’s conjecture [1]

E . . P,P+2 P+6
xample 3. Prime equations .
From (6) and (7) we have Jiang’s function
Jy(@)=I1(P=3)#0

>

J,(@)

£ (@) #0 in (2) exist infinitely many P prime equations such that P+2 and P+6 e prime equations.

is denotes the number of P rime equations such that P+2 and P+6 are prime equations. Since
p q p q

Therefore we prove that there are infinitely many primes P such that P+2 and P+0 are primes.

Ly @=30, J,(30)=2

. From (4) we have two P prime equations
P, =30n+11, P =30n+17
From (8) we have the best asymptotic formula

Jy,(w)o®> N
¢’ (w) log’ N

,(N,2) = |{P <N:P+2,P+6are primes}| = (1+o0(1)).

Example 4. Odd Goldbach’s conjecture N=R+h+H
From (6) and (7) we have Jiang’s function

J— 2_ _—1
J3(a))—31;IP(P 3P+3))11:]Iv(1 = _3P+3j¢0

. Every odd number N 29 s the sum of three primes.

Since J3 (@) =0 a
N-FE-P,

2 is a prime equation. Therefore we prove that every odd number N 29 s the sum of three primes.
From (8) we have the best asymptotic formula

s N>y (2) exist infinitely many pairs of A and F prime equations such that

Jy(w)o N’
24’ (w) log’ N

1 1 N?
=T l+—— [[T| 1-— — (1+0(1))
3<P (P-1)" )rv P’ -3P+3)log’ N

Example 5. Prime equation B =RpE+2 .
From (6) and (7) we have Jiang’s function

J3(a)):313D(P2—3P+2)¢0

7,(N,3)=|{R,P, <N :N-P,~ P, ptime}| = (1+0o(1))
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J(w . P, P . . P . . . .
3( ) denotes the number of pairs of “! and ~ 2 prime equations such that ~3 is a prime equation. Since

Jy(@)#0

. e : P P . . P . . .
in (2) exist infinitely many pairs of "1 and ~ 2 prime equations such that ~3 is a prime equation.

Therefore we prove that there are infinitely many pairs of primes A and F, such that B is a prime.
From (8) we have the best asymptotic formula

Jy(w)o N°
4¢* (w) log’ N

7,(N.3)=[{B.P, <N : BP, +2 prime}| = (1+o(1)).

Note. deg (PIPZ) =2 .

_p3 3
Example 6 [12]. Prime equation B=F+2F .

From (6) and (7) we have Jiang’s function

Jy(@)=TL[(P=1) = 2(P)]#0

<P
P P
where £(P)=3(P—1) ;,2° =1(mod P) : x(P)=0 27 #1(modP) : X(P)=P=1 4 i
. J(@)#0 . o P . . P
Since 3 in (2) there are infinitely many pairs of ~! and ~ 2 prime equations such that 3 is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and P such that B is a prime.
From (8) we have the best asymptotic formula

Ji(w)o N°
6¢° (@) log® N

7,(N3)=|{P.P, <N: P +2P, prime}| = (1+o(1)).

_ p4 2
Example 7 [13]. Prime equation B=R+(F+]) .
From (6) and (7) we have Jiang’s function

Jy(@)= [ (P=1) = z(P)] %0

<P
where £(P)=2(P=1) ., P=1(mod4) : x(P)=2(P-3) ., P=1(mod8) : ZX(P)=0 4 wise.
Since /5 (@)#0 in (2) there are infinitely many pairs of A and F prime equations such that B is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and P such that B is a prime.
From (8) we have the best asymptotic formula

2
S@o N°_q oy,
8¢ (w) log” N
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of
length k.
P.P,=PR+d,P,=PF+2d, P, =R +(k-1d.(Bd)=1
From (8) we have the best asymptotic formula .
7,(N2)=[{P, <N:B,P, +d, P +(k —1)d are primes}|
A
@ log'N
J,(w)#0

7,(N,3)=[{B,B,<N: P, prime}|=

QL))

(1+0(1)).

g2 (@) =0

then (10) has finite prime solutions. If then there are infinitely many primes ~!

such that ~2” ’"k are primes.

To eliminate ¢ from (10) we have
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P=2P,~R, P =(j-DP-(j-2)R.3<j<k

From (6) and (7) we have Jiang’s function

Jy(@)= T (P=) II(P=1)(P—k+1)#0
Jy(@)#0

Since in (2) there are infinitely many pairs of A and F prime equations such that IR are

. . e . . P P, -, P
prime equations. Therefore we prove that there are infinitely many pairs of primes ~ ! and * 2 such that™ 3> >
are primes.

From (8) we have the best asymptotic formula

7,0 (N.3)=|{B. B, < N:(j-1)P,~(j - 2)P, prime,3 < j < k}|
k-2 2 1 Pk72 Pk72 P_ 1 2
S0 - N oy =2 p L g PP Y
2¢" (w) log" N 22<P<k (P—1)"" k<P (P-1) log" N

P,P+2,P+2*

(1+o(1))

Example 9. It is a well-known conjecture that one of is always divisible by 3. To generalize

above to the K — primes, we prove the following conjectures. Let 7 be a square-free even number.

| P.P+n,P+n’

where 3|(n * 1) .

>

_ 2
From (6) and (7) we have J,3)=0 , hence one of P,P+n,P+n
5 P.P+n,P+n’,:--,P+n'

where 5|(n+b),b=2,3.

is always divisible by 3.

>

_ 5 y
From (6) and (7) we have Jz(s)_o,henceoneofP’P+”ap+n o, P+n

is always divisible by 5.
3 P.P+n,P+n’,- P+n’
7|(n+b),b=2,4.
where |( )
— 2 6
From (6) and (7) we have S,(N=0 , hence one of P,P+n,P+n’, -, P+n is always divisible by 7.

4 P.P+n,Ptn’, e Ptn
|(n+b),b=3,4,5,9.
From (6) and (7) we have S, =0
s P,P+n,P+n’,--,P+n"

. 13|(n+5),6=2,6,7,11.
From (6) and (7) we have /,(13)=0
¢ P P+n,P+n’, - P+n'

. 17|(n+b),b=3,5,6,7,10,11,12,14,15.
From (6) and (7) we have J,(17)=0
5 P,P+n,P+n’,--,P+n"

. 19|(n+b),b=4,5,6,9,16.17.

wher

P,P+n,P+n’,---,P+n"

, hence one of is always divisible by 11.

wher

P,P+n,P+n’,--,P+n"

, hence one of is always divisible by 13.

wher

P,P+n,P+n’,---,P+n'"

, hence one of is always divisible by 17.

wher
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= 2 18
From (6) and (7) we have *2(19) =0 P,P+n,P+n’,--,P+n

Example 10. Let 77 be an even number.

1 P,P+n',i=1,3,5,--2k+1
J,(w)#0

, hence one of is always divisible by 19.

From (6) and (7) we have . Therefore we prove that there exist infinitely many primes P such that

P,P+n' . k
arc primes fOl‘ any .
, P,P+n,i=2,4,6,,2k
J,(w)#0

From (6) and (7) we have . Therefore we prove that there exist infinitely many primes P such that

P,P+n

are primes for any k.

Example 11. Prime equation 2PZ - Pl + P3
From (6) and (7) we have Jiang’s function

J3(a))=3<1'£(P2—3P+2)¢0
Jy(@)#0

Since in (2) there are infinitely many pairs of A and F prime equations such that lE is prime

equations. Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula

Ji(w)o N?
2¢° (w) log’ N

7,(N.,3)=|{R.B, <N : P, prime}| = (1+o(1)).

2
In the same way we can prove 2B =HK+R which has the same Jiang’s function.

Jiang’s function is accurate sieve function. Using Geometries, 15(1998), 509-544.

it we can prove any irreducible prime equations in 4. Chun-Xuan Jiang, Foundations  Santilli’s

prime distribution. There are infinitely many twin isonumber theory, In: Fundamental open

primes but we do not have rigorous proof of this old problems in sciences at the end of the millennium,
conjecture by any method [20]. As strong as the T. Gill, K. Liu and E. Trell (Eds) Hadronic Press,

numerical evidence may be, we still do not even know USA, (1999), 105-139.

whether there are infinitely many pairs of twin primes 5. Chun-Xuan Jiang, Proof of Schinzel’s hypothesis,

[21]. All the prime theorems are conjectures except the Algebras Groups and Geometries, 18(2001), 411-

prime number theorem, because they do not prove the 420.

simplest twin primes. They conjecture that the prime 6. Chun-Xuan Jiang, Foundations of Santilli’s

distribution is randomness [12-25], because they do not isonmuber theory with applications to new

understand theory of prime numbers. cryptograms, Fermat’s theorem and Goldbach’s
conjecture, Inter. Acad. Press, 2002, MR2004c:
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Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k.

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture.

(A) Jiang prime k -tuple theorem [1, 2].
We define the prime k -tuple equation

p.p+n; (D
where 2|ni,z':1,-~k—l'

we have Jiang function [1, 2]

Jz(a)):g(P_l_Z(P))’ O
where il P, X(P) i the number of solutions of congruence

Mg n)=0 modP) ooy g N

g XP)<P-1, J,(@)#0

92
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i X(P)=P-1 then J,(@)=0

J2 (w) is a subset of Euler function ¢(a)) [2].
g2 (@) #0

. There exist finitely many primes P such that each of Pn, is prime.

, then we hae the best asymptotic formula of the number of prime P [1,2]
(o™ N N
2 (k ) - — C(k)
¢ (@) log' N

#0) =TI(P-1).

7, (N,2) =HP£ N:P+n = prime}‘ ~ T
4)

C(k)= H(l_wj(l_lj
P P P

(5

Example 1. Let k=2,P,P+2
From (3) we have
22)=0, x(P)=1;p>2 6
Substituting (6) into (2) we have
Jy(@)=T1(P=2)%0

, twin primes theorem.

7

There exist infinitely many primes P such that P+2 is prime. Substituting (7) into (4) we have the best
asymptotic pormula

1 N
7,(N,2)=fP<N:P+2=prime;|~211(1- .
(D= prime}|~2[1( (P—l)z)logzN (8

Example 2. Let k=3, P’P+2’P+4.

From (3) we have

2(2)=0, x(3)=2 9)

From (2) we have

So(@) =0 (10)

It has only a solution P:3, P+2:5, P+4="T 0Oneof P, P+2,P+4 is always divisible by 3.
Example 3. Let k=4, P’P+n,where n =2’6’8.

From (3) we have
2(2)=0,7Q)=L x(P)=3 ,P>3 an
Substituting (11) into (2) we have

Jy(@) = TL(P=4)#0

) (12)
There exist infinitely many primes P such that each of P +7 is prime.
Substituting (12) into (4) we have the best asymptotic formula
, 27 P (P-4 N
7z4(N,2)=‘{PSN:P+n=przme}‘~—1‘[ ( 4) .
3 r5 (P-1)" log' N (13)

Example 4. Let k=5, P P+n_ where n=2,6,8,12'

From (3) we have
2(2)=0,7Q)=1, () =3, (P)=4 4, P>5 (14
Substituting (14) into (2) we have

Jy(w)=T1(P-5)#0
(@)= T1(P-5) .
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There exist infinitely many primes P such that each of P +7 is prime. Substituting (15) into (4) we have the
best asymptotic formula
_ 15 _(P-5P" N
725(N,2)=‘{P£N:P+n=przme} ”TH( )5 S
20 r21 (P-1) log’ N

(16)
Example 5. Let k= 6, P, P+n,where I’l=2,6,8,12,14'
From (3) and (2) we have
2(2)=0, 73)=1 7(5)=4, J,(5=0 (17

It has only @ solution P=5, P+2=7 P+6=11 P+8=13 P+12=17 P+14=19 onc of
P+n i always divisible by 5.

(B) The Hardy-Littlewood prime k -tuple conjecture[3-14].
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999).

We define the prime k -tuple equation
P,P+n,

(18)
where 2|n[’l =1,...,k_1'
In 1923 Hardy and Littlewood conjectured the asymptotic formula
N
ﬁk(N,2)=‘{PSN:P+ni=prime}‘~H(k) p
log" N (19
where
—k
P 1
H(k)= H(l —Mj(l ——j
i P P (20)
v(P) is the number of solutions of congruence
k-1
I[M(g+n)=0 (modP —
[g+n)=0 (modP) oy p o

From (21) we have v(P)<P and H(k)# 0. For any prime k -tuple equation there exist infinitely many

primes P such that each of Pn, is prime, which is false.

Conjectore 1. Let k=2,P,P+2
Frome (21) we have
v(P)=1
Substituting (22) into (20) we have

P
H(Q2)=T1—
2)=T1-—

, twin primes theorem

22

(23)
Substituting (23) into (19) we have the asymptotic formula
P N
7, (N,2)={P<N:P+2=prime}| ~I1——
:(N:2) ‘{ P }‘ P P—1log’ N

(24>
which is false see example 1.

Conjecture 2. Let k=3,P,P+2,P+ 4.
From (21) we have
v(2)=1, v(P)=2 if P>2
Substituting (25) into (20) we have

(25
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<HG)=4H£ig:éQ
P>3 (P_])

Substituting (26) into (19) we have asymptotic formula

PX(P-2)

(26)

7r3(N,2)=‘{PSN:P+2=prime,P+4:prim}‘~4H

which is false see example 2.

Conjecutre 3. Let k= 4, P,P+n , wher
From (21) we have

v(2)=1 v(3)=2, v(P)=3 .+ P>3
Substituting (28) into (20) we have
3 R
H (4) = 2 11 w
2 P3 (P-1)

Substituting (29) into (19) we have asymptotic formula
3 - 3
27 0l P (! ) N

7Z4(N,2)=HPSN:P+n=prime}‘~?P>3 P-1) log' N

n=2,6,8
e .

Which is false see example 3.

Conjecture 4. Let k=35, P, P"‘”’
From (21) we have

v(2)=1 v(@3)=2, v(5)=3, v(P)=4 ; P>5
Substituting (31) into (20) we have
4 4
e
45 s (P-1)
Substituting (32) into (19) we have asymptotic formula
15* P* (P-4) N

where 1= 2,6,8,12

H(5) =

7[5(]\7,2)=‘{P£N:P+n=prime}‘~F£[5 (P—1) log’ N

Which is false see example 4.
Conjecutre 5. Let k= 6, P P+”,where n= 2’6’8’12’14.
From (21) we have
V(2)=17 V(3)=27 V(5)=47 V(P):5 lfP>5
Substituting (34) into (20) we have
1 5 _ 5
i I (P-5)P
28 ps (P-1)°
Substituting (35) into (19) we have asymptotic formula
15> _(P-5)P° N

H(6)=

7;6(N,2)=‘{P£N:P+n=prime}‘~F1§5 (P—1)° log’ N

which is false see example 5.

Conclusion. The Hardy-Littlewood prime k -tuple Hardy-Littlewood prime k -tuple Conjecture. There
conjecture is false. The tool of addive prime number cannot be really modern prime theory without Jiang

theory is basically the Hardy-Littlewood prime tuples function.

conjecture. Jiang prime k -tuple theorem can replace
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(33)

P (P=1)" log’ N (5

(28)

@L))
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(32)

(34

(35)
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Automorphic Functions And Fermat’s Last Theorem(1)

Chun-Xuan Jiang

P.0.Box 3924,Beijing 100854,China
jiangchunxuan(@sohu.com

Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”
n n __ n
This means: ~ +y'=2'(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 3P ang P , Where P isan odd prime.
The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[ri tiJij = Zn: SJ
i=1 i=1

(D

. n_ . t.
where J denotes a ”? th root of unity, J'=1 , I is an odd number, " are the real numbers.
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i is called the automorphic functions(complex hyperbolic functions) of order ” with 72 —1 variables [1-7].
n—1

2 o
S, =1[e" +23 (<1 e cos(@, + (—1y LTIy
n =1 n

(2
where i=1,2,...,n;
n—1 n—1 .
A=) t, B, =) t,(-D¥ cos ZL%
a-1 s a=1 n ’
(3)
n-1
n—1 . 2
6,=(-D™"Y 1, (-1 sin L% A+2) B;=0
a=1 Jj=1
(2) may be written in the matrix form
1 1 0 e 0 |
s . ) -1
S 1 —cosZ —sinZ . —smu - p 1
S n n 2n e
2
1 2 . . - B
S3 e 1 Cos_ﬂ- Slnz_ﬂ- e _SIHM 2e Cos 91
n n n n 2¢" sin 6,
L (r-hx . (1-1) (n-1)
1 cos Sin n 7 _Sinu 2,6)(1:)8}1771 Sll’lenii1
L n n 2n 4L 2 2 (4)
where (n=1)/2 is an even number.
From (4) we have its inverse transformation
1 1 1 e 1 i
_ P -
2 -1
e I —cosZ csZ . cosZDE
e’ cos 6, n n n - -
B T (n-Drx 5
e’ sin 6 =| 0 —sin— sin— e osin——— S
n n n 2
‘ N S,
exp(B,_,)sin(d, ) 2
2 2 ) -1 . — . —
- ? 2 - 0 —sin —(n )z —s1n—(n Dz —sm—(n 7 g
L 2n n 2n ] | Px] (5)
From (5) we have
P n B. ol i Uﬂ'
e :ZS,. e ’cosHj:Sl+ZSH,.(—l) c0s7
i=1 i=1
n—1 oo
¢’ sing, = (~1)"Y" S, (-1)7 sin L%
n
(6)

i=1
B

In (3) and (6) l and S, have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT.
Using (4) and (5) in 1991 Jiang invented that every factor of exponent ” has the Fermat equation and proved FLT

[1-7] Substituting (4) into (5) we prove (5).
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1 1 1 1
_ ) - , .
e cosb, n n n
e” sin 6, _ 1 0 _sinZ sinz—ﬁ e sin (n-Dr
n n n n
exp(Bn;l) sin(@n;l) 1 1 .
B ’ t- 0 —sin—(n_ ) —sin—(n_ )z —sin—(n_ )7
1 1 0 e 0 ]
_ ) _
1 —cosZ _sinZ .. _SmM Be
n n 2n 2¢" cos 6,
1 cos— sin?® ... _Sinw 2¢” sin 6,
n n n
|| 2exp(8, ,)sin(o, )
1 cos =Dz sin(n_l)” _Sinw L 2 2
L n n 2n
(n 0 0 - 0]
n i e’ i
o 2 o .. 0 B
2 2¢" cos 6,
= l 0 0 n 0 2¢% sin 6,
n 2
2 eXp(Bn—l )Sin(gn—l )
0 0 0 Zk 2 >
L 2]
eA
e’ cos 6,
_ e’ sin 6,
exp(B,_,)sin(0,_,)
- 2 2 D
n—1 . n—l .
1+ (cosZy =2 sinZZy =2
where /7! n 2 , = n 2 '
From (3) we have
%4
exp(4+2)_ B,)=1
- : (8)

From (6) we have
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ael Sl Sn Sz Sl (Sl)l (Sl)nfl
2 S S . S| Is (s e (S
exp(A+2ZBj)= 2 1 3| _|P2 (S, (85),
Sn Sn—l Sl Sn (Sn)l (Sn)n—l , (9)
oS,
G)=a,
where I [7].
From (8) and (9) we have the circulant determinant
. S S - S,
2 S S ... 8
exp(4+2) B)=" ' Sl=1
]=1 LY LY LY :
So S 5y (10
If S =0 , Where i=12n , then (10) has infinitely many rational solutions.
Assume 5, #0 , S, #0 , 5 =0 where © T 3,4,:++,n.5,=0 are "2 indeterminate equations with

n—1 yariables. From (6) we have

2B, 2 2 j J7
4 _ e =8"+8,+2S55,(-1) cos—
e"=8+85, e 172 n (D

From (10) and (11) we have the Fermat equation

n-1 nl

exp(A+2ZB) (S, +S)H(S2+S2+2SS( l)]cos ) S'+8) =1
Jj=1 (12)
Example[1]. Let 77 = 15 From (3) we have

A=(t+1,)+(t, +t13)+(t +1,)+ (@, +8,)F () +H(t 1)+ (2, + 1)

2 RY/4 4
B, =—(t, +t,)cos— + t, +t.)cos——(t, +t,,)cos—+ (¢, +t,,)coS—
-t +1,) T (4, +13) T —(t;+1,) T (t,+4)

—(t; +z‘10)cosi5 + (¢, +t,)cos ?75[ (t7+t8)cos7—7z

2z Ar
=(t,+t,)cos— s +(t, +¢,;)cos— T +(t, +1,,)cos ?5 +(t, +¢,)cos— 8z

107 127 147
+(t5 +1,,) COS——+ (£ +1,) COS——+ (¢, +1;) COS——
(5 +fig) COS—r=+ (fg +4y ) cOs =+ (1 +1 ) cos— |

12
=—(¢, +z‘14)cosi’5 +(2, +tl3)cos?75z (t3+t12)cos?—75z+(t4+t“)cos—7z

157 1 21
—(t; +1t,,)cos 155 + (¢, +t, )cosli: (t, +t )cos—ﬁ

Arxr 127 1
B, =(t,+t,)cos— T +(t, +z‘13)coszj5 +(t, +1,)cos— T +(t, +t11)cosﬂ

207 247 2
+(t, +1¢,,)cos 105 +(t, +1,)cos—— T +(t, +t )cosﬁ

>
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57 107 157 20z
=—(t,+1t,)cos— T +(t, +1,;)cos— T —(t, +1t,)cos— T +(t, +t11)cosF

257 307 357
t,+1t,)cos——+(t, +1,) cos———(t, +1;) cos——
s 1) COS ==+ (l F1y) COS = = (£ + £y ) cOS—

>

or 127 187 24rx
=(t, +t,)cos— T +(t, +t;)cos— T +(t,+1t,)cos— T +(t, +t11)cosF

30z 36 42
+(t;, +1,,) coOsS—— + (¢, +1,) cOS—— + (¢, + £, ) COS——
(5 +ig) COS—m (£ +1, ) COS—m+ (5 + £y Jeos——

>

Tr 14~ 21z 287
=—(t,+t,)cos— T +(t, +1,;)cos— T —(t, +t,)cos— 5 +(t, +t11)cos?

357 42 497
t,+1t,)cos——+(t; +1,)cos——— (¢, + ;) cOS——
s Htg) cOS == (fg +1y ) eos == (I +fy ) cos—

>

;
A+2) B, =0,  A+2B,+2B =5(t;+1,)

/= . (13)
Form (12) we have the Fermat equation

g
exp(A+2)> B)=S8"+5"=(5) +(85;) =1
Jj=1 .

(14)
From (13) we have
exp(A+ 2B, +2B,) =[exp(t, +1,,)I’ ' (15)
From (11) we have
exp(4+2B,+2B,)=S+S; 16)
From (15) and (16) we have the Fer'mat equation
exp(A+2B, +2B,) =] +5; =[exp(t; +1,)]" am

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational
solutions for exponent 5[1].
Theorem 1. [1-7]. Let = 3P,Where P >3 i50dd prime. From (12) we have the Fermat’s equation
3p-1
exp(A+2) B)=8"+5" =(S/) +(S;) =1
= . (18)
From (3) we have
£
3 P
exp(4 + 22 B}j) =[exp(t, +1,5)]
J= . (19)
From (11) we have
Lt
3 P P
exp(A+2) B,)=S8+5,
= . (20)
From (19) and (20) we have the Fermat equation
Lt
2
exp(A+2) B, ) =8 +8; =[exp(t, +1,,)]"
j=1 Q1D
Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational
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solutions for £ >3 [1,3-7].

Theorem 2. In 1847 Kummer write the Fermat’s equation

x'ryl=2"
in the form
2 -1
(x+ )+ ) x+r7p)(xtry) =z"
T .. 2
r =CcoS—+1SIn—
where P is odd prime, P P

22

(23

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100

[8]..

We consider the Fermat’s equation
3p 3p 3p
x4y =z
we rewrite (24)
") +(") ="
From (24) we have
(xP + yP)(xP + K)/P)(XP + rZyP) — Z}P
2 .. 2«
r =CcoS—+i1SIn—
where 3 3

We assume the divisor of each factor is a £ th power.

Y

X
S=— 15,
Let z,

x" +yP =[zxexp(t, +t2P)]P

Q24

(25)

(26

Z . From (20) and (26) we have the Fermat’s equation

27)

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer

solutions for prime exponent P,

Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24)

() + () =)

(28)

Euler proved that (25) has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no

integer solutions for all prime exponent P [1-7].
We consider Fermat equation

el +y4P _ 4P
We rewrite (29)

) (O ="
D"+ =Y

Fermat proved that (30) has no integer solutions
for exponent 4 [8]. Therefore we prove that (31) has no

integer solutions for all prime exponent P [2,5,7].This
is the proof that Fermat thought to have had.
Remark. It suffices to prove FLT for exponent 4. Let

n=4pP , where P is an odd prime. We have the
Fermat’s equation for exponent 4P and the Fermat’s

equation for exponent P [2,5,7]. This is the proof that
Fermat thought to have had. In complex hyperbolic

101
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functions let exponent / be 77 = IIP n=2IIP 4

n=4l1pP Every factor of exponent /? has the
Fermat’s equation [1-7]. In complex trigonometric

functions let exponent / be 77 = IIP n=2IIP 44

n=A4llP. Every factor of exponent /2 has Fermat’s
equation [1-7].Using modular elliptic curves Wiles and
Taylor prove FLT[9,10].This is not the proof that
Fermat thought to have had. The classical theory of
automorphic functions, created by Klein and Poincare,
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Automorphic Functions And Fermat’s Last Theorem (2)
Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan(@vip.sohu.com

Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”
n n __ n
This means: * ty =z (I’l >2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 6P ang P , Where P isan odd prime.
The proof of FLT must be direct .But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[zi:l tiJij = i SJ
i=1 i=1 QP)

J 2n Lo JM =1 t,
where ¥ denotes a th root of unity, , n is an odd number, “/ are the real numbers.

Si is called the automorphic functions(complex hyperbolic functions) of order 2n with 2n—-1 variables
[5,7].
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n—1
1 < i1)8, (i-1))
S,=—/|et+2) (" cos(ﬁj +(=1) M)
2n = n
n-1
_1\G-D 2 o ) 1) g
T A e cos(g/ﬁj s (ony 2D ”j
2n = n
, 2
where 1 =1,...,2I’l;
2n-1 2n-1 ) a]ﬂ. . 2n-1 o a]ﬂ.
A4=>t, B, => t(-DYcos——,0,=(-D"""> 1 (-1)*sin——
a=1 a=1 n a=1 n ,
2n-1 2n-1 . a]ﬂ.
4= 1, D= 1,(-Hv cos— =
a=1 a=1
E 2
2n-1 ) ; 2
8, =1 1, (-1 sin 2T 414,423 (B,+D,)=0
ol " = (3)
From (2) we have its inverse transformation[5,7]
2n 2n
eAl — Z Si’ eAz — Z Si (_I)Hi

i=1 i=1
2n-1 o]
e’ cosf =5 + Z S, =D c0s7
i=1

. . '+ 2n71 1" . i.ﬂ-
e”sin@, =(-)U"Y S, (-1)" s1n]7
=1

>

2n-1 o]

Y 17T

(1)U cos Y2
n

e”’ cos g, =8+ Z S,

i=1

+i

2n-1

¢ sing, = (1)’ S, (- sinZE
i=1 " 4
(3) and (4) have the same form.
From (3) we have
n—1
2
exp| 4 +4,+2) (B, +D))|=1
j=1
(5
From (4) we have
el S Sy, S,
< S S S
exp| 4 +4,+2) (B,+D))|=| ° : }
= ... ...
S2n SZn—l e Sl
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Sl (Sl)l (SI)anl
_ S (&) (8
SZn (SZn)l (SZn)anl (6)
(S)); Z%
where 7 7]..
From (5) and (6) we have circulant determinant
B S S, - S
exp| 4+ 4,425 (B, +D,)|= SZ S
j=1
Szn SZn—l Sl D)
If 5 =0 » where 1=123,..2n , then (7) have infinitely many rational solutions.

A=t A =—t

Let 7 =1 From (3) we have I and 72 I, From (2) we have

S, =ch¢, S, =sht, 2)
we have Pythagorean theorem

ch’¢, —sh’¢, =1 (9)

(9) has infinitely many rational solutions.

S, #0,5,#0,8,#0 i=3..2n ;=0 __(2n-2)
. . are

Assume where indeterminate equations with
(2n-1) variables. From (4) we have
. . | 7T
et =8 +8,, e =8 -8, &Y =8 +52+25,8,(-1) cosZZ
n
. . ¥4
e =82 +82+28,8,(-1)/" cosZZ
n (100

Example. Let 77 = 15 From (3) and (10) we have Fermat’s equation

7
exp[ 4, + 4, +2Z (B,+D)]=5"-58=(5")-(5,’) =1

=1 (1)
From (3) we have

5
exp(4, +2B, +2B.) =[exp(D t;,)I

= 12>
From (10) we have
exp(4, +2B, +2B,) =S +S] (13

From (12) and (13) we have Fermat’s equation

5
exp(4, +2B, +2B) =5 +5; =[exp(D t;,))’
Jj=1 (14)
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational
solutions for exponent 5.

Theorem. Let 7 =3P where P is an odd prime. From (7) and (8) we have Fermat’s equation
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3P-1

2
exp(4, + 4, + 22 (B, +D)]=8" -8 =(SI") =(8;")’ =1

J=1

From (3) we have

i} P
2 5

exp| 4, + 22 B, |= exp(z tjPJ

j=1 j=1

From (10) we have
P-1

2
exp| 4, +2) B, |=8+S;

J=1

From (16) and (17) we have Fermat’s equation
P-1

J=

Euler prove that (15) has no rational solutions for
exponent 3[8]. Therefore we prove that (18) has no

rational solutions for prime exponent P [5,7].

Remark. It suffices to prove FLT for exponent 4. Let
n=4pP , where P is an odd prime. We have the
Fermat’s equation for exponent 4P and the Fermat’s

equation for exponent P [2,5,7]. This is the proof that
Fermat thought to have had. In complex hyperbolic

functions let exponent /7 be 7 = 1P  n=2I1P

and 1 =411P Every factor of exponent /7 has the
Fermat’s equation [1-7]. In complex trigonometric

functions let exponent /7 be 7 = 1P  n=2I1P

and 1 =411P Every factor of exponent 7 has
Fermat’s equation [1-7]. Using modular elliptic curves
Wiles and Taylor prove FLT [9, 10]. This is not the
proof that Fermat thought to have had. The classical
theory of automorphic functions, created by Klein and
Poincare, was concerned with the study of analytic
functions in the unit circle that are invariant under a
discrete group of transformation. Automorphic
functions are the generalization of trigonometric,
hyperbolic, elliptic, and certain other functions of
elementary analysis. The complex trigonometric
functions and complex hyperbolic functions have a
wide application in mathematics and physics.
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2 5
exp| 4,+2). B, |=S+8) = exp(z tjPJ
=]

(15)
(16)
17)
P
(18)
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Automorphic Functions And Fermat’s Last Theorem (3)
(Fermat’s Proof of FLT)

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@sohu.com

Abstract

In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”

This means: ~ +y'=2'(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 4P ang P , Where P isan odd prime.
We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields
4m-1 4m
exp[ > tiJ’j => sJ
i=1 i=1

4m
where J denotes a 4m th root of unity, J" =1 ,m=1,23,..., f are the real numbers.

(D

Si is called the automorphic functions(complex hyperbolic functions) of order 4m wigh 4m—1 variables

[2,5,7].
1 -_1 ﬂ‘l*l v -_1 .
S, =—/|e* +2e" cos(ﬂ+u)+22 e’ cos(ﬁj +MJ
4m 2 = 2m
_1 (i-1) m—1 v _1 .
+—( ) {e/‘z +2)° e cos((éj——(l )Jﬂﬂ
4m = 2m (2)
where 1 =1,...,4I’l’l;
4m-1 4m—1 2m—1 2m
A=t A=) 1, H=) 6, (=D, B=D b, ,(-D*
a=1 a=1 a=1 a=1
4m-1 a]ﬂ. 4m—-1 ]
B. = t cos—, O, =- ¢t sin ,
/ ; “ 2m / ; “ m
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4m-1 a] 4m-1 0{]7[

T
D. = t (-1)“cos——, ¢. = t (-1)“ sin——
)= 2 (D eosTn 4= 3 g, () sin =

m—1

A +A4,+2H+2)" (B,+D,)=0

Jj=1 . 3)
From (2) we have its inverse transformation[5,7]
4m 4m
eAl — Z Si’ eAz — Z Si (_I)Hz
i=1 i=1
2m 2m

e’cos f= S, (D", e"sinf=> 5, (-1

i=1 i=1
4m-1

>

B, ! yr B, . . g
e’cos@ =S8 + S, cos—, e’sinf =— S, Sin—
J 1 ; 1+i 2m J ; 1 2m
e” cosg =S + 4f S (=1) cosij—” ¢” sing, = 4f S . (=1) sinij—ﬁ
J 1 P 1+i 2m 4 J P 1+i 2m ' (4)
(3) and (4) have the same form.
From (3) we have
m—1
exl{A1 +4,+2H+2) (B, +Dj)} =1
= (5
From (4) we have
Sl S4m U SZ
m—1 S S e S
exp{Al+A2+2H+2z (B].+Dj)}= o ’
=
S4m S4m—1 “. Sl
Sl (Sl)l (Sl )4mfl
_ S, S (84
S4m (S4m )1 .” (S4m )4m—1 (6)
where
oS.
G =%,
/7]
From (5) and (6) we have circulant determinant
Sl S4m “. SZ
m-1 S S e S
exp| 4 + 4, +2H+2), (B;+D,)|=| * =1
=
S4m S4m—1 “. Sl (7>

5 #0.5,#0,5,=0 i=3,...4m. 5, =0 are (4m—2) indeterminate equations with

Assume , Where

(4m—1) variables. From (4) we have
e =8 +S,, e"=8-5,, &"=S'+S;
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e =82 +82+288S, cos;—ﬂ e’ =87 +S; 28,5, Cosé_ﬁ

m

>

Example [2]. Let 4m =12 grom (3) we have

Al :(tl +1‘11)4‘(1‘2 +1‘10)4‘(1‘3 +t9)+(t4+t8)+(t5 +t7)+t6

m

(8

Az = _(tl +t11)+(t2 +t10)_(t3 +t9)+(t4 +t8)_(t5 +t7)+t6
=—(t,+1,)+ (2, +t8)—t6

2 4 5
=(t, +t11)cos +(t, +t,,)cos—+(t, +t¢, )cos3—+(t +t)cos—+(t +1,)cos— il
6 6 6 6 6
=(f +t11)cos26 +(t, +tm)cos46 +(t, +t)cos66 +(t, +t)c0586
4
D, =—(¢, +f11)0036+(f +t10)cos26ﬂ (t, +1¢ )COS36 +(t, +1t;)cos 6”

107
D, =—(¢, +tll)cosz6 +(1, +t10)cos4?ﬂ—(t +1 )cos%+(t +t)c0s8?ﬂ—(t +t )COSOT+16,

A+A4,+2(H+B +B,+D,+D,)=0 A,+2B, =3(—t; +t,—t,)

From (8) and (9) we have

exp[4, + 4, +2(H+B,+B,+D, +D,)]|=S5"7 -8 =(5))"-(S5;)" =1

From (9) we have
exp(4, +2B,) = [exp(~t; +1,—1,)]"

From (8) we have

exp(4, +2B,) = (S, - S,)(S” +5; +S8,5,) =S, - S;.

From (11) and (12) we have Fermat’s equation

exp(4, +2B,) =8, =8, =[exp(~t; +1,—1,)]"

Fermat proved that (10) has no rational solutions for exponent 4 [8].
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2]

Theorem . Let 4m =4P , where P isan odd prime,
From (3) and (8) we have

(P-1)/2

is an even number.

P-1
expl4, + 4, +2H +2> (B, +D,)]=5}" ~Si" = (SF)* —(87)* =1

J=1

From (3) we have
Pl

exp[4, +2Z (B, 5+ Dy ) =[exp(~t, +1,, —1;,)]"

From (8) we have
P-1

4
exp[4, +2Z (B4j—2 +D4j)] = S1P _S;
j=1

From (15) and (16) we have Fermat’s equation
p-1

4
exp[4, +2z (By, + D, )= S1P _S; =[exp(—t, +1,, _tzp)]P

J=1
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(t; +t7)cos%r—

9

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

+1,

L,

-1,
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Fermat proved that (14) has no rational solutions for exponent 4 [8]. Therefor we prove that (17) has no

rational solutions for prime exponent P,

Remark. Mathematicians said Fermat could not
possibly had a proof, because they do not understand

FLT.In complex hyperbolic functions let exponent /2
be n=TIP  n=2IIP anq n=411P  Eyery

factor of exponent /7 has Fermat’s equation [1-7].
Using modular elliptic curves Wiles and Taylor prove
FLT [9,10]. This is not the proof that Fermat thought to
have had. The classical theory of automorphic
functions,created by Klein and Poincare, was
concerned with the study of analytic functions in the
unit circle that are invariant under a discrete group of
transformation. ~Automorphic functions are the
generalization of trigonometric, hyperbolic elliptic, and
certain other functions of elementary analysis. The
complex trigonometric functions and complex
hyperbolic functions have a wide application in
mathematics and physics.
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Fermat's Last Theorem

Fermat's last Theorem: There is no positive
integers X, y, z, and n > 2 such that x "+ y" = 2"
was broadcast on 15 January 1996

At the age of ten, browsing through his public
library, Andrew Wiles stumbled across the world's
greatest mathematical puzzle. Fermat's Last Theorem
had baffled mathematicians for over 300 years. But
from that day, little Andrew dreamed of solving it.
Tonight's HORIZON tells the story of his obsession,
and how, thirty years later, he gave up everything to
achieve his childhood dream.

Deep in our classroom memories lies the enduring
notion that "the square of the hypotenuse is equal to the
sum of the squares of the other two sides": Pythagoras's
Theorem for right-angled triangles. Written down, it is
a£so the simplest of mathematical equations: x *+ y* =
z

In 1637, a French mathematician, Pierre de
Fermat said that this equation could not be true for x’ +
y’ = 2 or for any equation x" + y* = Z" where n is
greater than 2. Tantalisingly, he wrote on his Greek
text: "I have discovered a truly marvellous proof,
which this margin is too narrow to contain." No one
has found the proof, and for 350 years attempts to
prove "F.L.T." attracted huge prizes, mistaken and
eccentric claims, but met with failure.

Simon Singh and John Lynch's film tells the
enthralling and emotional story of Andrew Wiles. A
quiet English mathematician, he was drawn into maths
by Fermat's puzzle, but at Cambridge in the '70s, FLT
was considered a joke, so he set it aside. Then, in 1986,
an extraordinary idea linked this irritating problem with
one of the most profound ideas of modern mathematics:
the Taniyama-Shimura Conjecture, named after a
young Japanese mathematician who tragically
committed suicide. The link meant that if Taniyama
was true then so must be FLT. When he heard, Wiles
went after his childhood dream again. "I knew that
the course of my life was changing." For seven years,
he worked in his attic study at Princeton, telling no one
but his family. "My wife has only known me while I
was working on Fermat", says Andrew. In June 1993
he reached his goal. At a three-day lecture at
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Cambridge, he outlined a proof of Taniyama - and with
it Fermat's Last Theorem. Wiles' retiring life-style was
shattered. Mathematics hit the front pages of the
world's press.

Then disaster struck. His colleague, Dr Nick Katz,
made a tiny request for clarification. It turned into a
gaping hole in the proof. As Andrew struggled to repair

Fermat.

A year later, at the point of defeat, he had a
revelation. "It was the most important moment in
my working life. Nothing I ever do again will be the
same." The very flaw was the key to a strategy he had
abandoned years before. In an instant Fermat was
proved; a life's ambition achieved; the greatest puzzle

the damage, pressure mounted for him to release the of maths was no more.
manuscript - to give up his dream. So Andrew Wiles

retired back to his attic. He shut out everything, but

PROF. ANDREW WILES:

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark mansion. One
goes into the first room and it's dark, completely dark, one stumbles around bumping into the furniture and then
gradually you learn where each piece of furniture is, and finally after six months or so you find the light switch, you
turn it on suddenly it's all illuminated, you can see exactly where you were.

At the beginning of September I was sitting here at this desk when suddenly, totally unexpectedly, I had this
incredible revelation. It was the most, the most important moment of my working life. Nothing I ever do again will...
I'm sorry.

NARRATOR:

This is the story of one man's obsession with the world's greatest mathematical problem. For seven years
Professor Andrew Wiles worked in complete secrecy, creating the calculation of the century. It was a calculation
which brought him fame, and regret.

ANDREW WILES:

So I came to this. I was a 10-year-old and one day I happened to be looking in my local public library and I
found a book on math and it, it told a bit about the history of this problem that someone had resolved this problem
300 years ago, but no-one had ever seen the proof, no-one knew if there was a proof, and people ever since have
looked for the proof and here was a problem that I, a 10-year-old, could understand, but none of the great
mathematicians in the past had been able to resolve, and from that moment of course I just, just tried to solve it
myself. It was such a challenge, such a beautiful problem.

This problem was Fermat's last theorem.
NARRATOR:

Pierre de Fermat was a 17th-century French mathematician who made some of the greatest breakthroughs in
the history of numbers. His inspiration came from studying the Arithmetica, that Ancient Greek text.
PROF. JOHN CONWAY:

Fermat owned a copy of this book, which is a book about numbers with lots of problems, which presumably
Fermat tried to solve. He studied it, he, he wrote notes in the margins.

NARRATOR:

Fermat's original notes were lost, but they can still be read in a book published by his son. It was one of these
notes that was Fermat's greatest legacy.
JOHN CONWAY:

And this is the fantastic observation of Master Pierre de Fermat which caused all the trouble. "Cubum autem in
duos cubos"
NARRATOR:

This tiny note is the world's hardest mathematical problem. It's been unsolved for centuries, yet it begins with
an equation so simple that children know it off by heart.

CHILDREN:

The square of the hypotenuse is equal to the sum of the squares of the other two sides.
JOHN CONWAY:

Yes well that's Pythagoras's theorem isn't it, that's what we all did at school. So Pythagoras's theorem, the
clever thing about it is that it tells us when three numbers are the sides of a right-angle triangle. That happens just
when x squared plus y squared equals z squared.

ANDREW WILES:

X squared plus y squared equals zee squared, and you can ask: well what are the whole numbers solutions of
this equation? And you quickly find there's a solution 3 squared plus 4 squared equals 5 squared. Another one is 5
squared plus 12 squared is 13 squared, and you go on looking and you find more and more. So then a natural
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question is, the question Fermat raised: supposing you change from squares, supposing you replace the two by three,
by four, by five, by six, by any whole number 'n', and Fermat said simply that you'll never find any solutions,
however, however far you look you'll never find a solution.

NARRATOR:

You will never find numbers that fit this equation, if n is greater than 2. That's what Fermat said, and what's
more, he said he could prove it. In a moment of brilliance, he scribbled the following mysterious note.
JOHN CONWAY:

Written in Latin, he says he has a truly wonderful proof "Demonstrationem mirabilem" of this fact, and then
the last words are: "Hanc marginis exigiutas non caperet" - this margin is too small to contain this.
NARRATOR:

So Fermat said he had a proof, but he never said what it was.

JOHN CONWAY:

Fermat made lots of marginal notes. People took them as challenges and over the centuries every single one of
them has been disposed of, and the last one to be disposed of is this one. That's why it's called the last theorem.
NARRATOR:

Rediscovering Fermat's proof became the ultimate challenge, a challenge which would baffle mathematicians
for the next 300 years.

JOHN CONWAY:

Gauss, the greatest mathematician in the world...
BARRY MAZUR:

Oh yes, Galois...

JOHN COATES:
Kummer of course...
KEN RIBET:

Well in the 18th-century Euler didn't prove it.
JOHN CONWAY:

Well you know there's only been the one woman really...
KEN RIBET:

Sophie Germain
BARRY MAZUR:

Oh there are millions, there are lots of people
PETER SARNAK:

But nobody had any idea where to start.

ANDREW WILES:

Well mathematicians just love a challenge and this problem, this particular problem just looked so simple, it
just looked as if it had to have a solution, and of course it's very special because Fermat said he had a solution.
NARRATOR:

Mathematicians had to prove that no numbers fitted this equation but with the advent of computers, couldn't
they check each number one by one and show that none of them fitted?

JOHN CONWAY:

Well how many numbers are there to beat that with? You've got to do it for infinitely many numbers. So after
you've done it for one, how much closer have you got? Well there's still infinitely many left. After you've done it for
1,000 numbers, how many, how much closer have you got? Well there's still infinitely many left. After you've done
a few million, there's still infinitely many left. In fact, you haven't done very many have you?

NARRATOR:

A computer can never check every number. Instead, what's needed is a mathematical proof.
PETER SARNAK:

A mathematician is not happy until the proof is complete and considered complete by the standards of
mathematics.

NICK KATZ:

In mathematics there's the concept of proving something, of knowing it with absolute certainty.
PETER SARNAK:

Which, well it's called rigorous proof.

KEN RIBET:
Well rigorous proof is a series of arguments...
PETER SARNAK:
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...based on logical deductions.
KEN RIBET:

...which just builds one upon another.
PETER SARNAK:

Step by step.
KEN RIBET:

Until you get to...
PETER SARNAK:

A complete proof.
NICK KATZ:

That's what mathematics is about.
NARRATOR:

A proofis a sort of reason. It explains why no numbers fit the equation without haaving to check every number.
After centuries of failing to find a proof, mathematicians began to abandon Fermat in favour of more serious maths.

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles was just beginning his career as a
mathematician. He went to Cambridge as a research student under the supervision of Professor John Coates.

JOHN COATES:

I've been very fortunate to have Andrew as a student, and even as a research student he, he was a wonderful
person to work with. He had very deep ideas then and it, it was always clear he was a mathematician who would do
great things.

NARRATOR:

But not with Fermat. Everyone thought Fermat's last theorem was impossible, so Professor Coates encouraged
Andrew to forget his childhood dream and work on more mainstream maths.

ANDREW WILES:

The problem with working on Fermat is that you could spend years getting nothing so when I went to
Cambridge my advisor, John Coates, was working on Iwasawa theory and elliptic curves and I started working with
him.

NARRATOR:

Elliptic curves were the in thing to study, but perversely, elliptic curves are neither ellipses nor curves.
BARRY MAZUR:

You may never have heard of elliptic curves, but they're extremely important.

JOHN CONWAY:

OK, so what's an elliptic curve?
BARRY MAZUR:

Elliptic curves - they're not ellipses, they're cubic curves whose solution have a shape that looks like a
doughnut.

PETER SARNAK:

It looks so simple yet the complexity, especially arithmetic complexity, is immense.
NARRATOR:

Every point on the doughnut is the solution to an equation. Andrew Wiles now studied these elliptic equations
and set aside his dream. What he didn't realise was that on the other side of the world elliptic curves and Fermat's
last theorem were becoming inextricably linked.

GORO SHIMURA:

I entered the University of Tokyo in 1949 and that was four years after the War, but almost all professors were
tired and the lectures were not inspiring.
NARRATOR:

Goro Shimura and his fellow students had to rely on each other for inspiration. In particular, he formed a
remarkable partnership with a young man by the name of Utaka Taniyama.
GORO SHIMURA:

That was when I became very close to Taniyama. Taniyama was not a very careful person as a mathematician.
He made a lot of mistakes, but he, he made mistakes in a good direction and so eventually he got right answers and I
tried to imitate him, but I found out that it is very difficult to make good mistakes.

NARRATOR:
Together, Taniyama and Shimura worked on the complex mathematics of modular functions.
NICK KATZ:
I really can't explain what a modular function is in one sentence. I can try and give you a few sentences to
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explain it.
PETER SARNAK:

LAUGHS
NICK KATZ:

I really can't put it in one sentence.

PETER SARNAK:

Oh it's impossible.
ANDREW WILES:

There's a saying attributed to Eichler that there are five fundamental operations of arithmetic: addition,
subtraction, multiplication, division and modular forms.
BARRY MAZUR:

Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many
internal symmetries that their mere existence seem like accidents, but they do exist.
NARRATOR:

This image is merely a shadow of a modular form. To see one properly your TV screen would have to be
stretched into something called hyperbolic space. Bizarre modular forms seem to have nothing whatsoever to do
with the humdrum world of elliptic curves. But what Taniyama and Shimura suggested shocked everyone.

GORO SHIMURA:

In 1955 there was an international symposium and Taniyama posed two or three problems.
NARRATOR:

The problems posed by Taniyama led to the extraordinary claim that every elliptic curve was really a modular
form in disguise. It became known as the Taniyama-Shimura conjecture.
JOHN CONWAY:

The Taniyama-Shimura conjecture says, it says that every rational elliptic curve is modular and that's so hard to
explain.

BARRY MAZUR:

So let me explain. Over here you have the elliptic world the elliptic curve, these doughnuts, and over here you
have the modular world, modular forms with their many, many symmetries. The Shirmura-Taniyama conjecture
makes a bridge between these two worlds. These worlds live on different planets.

It's a bridge, it's more than a bridge, it's really a dictionary, a dictionary where questions, intuitions, insights,
theorems in the one world get translated to questions, intuitions in the other world.

KEN RIBET:

I think that when Shirmura and Taniyama first started talking about the relationship between elliptic curves and
modular forms people were very incredulous. I wasn't studying mathematics yet. By the time I was a graduate
student in 1969 or 1970 people were coming to believe the conjecture.

NARRATOR:

In fact, Taniyama-Shimura became a foundation for other theories which all came to depend on it. But
Taniyama-Shimura was only a conjecture, an unproven idea, and until it could be proved, all the maths which relied
on it was under threat.

ANDREW WILES:

Built more and more conjectures stretched further and further into the future but they would all be completely
ridiculous if Taniyama-Shimura was not true.
NARRATOR:

Proving the conjecture became crucial, but tragically, the man whose idea inspired it didn't live to see the
enormous impact of his work. In 1958, Taniyama committed suicide.
GORO SHIMURA:

I was very much puzzled. Puzzlement may be the best word. Of course I was sad that, see it was so sudden and
I was unable to make sense out of this.

NARRATOR:

Taniyama-Shimura went on to become one of the great unproven conjectures. But what did it have to do with
Fermat's last theorem?

ANDREW WILES:

At that time no-one had any idea that Taniyama-Shimura could have anything to do with Fermat. Of course in
the 80s that all changed completely.

NARRATOR:
Taniyama-Shimura says: every elliptic curve is modular and Fermat says: no numbers fit this equation. What
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was the connection?
KEN RIBET:

Well, on the face of it the Shimura-Taniyama conjecture which is about elliptic curves, and Fermat's last
theorem have nothing to do with each other because there's no connection between Fermat and elliptic curves. But in
1985 Gerhard Frey had this amazing idea.

NARRATOR:

Frey, a German mathematician, considered the unthinkable: what would happen if Fermat was wrong and there
was a solution to this equation after all?
PETER SARNAK:

Frey showed how starting with a fictitious solution to Fermat's last equation if such a horrible, beast existed, he
could make an elliptic curve with some very weird properties.
KEN RIBET:

That elliptic curve seems to be not modular, but Shimura-Taniyama says that every elliptic curve is modular.
NARRATOR:

So if there is a solution to this equation it creates such a weird elliptic curve it defies Taniyama-Shimura.

KEN RIBET:

So in other words, if Fermat is false, so is Shimura-Taniyama, or said differently, if Shimura-Taniyama is

correct, so is Fermat's last theorem.
NARRATOR:

Fermat and Taniyama-Shimura were now linked, apart from just one thing.
KEN RIBET:

The problem is that Frey didn't really prove that his elliptic curve was not modular. He gave a plausibility
argument which he hoped could be filled in by experts, and then the experts started working on it.
NARRATOR:

In theory, you could prove Fermat by proving Taniyama, but only if Frey was right. Frey's idea became known
as the epsilon conjecture and everyone tried to check it. One year later, in San Francisco, there was a breakthrough.
KEN RIBET:

I saw Barry Mazur on the campus and I said let's go for a cup of coffee and we sat down for cappuccinos at this
caf i nd I looked at Barry and I said you know, I'm trying to generalise what I've done so that we can prove the full
strength of Serre's epsillon conjecture and Barry looked at me and said well you've done it already, all you have to
do is add on some extra gamma zero of m structure and run through your argument and it still works, and that gives
everything you need, and this had never occurred to me as simple as it sounds. I looked at Barry, I looked to my
cappuccino, I looked back at Barry and said my God, you're absolutely right.

BARRY MAZUR:

Ken's idea was brilliant.
ANDREW WILES:

I was at a friend's house sipping iced tea early in the evening and he just mentioned casually in the middle of a
conversation: by the way, do you hear that Ken has proved the epsilon conjecture? And I was just electrified. I, I
knew that moment the course of my life was changing because this meant that to prove Fermat's last theorem I just
had to prove Taniyama-Shimura conjecture. From that moment that was what I was working on. I just knew I would
go home and work on the Taniyama-Shimura conjecture.

NARRATOR:

Andrew abandoned all his other research. He cut himself off from the rest of the world and for the next seven
years he concentrated solely on his childhood passion.
ANDREW WILES:

I never use a computer. I sometimes might scribble, I do doodles I start trying to, to find patterns really, so I'm
doing calculations which try to explain some little piece of mathematics and I'm trying to fit it in with some previous
broad conceptual understanding of some branch of mathematics. Sometimes that'll involve going and looking up in a
book to see how it's done there, sometimes it's a question of modifying things a bit, sometimes doing a little extra
calculation, and sometimes you realise that nothing that's ever been done before is any use at all, and you, you just
have to find something completely new and it's a mystery where it comes from.

JOHN COATES:

I must confess I did not think that the Shimura-Taniyama conjecture was accessible to proof at present. I

thought I probably wouldn't see a proof in my lifetime.
KEN RIBET:
I was one of the vast majority of people who believe that the Shimura-Taniyama conjecture was just
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completely inaccessible, and I didn't bother to prove it, even think about trying to prove it. Andrew Wiles is
probably one of the few people on earth who had the audacity to dream that you can actually go and prove this
conjecture.

ANDREW WILES:

In this case certainly for the first several years I had no fear of competition. I simply didn't think I or any one
else had any real idea how to do it. But I realised after a while that talking to people casually about Fermat was, was
impossible because it just generates too much interest and you can't really focus yourself for years unless you have
this kind of undivided concentration which too many spectators will have destroyed.

NARRATOR:

Andrew decided that he would work in secrecy and isolation.
PETER SARNAK:

I often wondered myself what he was working on.
NICK KATZ:

Didn't have an inkling.
JOHN CONWAY:

No, I suspected nothing.
KEN RIBET:

This is probably the only case I know where someone worked for such a long time without divulging what he
was doing, without talking about the progress he had made. It's just unprecedented.
NARRATOR:

Andrew was embarking on one of the most complex calculations in history. For the first two years, he did
nothing but immerse himself in the problem, trying to find a strategy which might work.
ANDREW WILES:

So it was now known that Taniyama-Shimura implied Fermat's last theorem. What does Taniyama-Shimura
say? It, it says that all elliptic curves should be modular. Well this was an old problem been around for 20 years and
lots of people would try to solve it.

KEN RIBET:

Now one way of looking at it is that you have all elliptic curves and then you have the modular elliptic curves
and you want to prove that there are the same number of each. Now of course you're talking about infinite sets, so
you can't just can't count them per say, but you can divide them into packets and you could try to count each packet
and see how things go, and this proves to be a very attractive idea for about 30 seconds, but you can't really get
much further than that, and the big question on the subject was how you could possibly count, and in effect, Wiles
introduced the correct technique.

NARRATOR:

Andrew's trick was to transform the elliptic curves into something called Galois representations which would
make counting easier. Now it was a question of comparing modular forms with Galois representations, not elliptic
curves.

ANDREW WILES:

Now you might ask and it's an obvious question, why can't you do this with elliptic curves and modular forms,
why couldn't you count elliptic curves, count modular forms, show they're the same number? Well, the answer is
people tried and they never found a way of counting, and this was why this is the key breakthrough, that I found a
way to count not the original problem, but the modified problem. I found a way to count modular forms and Galois
representations.

NARRATOR:

This was only the first step, and already it had taken three years of Andrew's life.
ANDREW WILES:

My wife's only known me while I've been working on Fermat. I told her a few days after we got married. I
decided that I really only had time for my problem and my family and when I was concentrating very hard and I
found that with young children that's the best possible way to relax. When you're talking to young children they
simply aren't interested in Fermat, at least at this age, they want to hear a children's story and they're not going to let
you do anything else.

So I'd found this wonderful counting mechanism and I started thinking about this concrete problem in terms of
Iwasawa theory. Iwasawa theory was the subject I'd studied as a graduate student and in fact with my advisor, John
Coates, I'd used it to analyse elliptic curves.

NARRATOR:
Andrew hopes that Iwasawa theory would complete his counting strategy.

115



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

ANDREW WILES:

Now I tried to use Iwasawa theory in this context, but I ran into trouble. I seemed to be up against a wall. I just
didn't seem to be able to get past it. Well sometimes when I can't see what to do next I often come here by the lake.
Walking has a very good effect in that you're in this state of concentration, but at the same time you're relaxing,
you're allowing the subconscious to work on you.

NARRATOR:

Iwasawa theory was supposed to help create something called a class number formula, but several months
passed and the class number formula remained out of reach.
ANDREW WILES:

So at the end of the summer of '91 I was at a conference. John Coates told me about a wonderful new paper of
Matthias Flach, a student of his, in which he had tackled a class number formula, in fact exactly the class number
formula I needed, so Flach using ideas of Kolyvagin had made a very significant first step in actually producing the
class number formula. So at that point I thought this is just what I need, this is tailor-made for the problem. I put
aside completely the old approach I'd been trying and I devoted myself day and night to extending his result.
NARRATOR:

Andrew was almost there, but this breakthrough was risky and complicated. After six years of secrecy, he
needed to confide in someone.

NICK KATZ:

January of 1993 Andrew came up to me one day at tea, asked me if I could come up to his office, there was
something he wanted to talk to me about. I had no idea what, what this could be. Went up to his office. He closed
the door, he said he thought he would be able to prove Taniyama-Shimura. I was just amazed, this was fantastic.
ANDREW WILES:

It involved a kind of mathematics that Nick Katz is an expert in.

NICK KATZ:

I think another reason he asked me was that he was sure I would not tell other people, I would keep my mouth
shut, which I did.

JOHN CONWAY:

Andrew Wiles and Nick Katz had been spending rather a lot of time huddled over a coffee table at the far end
of the common room working on some problem or other. We never knew what it was.
NARRATOR:

In order not to arouse any more suspicion, Andrew decided to check his proof by disguising it in a course of
lectures which Nick Katz could then attend.
ANDREW WILES:

Well I explained at the beginning of the course that Flach had written this beautiful paper and I wanted to try to
extend it to prove the full class number formula. The only thing I didn't explain was that proving the class number
formula was most of the way to Fermat's last theorem.

NICK KATZ:

So this course was announced. It said calculations on elliptic curves, which could mean anything. Didn't
mention Fermat, didn't mention Taniyama-Shimura, there was no way in the world anyone could have guessed that
it was about that, if you didn't already know. None of the graduate students knew and in a few weeks they just
drifted off because it's impossible to follow stuff if you don't know what it's for, pretty much. It's pretty hard even if
you do know what's it for, but after a few weeks I was the only guy in the audience.

NARRATOR:

The lectures revealed no errors and still none of his colleagues suspected why Andrew was being so secretive.
PETER SARNAK:

Maybe he's run out of ideas. That's why he's quiet, you never know why they're quiet.

NARRATOR:

The proof was still missing a vital ingredient, but Andrew now felt confident. It was time to tell one more

person.
ANDREW WILES:

So I called up Peter and asked him if I could come round and talk to him about something.
PETER SARNAK:

I got a phone call from Andrew saying that he had something very important he wanted to chat to me about,
and sure enough he had some very exciting news.

ANDREW WILES:
Said I, I think you better sit down for this. He sat down. I said I think I'm about to prove Fermat's last theorem.
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PETER SARNAK:

I was flabbergasted, excited, disturbed. I mean I remember that night finding it quite difficult to sleep.
ANDREW WILES:

But there was still a problem. Late in the spring of '93 I was in this very awkward position and I thought I'd got
most of the curves to be modular, so that was nearly enough to be content to have Fermat's last theorem, but there
was this, these few families of elliptic curves that had escaped the net and I was sitting here at my desk in May of
'93 still wondering about this problem and I was casually glancing at a paper of Barry Mazur's and there was just
one sentence which made a reference to actually what's a 19th-century construction and I just instantly realised that
there was a trick that I could use, that I could switch from the families of elliptic curves I'd been using, I'd been
studying them using the prime three, I could switch and study them using the prime five. It looked more complicated,
but I could switch from these awkward curves that I couldn't prove were modular to a different set of curves which
I'd already proved were modular and use that information to just go that one last step and I just kept working out the
details and time went by and I forgot to go down to lunch and it got to about teatime and I went down and Nada was
very surprised that I'd arrived so late and then, then she, I told her that I, I believed I'd solved Fermat's last theorem.

I was convinced that I had Fermat in my hands and there was a conference in Cambridge organised by my
advisor, John Coates. I thought that would be a wonderful place. It's my old home town, I'd been a graduate student
there, be a wonderful place to talk about it if I could get it in good shape.

JOHN COATES:

The name of the lectures that he announced was simply 'Elliptic curves and modular forms' There was no
mention of Fermat's last theorem.
KEN RIBET:

Well I was at this conference on L functions and elliptic curves and it was kind of a standard conference and all
of the people were there, didn't seem to be anything out of the ordinary, until people started telling me that they'd
been hearing weird rumours about Andrew Wiles's proposed series of lectures.

I started talking to people and I got more and more precise information. I've no idea how it was spread.
PETER SARNAK:

Not from me, not from me.

JOHN CONWAY:

Whenever any piece of mathematical news had been in the air, Peter would say oh that's nothing, wait until you
hear the big news, there's something big going to break.
PETER SARNAK:

Maybe some hints, yeah.

ANDREW WILES:

People would ask me leading up to my lectures what exactly I was going to say and I said well, come to my
lecture and see.
KEN RIBET:

It's a very charged atmosphere a lot of the major figures of arithmetical, algebraic geometry were there.
Richard Taylor and John Coates, Barry Mazur.

BARRY MAZUR:

Well I'd never seen a lecture series in mathematics like that before. What was unique about those lectures were
the glorious ideas how many new ideas were presented, and the constancy of his dramatic build-up that was
suspenseful until the end.

KEN RIBET:

There was this marvellous moment when we were coming close to a proof of Fermat's last theorem, the tension
had built up and there was only one possible punchline.
ANDREW WILES:

So after I'd explained the 3/5 switch on the blackboard, I then just wrote up a statement of Fermat's last
theorem, said I'd proved it, said I think I'll stop there.
JOHN COATES:

The next day what was totally unexpected was that we were deluged by enquiries from newspapers, journalists
from all around the world.
ANDREW WILES:

It was a wonderful feeling after seven years to have really solved my problem, I've finally done it. Only later
did it come out that there was a, a problem at the end.

NICK KATZ:
Now it was time for it to be refereed which is to say for people appointed by the journal to go through and

117



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

make sure that the thing was really correct.

So for, for two months, July and August, I literally did nothing but go through this manuscript, line by line and
what, what this meant concretely was that essentially every day, sometimes twice a day, I would E-mail Andrew
with a question: I don't understand what you say on this page on this line. It seems to be wrong or I just don't
understand.

ANDREW WILES:

So Nick was sending me E-mails and at the end of the summer he sent one that seemed innocent at first. I tried
to resolve it.
NICK KATZ:

It's a little bit complicated so he sends me a fax, but the fax doesn't seem to answer the question, so I E-mail
him back and I get another fax which I'm still not satisfied with, and this in fact turned into the error that turned out
to be a fundamental error and that we had completely missed when he was lecturing in the spring.

ANDREW WILES:

That's where the problem was in the method of Flach and Kolyvagin that I'd extended, so once I realised that at
the end of September, that there was really a, a problem with the way I'd made the construction I spent the fall trying
to think what kind of modifications could be made to the construction. There, are lots of simple and rather natural
modifications that any one of which might work.

PETER SARNAK:

And every time he would try and fix it in one corner it would sort of some other difficulty would add up in
another corner. It was like he was trying to put a carpet in a room where the carpet had more size than the room, but
he could put it in in any corner and then when he ran to the other corner it would pop up in this corner and whether
you could not put the carpet in the room was not something that he was able to decide.

NICK KATZ:

I think he externally appeared normal but at this point he was keeping a secret from the world and I think he
must have been in fact pretty uncomfortable about it.
JOHN CONWAY:

Well you know we were behaving a little bit like Kremlinologists. Nobody actually liked to come out and ask
him how he's getting on with, with the proof, so somebody would say I saw Andrew this morning. Did he smile?
Well yes, but he didn't look too happy.

ANDREW WILES:

The first seven years I'd worked on this problem. I loved every minute of it. However hard it had been there'd
been, there'd been setbacks often, there'd been things that had seemed insurmountable but it was a kind of private
and very personal battle I was engaged in.

And then after there was a problem with it doing mathematics in that kind of rather over-exposed way is
certainly not my style and I have no wish to repeat it.

NARRATOR:

Other mathematicians, including his former student Richard Taylor, tried to help fix the mistake. But after a
year of failure, Andrew was ready to abandon his flawed proof.
ANDREW WILES:

In September, I decided to go back and look one more time at the original structure of Flach and Kolyvagin to
try and pinpoint exactly why it wasn't working, try and formulate it precisely. One can never really do that in
mathematics but I just wanted to set my mind at rest that it really couldn't be made to work. And I was sitting here at
this desk. It was a Monday morning, September 19th and I was trying convincing myself that it didn't work, just
seeing exactly what the problem was when suddenly, totally unexpectedly, I had this incredible revelation. I, 1
realised what was holding me up was exactly what would resolve the problem I'd had in my Iwasawa theory attempt
three years earlier was, it was the most, the most important moment of my working life. It was so indescribably
beautiful, it was so simple and so elegant and I just stared in disbelief for twenty minutes. Then during the day I
walked round the department, I'd keep coming back to my desk and looking to see it was still there, it was still there.
Almost what seemed to be stopping the method of Flach and Kolyvagin was exactly what would make horizontally
Iwasawa theory. My original approach to the problem from three years before would make exactly that work, so out
of the ashes seemed to rise the true answer to the problem. So the first night I went back and slept on it, I checked
through it again the next morning and by 11 o'clock I satisfied and I went down, told my wife I've got it, I think I've
got it, I've found it, and it was so unexpected, she, I think she thought I was talking about a children's toy or
something and said got what? and I said I've fixed my proof, I, I've got it.

JOHN COATES:
I think it will always stand as, as one of the high achievements of number theory.
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BARRY MAZUR:
It was magnificent.
JOHN CONWAY:

It's not every day that you hear the proof of the century.
GORO SHIMURA:

Well my first reaction was: I told you so.
NARRATOR:

The Taniyama-Shimura conjecture is no longer a conjecture, and as a result Fermat's last theorem has been
proved. But is Andrew's proof the same as Fermat's?
ANDREW WILES:

Fermat couldn't possibly have had this proof. It's a 20th-century proof. There's no way this could have been
done before the 20th-century.
JOHN CONWAY:

I'm relieved that this result is now settled. But I'm sad in some ways because Fermat's last theorem has been
responsible for so much. What will we find to take its place?
ANDREW WILES:

There's no other problem that will mean the same to me. I had this very rare privilege of being able to pursue in
my adult life what had been my childhood dream. I know it's a rare privilege but if, if one can do this it's more
rewarding than anything I could imagine.

BARRY MAZUR:

One of the great things about this work is it embraces the ideas of so many mathematicians. I've made a partial
list: Klein, Fricke, Hurwitz, Hecke, Dirichlet, Dedekind...
KEN RIBET:

The proof by Langlands and Tunnell...

JOHN COATES:
Deligne, Rapoport, Katz...
NICK KATZ:

Mazur's idea of using the deformation theory of Galois representations...
BARRY MAZUR:

Igusa, Eichler, Shimura, Taniyama...

PETER SARNACK:
Frey's reduction...
NICK KATZ:
The list goes on and on...
BARRY MAZUR:
Bloch, Kato, Selmer, Frey, Fermat.
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In 1859 Riemann defined the Riemann zeta function (RZF)[1]

_ 1
{()=11-P)" Z —
n=l N , @D)
where 5 =0 T ti,i=~-1 , O and ! arereal, P ranges over all primes. RZF is the function of the complex
variable $ in @ 20,20 » which is absolutely convergent.

In 1896 J. Hadamard and de la Vallee Poussin proved independently [2]
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In 1998 Jiang proved [3]
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where 00 <1
Riemann paper (1859) is false [1] We define Gamma function [1, 2]
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where g(s) is called Riemann zeta function with gamma function rather than &(s) ,
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is the Jacobi theta function. The functional equation for 1s
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Finally, using the functional equation of J(x) , we obtain
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From (9) we obtain the functional equation
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The function g(s) satisfies the following
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1. ¢(s) has no zero for > 1 ;

2. The only pole of g (s) isat s =1 ; it has residue 1 and is simple;

3. ¢(s) has trivial zeros at 5 — —2,-4,.. but ¢(s) has no zeros;

4. The nontrivial zeros lie inside the region 0<o <1 and are symmetric about both the vertical line

o=1/2
The strip 0<0 <1 jscalled the critical strip and the vertical line O = 1/2 s called the critical line.

Conjecture (The Riemann Hypothesis). All nontrivial zeros of g (s) lie on the critical line @ =1/2 , which is
false. [3]

g (s) and ¢(s) are the two different functions. It is false that g (s) replaces ¢(s) , Pati proved that is not

all complex zeros of g (s) lie on the critical line: O = 1/2 [4].
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly
related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang

discovered Jiang function /(@)
J (0)#0

which can replace RH, Riemann zeta function and L-function in view of its

J (0)=0

then the prime equation has infinitely many prime solutions; and if , then

the prime equation has finitely many prime solutions. By using /(@) Jiang proves about 600 prime theorems
including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in primes[7,8].

proved feature: if

In the same way we have a general formula involving 5 (s)
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where F(y) is arbitrary.

From (11) we obtain many zeta functions g(s) which are not directly related to the number theory.
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly
related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green

and Tao prove that there exist infinitely many arithmetic progressions of length k consisting only of primes which
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT which is
Fermat’s marvelous proof[7, 13].

Primes Represented by B +mb, [14]

(1) Let =3 and M =2 We have
P =P +2P
We have Jiang function .
Ji(@)=]] (P*-3P+3-x(P))#0
3<P
P-1 ’ E
Where X(P)=2P=1 3 25 =1 (4 Py, X(P)=—P+2 4 2°

otherwise.

#1 (mod P ), x(P)=1
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Since /, (@)#0 , there exist infinitely many primes A and F such that lE is a prime.
We have the best asymptotic formula

7,(N.3)=|{R.P,: B,P, < N,B’+2P, = P, prime}
_J(@o N’ _11_[ P(P*-3P+3-y(P)) N’
60 (w)log’ N 335 (P-1)° log’ N
o=]] P (@) =[] (P-D

where 2<p is called primorial, 2<p .
It is the simplest theorem which is called the Heath-Brown problem [15].

= 2 R
(2) Let " i be an odd prime, |m and M# D"

we have
=P+ mp}
We have
Ji(@)=]] (P*-3P+3-x(P))#0
3<P
E b
P-1

X(P)=-P+2 if M b= 1(modP); x(P)=1 otherwise.
Since J” (0)) #0 , there exist infinitely many primes Pl and PZ such that P3 is a prime.
We have

J 2
(N3~ h@e N

2RD(w) log” N
n 2
The Polynomial B +(£+]) Captures Its Primes [14]

(1) Let = 4, We have
=B+ (B, +1)
We have Jiang function

Ji(@)=]] (P*-3P+3-x(P))#0

3<p
where XV =P it P=1 (moq 4, XP)=P =4 3¢ P=1 (moas) ; X(P)=—P+2
Since J” (a)) =0 , there exist infinitely many primes P1 and PZ such that P3 is a prime.

We have the best asymptotic formula
7,(N.3)=|{R, B, : B,P, < N,R +(P, +1)’ = P, prime}
_J(@wo N
8D’ (w) log’ N
It is the simplest theorem which is called Friedlander-Iwaniec p'roblem [16].
(2) Let n=4m , We have

P,

3

where m=1,2,3,-

We have Jiang function
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Ji@)= ] (P*-3P+3—x(P)#0

3<P<P

where

X(P)=—P+2 otherwise.
Jy(@)#0

Since

, there exist infinitely many primes

2(P)=P—4m . 8m|(P=1); x(P)=P-4

of Euler proof for the existence of infinitely many primes.

We have the best asymptotic formula
Jy(w)o N?
7,(N,3) ~ 8m®’(w) log’ N |

(3) Let " =2b we have

. 8P L A(P)=P 4/(P-1) ;

P P . . . o
I'and 2 such that ~3 is a prime. It is a generalization

P =P+ (B +1)

where b is an odd.
We have Jiang function

Jy@)=]] (P*-3P+3-4(P))#0

3<P

Where
We have the best asymptotic formula

Jy(w)o N?
7,(N,3) ~ 4b®* (@) log* N

(4) Let '~ PO, We have

2(P)=P=2b  4B|(P=1): z(P)=P=2  4|(P~1). AP)=—P42

otherwise.

P, =R +(P+1)

P, . .
where ~ 0 is an odd. Prime.
we have Jiang function

Ji(@) =[] (P*-3P+3—y(P))#0

3<P
= P — N =
where Z(P) Po+1 if 0|(P 1)’Z(P) 0
Since /5 (@)#0 , there exist infinitely many primes
We have the best asymptotic formula

J(@wo N’
7,(N,3)~ 2P®’(w) log’ N

/(@) is closely related to

the prime distribution. Using /(@) we are able to
tackle almost all prime problems in the prime
distributions.

The Jiang function
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otherwise.

>

Pl and P2 such that P3 is also a prime.
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From: Moshe Klein

To: ywang@math.ac.cn

Sent: Wednesday, December 29, 2010 8:21 AM
Subject: To Prof. Wang Yuan

Dear Prof Yuan,

My name is Moshe Klein and I am expert in mathematic education in Kindergarden.
During the last 4 month I study cheerfully the work of Jiang on Fermat Last Theorem

I find it very interesting and promising direction.

I think that he need help of great mathematician like you

to improve his paper so it will accepted in respective journal

I ask you please spent some of your time to look on his paper
and give us (I work with him) some helpful hints to improve the presentation
Please visit my web-site and look on the last version of his paper:

http://www.omath.org.il/112431/FLT

Best regards
Moshe Klein

FICEg<HAREEI>2010 4 8 H Rl A AR AR, 8% PeR PN £ 7efCR AR B BUF £ <HrE K
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R K ZEAKNIEAR I A AL A, 5 R R MR 2 RSB 28 PR 7R i AIE I 9 1 K 2R ) o+ 1A
REAFEF EARK 2005 AR TTHA R W B SR AR I X e AR N i s R B . 9% 5 oKE
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don't approach Jiang and also don't care of any of his result. Wang Yuan. F705%/0o 2 MR B 9 B e #E M /K W
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The New Prime theorems (991) - (1040)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book
proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS,

THES, MPIM, MSRI. In this paper using Jiang function /2 (@) we prove that the new prime theorems (991)-
(1040) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest

solution 7 (Ny,2) 21 . This is the Book theorem.

1t will be another million years, at least, before we understand the primes.

Paul Erdos (1913-1996)

TATEMENT OF INTENT

If elected. I am willing to serve the IMU and the international mathematical community as president of the
IMU. I am willing to take on the duties and responsibilities of this function.

These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its
tasks related to organizing the 2014 ICM, fostering the development of mathematics, in particular in developing
countries and among young people worldwide, representing the interests of our community in contacts with other
international scientific bodies, and helping the IMU committees in their function.

--IMU president, Ingrid Daubechies—

Satellite conference to ICM 2010

Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve
methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false:

(http://www.wbabin.net/math/xuan77.pdf)

(http://vixra.org/pdf/1003.0234v1.pdf).

The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996
Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress.
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and
Tao theorem is false) to see.

(http://www.wbabin.net/math/xuan39e.pdf)

(http://www.vixra.org/pdf/0904.0001v1.pdf).

There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level.
Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(990)]: (http://www.wbabin.net/xuan.htm#chun-
xuan) (http://vixra.org/numth/)

The New Prime theorem (991)
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P, jP™" +k=j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51902

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51902 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"” +k=j]=0 (modP),qg =1,--,P~1
J=1 (3
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1902 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1902)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k - j = prime||~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=37 . From (2) and(3) we have
J,(0)=0 (7
we prove that for k=37
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,7 )
(1) contain infinitely many prime solutions
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The New Prime theorem (992)

P,jP*™ +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51904
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51904 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg™ +k—j]=0 (modP),g =1,--,P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1904 .
such that each of /P + k=7 is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1904)" ¢" (@) log" N (¢,

7, (N,2) = HP <SN:jP*™ +k—j= prime}\ ~
w)=TI(P-1
where ¢( ) P( )

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
k=3,517,29,113,137,239,953

Example 1. Let . From (2) and(3) we have
J,(0)=0 7
k=3,517,29,113,137,239,953
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Lot K # 3:5:17:29,113,137,239,053
From (2) and (3) we have
J,(w)#0 ()

We prove that for k+3,5,17,29,113,137,239,953 ,
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(1) contain infinitely many prime solutions

The New Prime theorem (993)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51906

Using Jiang function we prove that J
solutions.

k-] contain infinitely many prime solutions and no prime
Theorem. Let K bea given odd prime.
- 51906 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg™* +k—j]=0 (modP),g =1,--,P~1
=1 (3)
1t X(P)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1906 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1906)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime}|~

#) =TI(P-1)

where
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
k=3,1907
Example 1. Let . From (2) and(3) we have
J,(0)=0 7

we prove that for k =3,1907 ’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,1907 .
From (2) and (3) we have
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J,(w)#0 (2)

We prove that for k#3,1907 )
(1) contain infinitely many prime solutions

The New Prime theorem (994)

P, jP*" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract

. 51908 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51908 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
[ jg*" +k-j]=0 (mod P).g =1,-,P-1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1908 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 sk k
(1908)" ¢" (@) log" N (¢,

7,(N,2) :HPS N:jP*" +k—j :prime}‘ ~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,7,13,19,37,107 . From (2) and(3) we have

J2(@) =0 €

k=3,5,7,13,19,37,107
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,7,13,19,37,107 .
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From (2) and (3) we have

J,(w)#0 ()

We prove that for k+#3,5,7,13,19,37,107

(1) contain infinitely many prime solutions
The New Prime theorem (995)

P,jP"" +k—j(j=1,--,k=1)

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

PO g

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 51910 .
Pa]P +k—](]=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg”" +k=j]=0 (modP),g =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
Jy(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1910 .
such that each of /P + k= is a prime.
. , 1 y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J2 (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(1910)'¢" (@) log" N ¢,

7 (N.2)=[{P<N: jP*" +k— j = prime||~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,11,383 . From (2) and(3) we have

J2(@) =0 €

k=3,11,383

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
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Example 2. Let k#3,11,383 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,11,383 )
(1) contain infinitely many prime solutions

The New Prime theorem (996)

P,jP°? +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

PO i
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP? + k= j(j =1, k=1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qum +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1912 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1912)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP*? +k - j = prime||~

L o) =11(P=1)

whe

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,479,1913 . From (2) and(3) we have

J2(@) =0 €
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we prove that for k=35, 479,1913’

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5, 479’1913.
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,479,1913 ;

(1) contain infinitely many prime solutions
The New Prime theorem (997)

P,jP"" +k—j(j=1,-,k=1)

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP + k= j(j =1, k=1) (D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J(w)=T11[P-1-y(P
(@) =TI[P=1- 7(P)] o
w=11P

where P, X (P) is the number of solutions of congruence

k-1

Hl[jqw” +k=j]=0 (modP),q=1,-,P-1

J= (3

1t XP)SLP=2 4o from (2) and (3) we have

J, (@) #0 (4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

. 1914 .
such that each of /P + k= is a prime.
. - y(P)=P-1 T

Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have

JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1914 g (@) log" N ¢,

7 (N.2)=[{P<N: jP*" +k = j = prime}|~

where o) = I;I(P b .

ﬂ-k(Nmz)Zl'

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,23,67 . From (2) and(3) we have
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Jo(@)=0 )

k=3,7,23,67
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,23,67 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,7,23,67 ,

(1) contain infinitely many prime solutions

The New Prime theorem (998)

P,jP"" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51916

Using Jiang function we prove that J
solutions.

k-] contain infinitely many prime solutions and no prime
Theorem. Let K bea given odd prime.
- 1916 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg”"* +k=j]=0 (modP),g =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1916 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1916)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP*" +k— j = prime||~

#) =TI(P-1)

where

ﬂ'-k(Noaz)Zl'

From (6) we are able to find the smallest solution
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Example 1. Let k=3,5 . From (2) and(3) we have

J,(0)=0 (7

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (999)

P,jP°" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO i
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP t k= j(j =1k =1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
Hl[jq“’“* +k-j]=0 (mod P),q=1,-,P-1
J= (3
1t X(P)SP=2 4o from (2) and (3) we have
Jy(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1918 .
such that each of /P + k= is a prime.
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 1k k
(1918)" '¢"(w) log" N (¢,

7, (N,2) = HP <N P = prime}‘ ~

) =T1(P=1)

where
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7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
Jo(@) =0 )

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1000)

P, jP" +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO g

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP* + k= j(j=1,k=1) (0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[quo +k=j]=0 (modP),q=1,-,P-1
J= (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1920 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1920)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k - j = prime||~

#) =TI(P-1)

where
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From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
E k=3,57,11,13,17,31,41,61,97,193,241,641
xample 1. Let
. From (2) and(3) we have
J2(@) =0 €
k=3,57,1113,17,31,41,61,97,193,241,641
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let ¥ 7 3:5:T-1113,17,31,41,61,97,193,241,641
From (2) and (3) we have
J,(w)#0 (2)
We prove that for K #3:5:7:11,13,17,31,41,61,97,193,241,641

(1) contain infinitely many prime solutions

The New Prime theorem (1001)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

- 51922 ;
Using Jiang function we prove that JPTT k=] contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP + k= j(j=1,k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
o=I1P
where p, X (P) is the number of solutions of congruence
k-1
Hl[jq“m +k=j]=0 (modP),q=1,-,P-1
J= (3
it ZP)SP=2 o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1922 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
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J,(w)o"™ N
k-1 1k k
(1922)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP +k — j = prime||~

where o) = 11_’[(P D .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
Jo(@) =0 )

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1002)

P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51924 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51924 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k=j]=0 (modP),g =1,--,P~1
/= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(w)#0 @
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 1924 .
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
J(0)=0 (5)

We prove that (1) contain no prime solutions [1,2]

137



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

" J,(w)#0

then we have asymptotic formula [1,2]
J,(w)a"™ N
k=1 gk k
(1924)" ¢ (w) log" N (¢,

7 (N,2) =[{P<N: P 4k~ j = prime|| ~

#) =TI(P-1)

where

ﬂk(N0,2)21'

From (6) we are able to find the smallest solution
Example 1. Let k=3,5,53,149 . From (2) and(3) we have
k=3,5,53,149

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,53,149 .
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,53,149 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1003)

P,jP” +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51926

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1 k=1) n
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qum +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1926 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1926)" ¢"(w) log" N (¢,

7 (N,2)=|(P<N: jP +k— j = prime}| ~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,7,19,643 . From (2) and(3) we have
J2(@) =0 €
we prove that for k=3,7,19,643 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,19,643 .
From (2) and (3) we have
J,(w)#0 (2)
k#3,7,19,643

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1004)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
pYs i

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1,k =1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- y(P)]

2
where “= 11_’[ P , X (P) is the number of solutions of congruence
';r_li[qu”wk—j}zo (mod P),q =1,---,P—1 o
1t X(P)SP=2 4 o from (2) and (3) we have
Jy(@)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
such that each of jp1928 + k=J is a prime.
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Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k=1 1k k
(1928)" '¢" () log" N (¢,

7,(N,2) =HPS N:jP** +k—j :prime}‘ ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=35 . From (2) and(3) we have

J(0)=0 7

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5 .
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (1005)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51930 .
Using Jiang function we prove that J P +k -J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
- 51930 .
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (modP),g =1,--,P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
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90
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(1930)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k — j = prime}|~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,11193 1. From (2) and(3) we have

Jo(@) =0 )
k=3,11,1931

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11,1931 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,11,1931 )
(1) contain infinitely many prime solutions

The New Prime theorem (1006)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51932

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51932 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"? +k—j]=0 (modP),qg =1,--,P~1
=1 (3)

1t XP)SP=2 4o from (2) and (3) we have
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J,(0)#0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D192 p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1932)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP +k - j = prime||~

Hw) =T1(P=1)

where

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,7,13,29,43,47,139,967,1933 . From (2) and(3) we have

J,(0)=0 (7
k=3,5,7,13,29,43,47,139,967,1933
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k+#3,5,7,13,29,43,47,139,967,1933 '
From (2) and (3) we have
J,(w)#0 ()
We prove that for k +#3,5,7,13,29,43,47,139,967,1933 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1007)

P, jP" +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
N

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP* v k= j(j =1, k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
H][qucm +k—j} =0 (modP),g=1,---,P—1
: (3)
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1t X(P)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

L
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

then we have asymptotic formula [1,2]
J,(w)o"™ N
k-1 gk k
(1934)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP™ +k— j = prime||~

where o) = 11_’[(P b .

7Z'k(N0,2)21'

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
Jo(@) =0 )

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1008)

P,jP” +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51936 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51936 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)] o

o=I1P

where P, X (P) is the number of solutions of congruence
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k-1

Hl[qué +k—j}50 (mod P),q =1,---,P—1
J=

1t X(P)SP=2 4 o from (2) and (3) we have
J,(@)#0 "

(3

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1936 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1936)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP +k — j = prime||~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3,5,17,23,89 . From (2) and(3) we have

S (@) =0 7
we prove that for k=3,5,17,23,89 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17, 23’89.
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,17,23,89 ;

(1) contain infinitely many prime solutions

The New Prime theorem (1009)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51938 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51938 .o
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jo(@) = T[P-1- y(P) o
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o=I1P

where P, X (P) is the number of solutions of congruence
k-1
[ jg** +k-j]=0 (mod P).g =1,-,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1938 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J2 (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k=1 1k k
(1938)" 9" (w) log" N (¢,

7,(N,2) =HPS N:jP"* +k—j :prime}‘ ~

Hw) =T1(P=1)

where
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3, 7’103. From (2) and(3) we have
J2(@) =0 €
we prove that for k=3, 7’103,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3, 7’103.
From (2) and (3) we have
J,(w)#0 (2)
k#3,7,103

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1010)

P, jP*" +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

PO g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.

P, jP* v k= j(j =1, k=1) (0

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
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Jy(@)= TI[P—1- £(P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq‘m +k=j]=0 (modP),q=1,-,P-1
J= (3)
it ZAP)SP=2 o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 1940 :
such that each of /P + k= is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1940)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime}|~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3,5,11971 . From (2) and(3) we have
Jo(@) =0 )
we prove that for k=3,5,11, 971,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,11,971 .

From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,11,971 )

(1) contain infinitely many prime solutions

The New Prime theorem (1011)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51942

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P, jP* + k= j(j =1 k=1) (0
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contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq"m +k=j]=0 (modP),q=1,-,P-1
7= (3)
it ZP)SP=2 o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

Dl
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1942)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~

where o) = I;I(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J(0)=0 (7)
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1012)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

jP1944 + k _

Using Jiang function we prove that J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
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P, jP* v k= j(j =1, k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq"’” +k=j]=0 (modP),q=1,-,P-1
J= (3)
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 1944 :
such that each of /P + k= is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1944)" ¢ (@) log" N (¢,

7, (N.2)=[{P< Nt jP* +k — j = prime}|~

#) =TI(P-1)

where

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,7,13,19,37,109,163,487 . From (2) and(3) we have

J2(@) =0 €
k=3,5,7,13,19,37,109,163,487

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2, Let ¥ #3:5.7:13,19,37,109,163,487
From (2) and (3) we have
J,(w)#0 (8)
We prove that for K % 3:5:7:13,19,37,109,163,487

(1) contain infinitely many prime solutions

The New Prime theorem (1013)

P, jP** +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j Pl 4 j

Using Jiang function we prove that contain infinitely many prime solutions and no prime
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solutions.

Theorem. Let X bea given odd prime.

P,jPlg%+k—j(]'=1a""k_1),

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(w)=TI[P-1- (P

(@) =TI[P~1- £(P)] o

w=11P
where p, X (P) is the number of solutions of congruence
k-1
Hl[jq""“’ +k=j]=0 (modP),q=1,-,P-1
J= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(@)#0 4
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 1946 :
such that each of /P + k=] is a prime.

. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 4k k
(1946)" ¢ (w) log" N (¢,

7 (N.2)=|[{P<N: jP* +k— j = prime||~

Hw) =T1(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
J,(w)=0

D
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1014)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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. 1948
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51948 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k=j]=0 (mod P),g =1, P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1948 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(0)a"™ N
k=1 1k k
(1948)" 9" (w) log" N (¢,

7 (N.2)=[{P<N: jP" +k— j = prime}|~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,1949 . From (2) and(3) we have

J,(0)=0 (7

k=3,5,1949
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,1949 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,5,1949 )
(1) contain infinitely many prime solutions

The New Prime theorem (1015)
P,jP* +k—j(j=1,--,k=1)

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
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Abstract
. 51950

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1, k=1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu%o +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1950
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1950)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime||~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

k=3,7,11,31,79,131,151,1951

Example 1. Let . From (2) and(3) we have

J,(@)=0

D
k=3,7,11,31,79,131,151,1951
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let K # 3 7-11,31,79,131,151,1951
From (2) and (3) we have
J,(w)#0 (8)

We prove that for K # 3 T-11,31,79,131,151,1951

(1) contain infinitely many prime solutions

The New Prime theorem (1016)

P, jP* k- j(j=1-,k-1)
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Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51952
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*? + k= j(j=1k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq‘%z +k=j]=0 (modP),q=1,-,P-1
J= (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1952 .
such that each of /P + k=] is a prime.
sing Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1952)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP* +k — j = prime||~

Hw) =T1(P=1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,17.971 . From (2) and(3) we have
J2(@) =0 €
we prove that for k=3,5,17,977 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,17,977 .
From (2) and (3) we have
J,(w)#0 (2)
k#3,517,977

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1017)
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P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51954

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51954 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k—j]=0 (modP),g =1,--,P~1
J=1 (3
1t X(P)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1954
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1954)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime}|~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1018)
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P,jP” +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1956

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1 k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu%(’ +k=j]=0 (modP),q=1,-,P-1
7= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1956
such that each of /P + k=] is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1956)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime||~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,7,13,653 . From (2) and(3) we have

J,(w)=0

D
we prove that for k=3,5,7,13,653 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,7,13,653 .
From (2) and (3) we have
J,(w)#0 ()
k+#3,5,7,13,653

We prove that for
(1) contain infinitely many prime solutions
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he New Prime theorem (1019)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51958

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
Hl[qu%g +k=j]=0 (mod P),q=1,-,P~1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1958
such that each of /P + k=7 is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 1k k
(1958)" 9" (w) log" N (¢,

7,(N,2) :HPS N:jP* +k—j :prime}‘ ~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3, 23. From (2) and(3) we have
J@)=0 »
we prove that for k=3, 23,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k# 3’23.
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,23 )
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(1) contain infinitely many prime solutions

The New Prime theorem (1920)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51960

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51960 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k—j]=0 (modP),qg =1,--,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1960 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1960)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~

#0) =TI(P-1)

where

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,11,29,71,197,491 . From (2) and(3) we have

J2(@) =0 €
k=3,511,29,71,197,491

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let ke # 3’5’1 1’29’71’1979491_
From (2) and (3) we have
J,(w)#0 o
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We prove that for k # 35,11,29,71,197,491’

(1) contain infinitely many prime solutions

The New Prime theorem (1021)

P, jP*" +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP? + k= j(j=1,k=1) D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=T[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq‘%z +k=j]=0 (modP),q=1,-,P-1
J= (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1962 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1962)" ¢"(w) log" N (¢,

7 (N.2)=|[{P<N: jP*? +k — j = prime||~

#) =TI(P-1)

where
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,7.19 . From (2) and(3) we have
Jo(@) =0 @)

we prove that for k=3,7.19 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3719 .
From (2) and (3) we have
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J,(w)#0 (2)

We prove that for k#3,7,19 )
(1) contain infinitely many prime solutions

The New Prime theorem (1022)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

jP1964 iy

Using Jiang function we prove that J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.

P, jP* + k= j(j=1,k=1)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P

(@) =TI[P=1- 7(P)] o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
Hl[quW +k=j]=0 (modP),q=1,-,P-1
/= (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D9
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1964)" ¢"(w) log" N (¢,

7 (N.2)=|[{P<N: jP* +k - j = prime}|~

#) =TI(P-1)

where

7Z'k(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,5983

J,(w)=0

. From (2) and(3) we have

7

we prove that for k=3,5,983 ,
(1) contain no prime solutions. 1 is not a prime.
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Example 2. Let k#3,5,983 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,5,983 )
(1) contain infinitely many prime solutions

The New Prime theorem (1023)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51966

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51966 .
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k—j]=0 (modP),g =1,--,P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 1966 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1966)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~

Hw) =T1(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 7
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we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1024)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51968 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51968 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (mod P),qg =1, P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1968 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
J,(w)#0 :
If then we have asymptotic formula [1,2]

J, ()™ N
k-1 sk k
(1968)" ¢"(w) log" N (¢,

7 (N.2)=[{P<N: jP** +k— j = prime}|~

where Ho) = I;I(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

k=3,57,13,17,83

Example 1. Let . From (2) and(3) we have
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=0 )
we prove that for k= 3’5’7’13’17’83,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,7,13,17,83 .
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,7,13,17,83 ;

(1) contain infinitely many prime solutions

The New Prime theorem (1025)

P,jP"" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51970

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51970 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"" +k—j]=0 (modP),g =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1970 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1970)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP" +k — j = prime||~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
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Example 1. Let k=31 1. From (2) and(3) we have
J,(0)=0 (7

we prove that for k=31 1,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k=311 )
(2) contain infinitely many prime solutions

The New Prime theorem (1026)

P,jP°" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO i
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP" v k= j(j=1,k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
Hl[jq“m +k=j]=0 (modP),q=1,-,P-1
J= (3
1t X(P)SP=2 4o from (2) and (3) we have
Jy(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1972 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1972)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP +k - j = prime||~

) =T1(P=1)

where
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>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,59,1973 . From (2) and(3) we have
J,(0)=0 (7
we prove that for k=3,5,59,1973 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,59,1973 .
From (2) and (3) we have
J,(w)#0 )

We prove that for k#3,5,59,1973 )

(1) contain infinitely many prime solutions

The New Prime theorem (1027)

P,jP° " +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 1974 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51974 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k—j]=0 (modP),qg =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1974 .
such that each of /P + k= is a prime.
Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1974)" ¢ (@) log" N (¢,

7 (N.2)=[{P< N jP™ +k = j = prime}|~
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Hw) =T1(P=1)

where

ﬂ-k(Noaz)Zl'

From (6) we are able to find the smallest solution
Example 1. Let k=3,7,43,283,659 . From (2) and(3) we have

Jo(@) =0 )
we prove that for k=3,7,43,283,659 ,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k # 3’ 7943’ 283, 659 )
From (2) and (3) we have
J,(w)#0 "
We prove that for k#3,7,43,283,659 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1028)

P,jP" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P p

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP" v k= j(j =1 k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq“m +k=j]=0 (modP),q=1,-,P-1
J= (3
1t XP)SP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1976 .
such that each of /P + k= is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
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J,(w)o"™ N
k-1 1k k
(1976)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP +k - j = prime}|~

H@)=1(P-1)

whe

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,53 . From (2) and(3) we have
J,(0)=0 (7

we prove that for k=3,5,53 ’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,53 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,53 )
(1) contain infinitely many prime solutions

The New Prime theorem (1029)

P,jP" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51978

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51978 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"" +k—j]=0 (mod P),g =1, P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy (@) #0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1978
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
J(0)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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" J,(w)#0

then we have asymptotic formula [1,2]
J, (o)™ N
k=1 gk k
(1978)" 9" (w) log" N (¢,

7,(N,2) =HPS N:jP"" +k—j :prime}‘ ~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,47,1979 . From (2) and(3) we have

J2(@) =0 €
we prove that for k=3,47,1979

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,47,1979 .

From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,47,1979 )

(1) contain infinitely many prime solutions

The New Prime theorem (1030)

P,jP*™ +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51980

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j=1k=1) n
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[quo +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1980 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
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Example 2. Let

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1980)" ¢"(w) log" N (¢,

7,(N,2) =HP£ N:jP*™ +k—j= prime}‘ ~
w)=I1I(P-1
Where¢() P( )

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,57,11,13,19,23,31,37,61,67,199,331,397 . From (2) and(3) we have

J2(@) =0 €
k=3,57,11,13,19,23,31,37,61,67,199,331,397

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

k#3,5,7,11,13,19,23,31,37,61,67,199,331,397 '
From (2) and (3) we have
J,(w)#0 (2)

We prove that for K #33,7:11,13,19,23,31,37,61,67,199,331,397

(1) contain infinitely many prime solutions

The New Prime theorem (1031)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j P92 4 p j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.

P, jP* + k= j(j=1,k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[jq”” +k=j]=0 (modP),q=1,-,P-1
7= (3)
1t XP)SP=2 4o from (2) and (3) we have
J, (@) =0 @

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
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982
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(1982)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP*® +k — j = prime||~

where o) = 11_’[(P D .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7)

we prove that for k= 3,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .

From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,

(1) contain infinitely many prime solutions
The New Prime theorem (1032)

P,jP*™ +k—j(j=1,-,k=1)

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

PO

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 51984 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k—j]=0 (modP),g =1,--,P~1
=1 (3)

1t XP)SP=2 4o from (2) and (3) we have
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J,(0)#0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D%
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1984)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP*™ +k— j = prime||~

Hw) =T1(P=1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=35, 17. From (2) and(3) we have
J,(0)=0 (7)

we prove that for k=3517 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,17 )
(1) contain infinitely many prime solutions

The New Prime theorem (1033)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
pOse g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1, k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(@)= TI[P=1- 2(P)]

2
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
H][jqwxs +k—j} =0 (modP),g=1,---,P—1
i 3)
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i Z(P)SP-2
J,(w)#0

then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

I p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1986)" ¢"(w) log" N (¢,

7, (N.2)=[{P<N: jP* +k — j = prime||~

where o) = 11_’[(P b .

7Z'k(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,1987 . From (2) and(3) we have

J,(0)=0 7)

k=3,7,1987
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,1987 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,7,1987 )
(1) contain infinitely many prime solutions

The New Prime theorem (1034)

P,jP* +k—j(j=1,--k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1988
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*® +k—j(j=1,-,k-1)
contain infinitely many prime solutio;ls and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T1[P-1- 7 (P)]

(D

@)
o=I1P

where P, X (P) is the number of solutions of congruence
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=

H[jqwss +k—j} =0 (modP),q=1,---,P—1

" (3
i XPVSP=2 b 2)and (3) we have

J,(@)#0 »

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1988

such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 sk k
(1988)" '¢"(w) log" N (¢,

7,(N,2) =HPS N:jP"™ +k—j :prime}‘ ~

where o) = 11_’[(P_1) .
7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=35, 29. From (2) and(3) we have

Jo(@) =0 @)

we prove that for k=35, 29,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,29 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,29 )
(1) contain infinitely many prime solutions

The New Prime theorem (1035)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

jP1990 iy

Using Jiang function we prove that J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.

P, jP” vk —j(j =1 k=1)

QP)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P
(@) =TI[P=1- 7(P)] o
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o=I1P

where P, X (P) is the number of solutions of congruence
k-1
[ jg* +k-j]=0 (mod P),g =1,--,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1990 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J2 (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(1990)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime}|~

Hw) =T1(P=1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=31 1. From (2) and(3) we have
Jy(@)=0 D
we prove that for k=31 1,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,11 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,11 )
(1) contain infinitely many prime solutions

The New Prime theorem (1036)

P, jP*” +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P2 p i
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.

P, jP*? + k= j(j =1, k=1) (0

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
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Jy(@)= TI[P—1- £(P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*” +k—j]=0 (modP),g =1,--,P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1992 .
such that each of /P + k= is a prime.
Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1992)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime}|~

where o) = 11_’[(P b .

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=35, 7’13’167’499’997’1993. From (2) and(3) we have

J2(@) =0 €
k=3,5,7,13,167,499,997,1993
we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let K #3:3,7,13,167,499,997,1993
From (2) and (3) we have
J,(@)#0 .
We prove that for k#3,5,7,13,167,499,997,1993 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1037)

P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51994

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
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- 51994 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k=j]=0 (modP),qg =1,--,P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1994 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1994)" ¢ (w) log" N (¢,

7, (N.2)=[{P< N : jP* +k— j = prime}|~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1038)

P,jP” +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51996

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime
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Theorem. Let X bea given odd prime.
- 51996 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k—j]=0 (modP),g =1,--,P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

1% f
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1996)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime}|~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3, 5’1997. From (2) and(3) we have

J,(0)=0 7

we prove that for k=3, 5’1997,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,1997 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,1997 )

(1) contain infinitely many prime solutions

The New Prime theorem (1039)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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. 51998
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 151998 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k—j]=0 (mod P),g =1, P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1998 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(0)a"™ N
k=1 1k k
(1998)" 9" () log" N (¢,

7 (N.2)=[{P<N: jP*" +k— j = prime}|~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,7,19,223,1999 . From (2) and(3) we have

J2(@) =0 €
we prove that for k=3,7,19,223,1999 ’

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,19,223,1999 .

From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,7,19,223,1999 )

(1) contain infinitely many prime solutions

The New Prime theorem (1040)

P, jP*™ k= j(j =1 k=1)
Chun-Xuan Jiang
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Jiangchunxuan@vip.sohu.com

Abstract
. 152000

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP*" k= j(j =1k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jqzooo +k=j]|=0 (modP),g =1,---,P~1
J= (3)
1t XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 2000
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(2000) "¢ (@) log" N (4,

7 (N2)=[{P<N: jP™ +k = j = prime}| ~

Hw) =T1(P=1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,1117,41,101,251,401 . From (2) and(3) we have

S (@) =0 )
k=3,11,17,41,101,251,401
we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11,17,41,101,251,401

From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,11,17,41,101,251,401 ,

(1) contain infinitely many prime solutions

Jn+1 (0))

Remark. The prime number theory is basically to count the Jiang function and Jiang prime k -tuple
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J (o)™
Jy= 2229
" )

=11 (l
P
singular series

P

_1+Z(P)j

1--)

1
P

[1,2], which can count the number of prime

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series

v(P 1.
o(H)=T1I|1- (2) (1-—)*
P P P
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Jn+1 (6())

Chun-Xuan Jiang

Jiang’s function in prime distribution

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@yvip.sohu.com
Dedicated to the 30-th anniversary of hadronic mechanics

Abstract
We define that prime equations
fl(Pl”R)”fk(Plaa) (5)

b

are polynomials (with integer coefficients) irreducible over integers, where By, are all prime. If Jiang’s

Jn+1 (a)) = O Jn+1 (a)) * O

function

I

then (5) has finite prime solutions. If then there are infinitely many primes

> 27 such that fl’ fk are primes. We obtain a unite prime formula in prime distribution

7, (N,n+1) =|{Pl,--~,Pn SN:fio fi arekprimes}|

k k n
=H (degj;)—lin+1]Ea))a) ]Z[
i1 n!g™" (w) log™" N (8)

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6].
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough
to be useful.

(1+0(1)).

Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every
reason to believe that there are some mysteries which the human mind will never penetrate.

Leonhard Euler

1t will be another million years, at least, before we understand the primes.

Paul Erdos

Suppose that Euler totient function

#w) =T (P-D)=c0

s W0, (D
w=I1P
where 2<P s called primorial.
Suppose that (,7) =1 , Where =1 4@) . We have prime equations
R=wn+l,-, P, =on+h, (2)
n=0,12,--
where

(2) is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions.
We have

_ _z(N)
7, = PZV 1 = Ao (1+o(1)).
P=h;(mod w) 3)

SN in R:a)n—{—hl n=0’1’2,...

T .
where * /# denotes the number of primes ! , 7(N) the number of

primes less than or equal to N
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in
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prime distribution.

Let @ =30 and #(30) = 8. From (2) we have eight prime equations
B =30n+1 P2 =30n+7 P3 =30n+11 P4 =30n+13 P5 =30n+17

P = 3()n+19 P = 30n+23 B = 30n+29 n=0,12,-

D)
Every equation has infinitely many prime solutlons
THEOREM. We define that prime equations
fi(})l”})n)”f;{(})l”})n) (5)

: o . . . . P, P . .
are polynomlals (with integer coefficients) irreducible over integers, where "> *" 7 are primes. If Jiang’s

(w)=0 (w)=0

function S

PP

> ?7 7 such that each Je is a prime.
PROOF. Firstly, we have Jiang’s function [1-11]

Sy (@) = ITI(P =1)" = x(P)]

then (5) has finite prime solutions. If S then there exist infinitely many primes

(6)

where £ (P) is called sieve constant and denotes the number of solutions for the following congruence

k

Hfi(%a"'aqn)EO (mod P)

i=l1 . (7)
where @ = b P=1eq, =1, P=1

P,--- P . .
(@) denotes the number of sets of 1?2 >%n prime equations such that

S(Byes B fi(Boros B)

are prime equations. If e 1(0)) =0 then (5) has finite prime solutions. If

P

nt 1(0)) *0 using x(P) we sift out from (2) prime equations which can not be represented LT , then

residual prime equations of (2) are LT prime equations such that KB B fi(ByoB) ar

prime equations. Therefore we prove that there exist infinitely many primes LT such that
SRRy fiRossB)
Secondly, we have the best asymptotic formula [2,3,4,6]
7, (N,n+1) =|{Pl,--~,Pn SN:f,, f,arek primes}|

T " J (@) N
_1;[ (degj;) !¢k+n(a)) logk+n N

(1+o(1)).

(8)
(8) is called a unite prime formula in prime distribution. Let n=Lk=0 , £ (@) = p(w)
have prime number theorem

. N
7, (N,2) = le <N:Fis pnme}‘ =@(1+0(1)).

. From (8) we

9

Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this
old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by
this theorem.

Example 1. Twin primes P.P+2 (300BC).

From (6) and (7) we have Jiang’s function
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Jy(@)=TI(P-2) %0
J,(@) %0 '

Since in (2) exist infinitely many P prime equations such that P+2 5 a prime equation.

Therefore we prove that there are infinitely many primes P suchthatP+2 isa prime.

Let @ =30 and £ (30)=3 . From (4) we have three P prime equations
P, =30n+11, P =30n+17, F=30n+29

From (8) we have the best asymptotic formula

7,(N,2) =[{P< N+ P+2 prime]| = 2222 _N

¢'(w) log" N

1 N
- 220[1— T j e (1+o(1)).

In 1996 we proved twin primes conjecture [1]

(1+o()

w N

(I+o()

2 2
Remark. £ (@) denotes the number of P prime equations, ¢ (@) log" N the number of
solutions of primes for every P prime equation.

N=F+P,

Example 2. Even Goldbach’s conjecture 2. Every even number N 26 s the sum of two primes.

From (6) and (7) we have Jiang’s function

P
J@)=T(P-2)11

J,(w)#0

. ) . P . . -P . .
Since as N —> o0 in (2) exist infinitely many ~ ! prime equations such that N 1 is a prime
y y 'p q p

equation. Therefore we prove that every even number N 26 s the sum of two primes.
From (8) we have the best asymptotic formula

. Jy (o N
7,(N,2)= ‘{Pl <N,N-P prlme}‘ = ;2((63) og® N (1+o(1)).
—onfi-—t_|p el (1+0(1))
2 2
3<P (P-1)" JpN P-2log" N
In 1996 we proved even Goldbach’s conjecture [1]
E . . P,P+2 P+6
xample 3. Prime equations .

From (6) and (7) we have Jiang’s function
Jy(@) = [I(P=3)%0

>

Jz (@) is denotes the number of P prime equations such that P+2 and P+ 6 are prime equations. Since
p q

£ (@) #0 in (2) exist infinitely many P prime equations such that P+2 and P+6 are prime equations.

Therefore we prove that there are infinitely many primes P such that P+2 and P+0 are primes.

=30, J,(30)=2

Let . From (4) we have two P prime equations

P, =30n+11, P =30n+17
From (8) we have the best asymptotic formula '
Jy,(w)o®> N
¢ (w) log’ N

7,(N,2) = |{P <SN:P+2,P+6are primes}| = (1+o(1)).
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Example 4. Odd Goldbach’s conjecture N=R+h+h . Every odd number N 29 is the sum of three primes.

From (6) and (7) we have Jiang’s function

1
Jy(@)=T1(P*=3P+3)) T | 1-————— [+0
3=<p PIN P -3P+3
Since £ (@)#0 as N> i (2) exist infinitely many pairs of A and F prime equations such that
N-R-F, is a prime equation. Therefore we prove that every odd number N 29 s the sum of three primes.

From (8) we have the best asymptotic formula

. Jy(w)o N*
7r2(]\7,3)=‘{Pl,P2 <SN:N-PB-P, pr1me}‘= 2;(3(20) log3N(l+0(l))
2
=11 H#3 H(l— > ! J N3 (1+0(1))
3<P (P-1)" )rv P -3P+3)log’ N
P=RP+2

Example 5. Prime equation
From (6) and (7) we have Jiang’s function

J3(a)):3lgu(P2—3P+2)¢O

J(w . P, P . . P . . . .
3( ) denotes the number of pairs of *! and ~ 2 prime equations such that ~ 3 is a prime equation. Since

Jy(@)#0 .

e . P P . . P . . .
in (2) exist infinitely many pairs of "1 and ~ 2 prime equations such that ~3 is a prime equation.

Therefore we prove that there are infinitely many pairs of primes A and F such that l is a prime.
From (8) we have the best asymptotic formula

Jy(w)o N°
44’ (w) log’ N

7,(N,3)=|{B.P, <N : BP, +2 prime}| = (1+o(1)).

Note. deg (PIPZ) =2 .

_p3 3
Example 6 [12]. Prime equation B=F+2F .

From (6) and (7) we have Jiang’s function

Jy(@)= [ (P=1) = z(P)] %0

<P
L} L}
where X(P)=3(P—1) ;,2° =1(mod P) : x(P)=0 273 #I(modP) : X(P)=P—1 4 i
. J(@)#0 . . P . . P
Since 3 in (2) there are infinitely many pairs of ~! and ~ 2 prime equations such that 3 is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and F such that l is a prime.
From (8) we have the best asymptotic formula

Jiy(w)o N°?
6¢° (@) log® N

7,(N3)=|{P.P, < N: P + 2P, prime}| = (1+0(1)).

_ p4 2
Example 7 [13]. Prime equation B=R+(F+]) .
From (6) and (7) we have Jiang’s function
Jy(@)=TL[(P=1) = 2(P)]#0

2(P)=2(P=1) ;x P=1(mod4), 7(P)=2(P=3) ; P=1(mod8), y(P)=0

where otherwise.
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Jy(@)#0 .

Since in (2) there are infinitely many pairs of A and F, prime equations such that l is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula

Jy(w)o N?

3(3 ) — (1 +o(1)).

8¢ (w) log” N

Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of

length k.
P,P,=P+d,P,.=P+2d,-,P.=P+(k-1)d,(P,d)=1
From (8) we have the best asymptotic formula

7,(N2)=[{B <N:B,P +d,, B +(k —1)d are primes}|

7,(N,3)=[{B,B,<N: P, prime}|=

aom

J (o)™ N
= 2(k ) — (1 +o0(1)).
¢ (w) log' N
If Jy(@)=0 then (10) has finite prime solutions. If Jy(@) %0 then there are infinitely many primes ~!

such that LT are primes.
To eliminate 4 from (10) we have

P=2P,~B, P =(j-DP-(j-2)R.3<j<k

From (6) and (7) we have Jiang’s function
= - - - £
Jy(@)= T (P=) II(P=1)(P—k+1)#0
/s (@)#0 in (2) there are infinitely many pairs of A and F prime equations such that IR are

..’B{

Since

. . e . . P P, P,
prime equations. Therefore we prove that there are infinitely many pairs of primes ~ ! and ~ 2 such that™ 3’
are primes.

From (8) we have the best asymptotic formula

7, (N.3)=[{B, P, <N:(j—DP, - (j—2)B, prime,3 < j <k}
k-2 2 1 Pk—2 Pk—z P— 1 2
s e
2¢" (w) log" N 22<P<k (P—1)"" k<P (P-1) log" N

P,P+2,P+2*

(1+o(1))

Example 9. It is a well-known conjecture that one of is always divisible by 3. To generalize

above to the K — primes, we prove the following conjectures. Let 7 be a square-free even number.

N P,P+n,P+n’
3|(n+1)

>

where

_ 2
From (6) and (7) we have /,(3)=0 , hence one of P,P+n,P+n
» P.P+n,P+n’,--,P+n'

whepe N +0).b=2.3.

is always divisible by 3.

>

— 5 A
From (6) and (7) we have JZ(S)_O,henceoneofP’P+”ap+n ;o Ptn
3 P,P+n,P+n’,--,P+n°
where 7|(n+b)’b=2’4'

is always divisible by 5.

>
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6

— 2
From (6) and (7) we have S,(N=0 , hence one of P,P+n,P+n’, -, P+n is always divisible by 7.

4 P.P+n,P+n’,- P+n”
 1|(n+b),6=3,4,59.
From (6) and (7) we have /(11 =0
s P,P+n,P+n’,--,P+n"

. 13|(n+6),6=2,6,7,11.

wher

P,P+n,P+n’,---,P+n"

, hence one of is always divisible by 11.

wher

= 2 12
From(6)and(7)wehave J2(13)_O’henceoneofP7P+nap+n ,"',P+n

¢ P P+n,P+n’, - P+n'
. 17|(n+b),b=3,5,6,7,10,11,12,14,15.
From (6) and (7) we have J,(17)=0
5 P,P+n,P+n’,--,P+n"

. 19|(n+b),b=4,5,6,9,16.17.
From (6) and (7) we have /,(19)=0

Example 10. Let 77 be an even number.

1 P,P+n',i=1,3,5,--2k+1
J,(w)#0

is always divisible by 13.

wher

P,P+n,P+n’,---,P+n'"

, hence one of is always divisible by 17.

wher

P,P+n,P+n’,--,P+n"

, hence one of is always divisible by 19.

From (6) and (7) we have

P,P+n . k
arc primes for any .
) P,P+n',i=2,4,6,--,2k

Jz(wj #0

. Therefore we prove that there exist infinitely many primes P such that

From (6) and (7) we have
P,P+n

. Therefore we prove that there exist infinitely many primes P such that
are primes for any k.

Example 11. Prime equation 2PZ - Pl + P3
From (6) and (7) we have Jiang’s function

J3(a))=3<1'£(P2—3P+2)¢0
Jy(@)#0 .

Since in (2) there are infinitely many pairs of A and F prime equations such that l is prime

equations. Therefore we prove that there are infinitely many pairs of primes A and F, such that B is a prime.
From (8) we have the best asymptotic formula

Jy(o)o N?
24’ (w) log’ N

7,(N,3)=|{R,B, <N : P, prime}| = (1+o(1)).

2

In the same way we can prove 2B =K +R which has the same Jiang’s function.

Jiang’s function is accurate sieve function. Using numerical evidence may be, we still do not even know
it we can prove any irreducible prime equations in whether there are infinitely many pairs of twin primes
prime distribution. There are infinitely many twin [21]. All the prime theorems are conjectures except the
primes but we do not have rigorous proof of this old prime number theorem, because they do not prove the
conjecture by any method [20]. As strong as the simplest twin primes. They conjecture that the prime
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distribution is randomness [12-25], because they do not
understand theory of prime numbers.
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Abstract
Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k.

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture.

(A) Jiang prime k -tuple theorem [1, 2].
We define the prime k -tuple equation
p,pt+n ’ QP)
2\n,i=1---k-1
where | !

we have Jiang function [1, 2]

Jo(@) =TI(P~1=(P) o

o=I1P

where P x(P) is the number of solutions of congruence

k-1
Mg+n)=0 odP) ¢y oy .

g XP)<P-1, J,(@)#0
If x(P)=P-1 then J,(0)=0

J2 (w) is a subset of Euler function ¢(a)) [2].

e . P+n . .
. There exist infinitely many primes P such that each of " 1S prime.

. There exist finitely many primes P such that each of Pn, is prime.

If £ (@) #0 , then we hae the best asymptotic formula of the number of prime P [1,2]
J N N
ﬁk(N,2)=‘{PSN:P+ni=prime}‘~ z(f))w —=C(k)—
¢ (w) log" N log N ()

Hw) =TI(P-1T)

Clk) = H(l—wj (1—%
, P

P (5)

Example 1. Let k=2,P,P+2
From (3) we have
X2)=0, x(P)=1;p>2 6
Substituting (6) into (2) we have
Jy(@)=T1(P=2)%0

, twin primes theorem.

7

There exist infinitely many primes P such that P+2 is prime. Substituting (7) into (4) we have the best
asymptotic pormula

72',{(N,2)=HPSN:P+2:prime}‘~2£[3(1— ! N

(P—l)z)

-
log" N (8)
Example 2. Let k=3,P,P+2, P+4.

From (3) we have

2(2)=0, x(3)=2 9)

From (2) we have

J,(0) =0 (10)
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It has only a solution P= 3, P+2=5 , P+4=T 0Oneof P, P+2,P+4 is always divisible by 3.
Example3.Letk=4’P’P+n, en=2’6’8.

From (3) we have

x(2)=0,7Q)=L x(P)=3 ;P>3 an

Substituting (11) into (2) we have

Jy(@) =T (P=4)%0

wher

) (12)
There exist infinitely many primes P such that each of P +7 is prime.
Substituting (12) into (4) we have the best asymptotic formula
, 27 P (P-4 N
7r4(N,2)=‘{PSN:P+n=przme}‘~—1‘[ ( 4) :
3 5 (P-1)" log' N (13)

Example 4. Let k=5 , P, P+n , where n=2,6,8,12 .
From (3) we have
2(2)=0,7Q)=1, () =3, (P)=4 4, P>5 (14
Substituting (14) into (2) we have
Jy(@)=TI(P=5)#%0 e

There exist infinitely many primes P such that each of P +7 is prime. Substituting (15) into (4) we have the
best asymptotic formula

15 P-5pP*
7[5(N,2)=HPSN:P+n=prime}‘~iH( >) N
2 P21 (P—1)° log’ N

(16)
Example 5. Let k= 6, P, P+n,where n=2’6’8’12’14.
From (3) and (2) we have
2(2)=0, 73)=1 7(5)=4, J,(5=0 (7

It has only @ solution P=5, P+2=7 P+6=11 P+8=13 P+12=17 P+14=19 onc of
P+n i always divisible by 5.

(B) The Hardy-Littlewood prime k -tuple conjecture[3-14].
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999).

We define the prime k -tuple equation
P,P+n,

(18)
where 2|n[’l =1,...,k_1'
In 1923 Hardy and Littlewood conjectured the asymptotic formula
N
7, (N,2)=[{P<N:P+n, = prime}|~ H(k)—
log" N (19
where
—k
P 1
H(k)= H(l— W )j(l——j
i P P (20
v(P) is the number of solutions of congruence
k-1
I[I(g+n)=0 (modP —
g+n)=0 (modP) oy p o
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v(P)<P H(k)#0

From (21) we have

. For any prime k -tuple equation there exist infinitely many

primes P such that each of Pn, is prime, which is false.

Conjectore 1. Let k=2,P,P+2
Frome (21) we have
v(P)=1
Substituting (22) into (20) we have
P

H(Q2)=T1—
@)=I1-—

, twin primes theorem

Substituting (23) into (19) we have the asymptotic formula

m,(N,2)=[{P< N:P+2= prime}| ~T1—

P

which is false see example 1.
Conjecture 2. Let k=3,P,P+2, P+ 4.

From (21) we have

v(2)=1, v(P)=2 if P>2

Substituting (25) into (20) we have

H(3)=4HPZL_32)
P>3 (P_])

Substituting (26) into (19) we have asymptotic formula

7z3(N,2)=‘{PSN:P+2=prime,P+4:prim}‘~4H

which is false see example 2.

Conjecutre 3. Le
From (21) we have

V(2)=17 V(3)=27 V(P):3 1fP>3
Substituting (28) into (20) we have
27 - P*(P-3)

H(%) = 2 P3 (P-1)*

(22)
(23
P N
2
P-1log" N (24)
(25
(26)
P’(P-2) N

7 (P=1)* log'N (57

(k=4 P’P+n,where n=2,6,8'

(28

@L))

Substituting (29) into (19) we have asymptotic formula
27 _P(P-3) N

7z4(N,2)=HPSN:P+n=prime} ~—11

2

Which is false see example 3.

Conjecture 4. Let k=35, P, P"‘”’
From (21) we have

v(2) =1, v(3)=2, v(5)=3, v(P)=4 ¢
Substituting (31) into (20) we have

15 _ P* (P-4
Bl

4> P>5 (p _ 1)

wher

H(5) =

P3 (P=1)* log' N (5

n=2,6,8,12
€

P>5 (31)

(32)

Substituting (32) into (19) we have asymptotic formula
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it

7[5(N,2)=HPSN:P+n=prime}‘

Which is false see example 4.

PY(P-4)

N

4 p>s (P-1) log’ N

(33)

Conjecutre 5. Let k= 6, P, P+n,where n=2,6,8,12,14'

From (21) we have

v(2)=1, v(3)=2, v(5)=4, U(P)=5 . P>5

Substituting (34) into (20) we have

5 _ 5
15 (P=5)P

H(6) ~ 1 pis (P—1)°

Substituting (35) into (19) we have asymptotic formula

5 &\ pS
7z6(N,2)=‘{P£N:P+n=prime}‘~li1'[ (P=35)P

(34)
(35)
N
2B ps (P-1)° log’ N (36)

which is false see example 5.

Conclusion. The Hardy-Littlewood prime k -tuple
conjecture is false. The tool of addive prime number
theory is basically the Hardy-Littlewood prime tuples

conjecture. Jiang prime k -tuple theorem can replace

Hardy-Littlewood prime k -tuple Conjecture. There
cannot be really modern prime theory without Jiang
function.
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Automorphic Functions And Fermat’s Last Theorem(1)
Chun-Xuan Jiang

P.O.Box 3924,Beijing 100854,China
jiangchunxuan@sohu.com

Abstract

In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”

This means: ~ +y'=2"(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 3P ang P , Where P isan odd prime.
The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[ri tiJij=Zn: SJ
i=1 i=1

1
where J denotes a ”? th root of unity, J' =1 , I is an odd number, f are the real numbers.

Si is called the automorphic functions(complex hyperbolic functions) of order 7 with 7 —1 variables [1-7].

n-1

2 N
Si=l[e”‘+2z (—1) D " cos(0j+(—l)j—(l Djz,
n =1 n

@)
where i=1,2,...,n;
n—1 n—1 .
A=) t, B,=) t,(-D¥ cos ZLZ
a-1 , a=1 n ,
3
n-1
n—1 . 2
0, =" 1 (-)¥ sin% 4+25 B, =0
a=1 Jj=1
(2) may be written in the matrix form
1 1 0 e 0 1
S ] . . -1
5 1 —cosZ —sin— —smu - y -
S, n n 2n e
— B
S, 1 cos 2% sin2% .. _sinUZDZ 2" cos 6
" " n n 2¢™ sin G,
5] (n-Drx (n-Drm (n-1’r .
1 cos— sin oo —sin~——2=21|2expB, sinb, |
L n n 2n 1L 2 2] (4)
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(n=1)/2 is an even number.

where
From (4) we have its inverse transformation
1 1 1 1 i
_ P -
2 -1
e I —cosZ csZ .. cosZDE
e’ cos 6, n n n - -
B 4in @ . ) . (n-Drx 5
e Sing, =10 —sin— sin=—— e osin——2— S
n n n 2
. S;
exp(B, ,)sin(d, ;) 2
L 2 > 1y _sin (n-DHrx _sin (n—-Dr _sin (n=-1)"rx .
L n n 2n ] | Px] (5)
From (5) we have
) n B n—1 . Uﬂ.
e :ZSI. e’ cosd, =51+ZSH1-(—1)1] Cos—
i=1 i=1 n
n—1 oo
¢ sing, = (~1)"Y" S, (-1)7 sin L
n (6)

i=1

In (3) and (6) l and S, have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT.

Using (4) and (5) in 1991 Jiang invented that every factor of exponent ” has the Fermat equation and proved FLT
[1-7] Substituting (4) into (5) we prove (5).

1 1 1 1
_ ) _ , .
R ¢ 1 —cosZ cos % cosu
e cosb n n n
e’ sin 6, _1 0 _sinZ I e sin (n—-Drm y
n n n n
exp(Bn;l)sin(Gn;l) ' 1 .
N ? 2 0 —sin (n=Dz —sin—(n_ )z —sin (n=y 7
L 2n n 2n |
1 1 0 0 T
_ ) _
1 —cosZ —sinZ .. _SmM Be
n n 2n 2¢" cos 6,
1 cosz—ﬁ sinz_ﬁ .. _Sinw 2¢” sin 6,
n n n
|| 2exp(8, ,)sin(o, )
1 cos =Dz sin (n-Dz _Sinw L 2 2
L n n 2n
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[n 0 0 - 0]
n | e’ |
0O — 0 -+ 0 R
2 2e” cos O,
Lo oo 2 0 2¢" sin g
n 2
2 exp(Bn—l )Sin(en—l )
0 0 0 2t : 2
L 2]
eA
e’ cos o,
— e’ sin 6,
exp(B,_,)sin(@, )
L 2 2 , 7
n—1 : n—1 :
14y (cosEy? =2 (sinZZy =2
where /7! n 2 , = n 2 '
From (3) we have
n-1

2
exp(4+2)_ B,)=1
j=l . (8)
From (6) we have

nt S8 o SIS S o (S,
< S, S - 5SS S
eXp(A+2ZB]): 2 1 3 _ 2 ( 2)1 ( Z)n—l
Sn Sn—l Sl Sn (Sn)l (Sn)n—l , (9)
oS,
(Si)j = a_l‘l
where i [7].
From (8) and (9) we have the circulant determinant
. S S S
2. S S ... S
exp(4+2) B)=| > 3=
= :
Su Sua S (10)
If S =0 , Where i=12n , then (10) has infinitely many rational solutions.

%0 S,#0 S=0 4 i=34n5=0 . )

Assume here indeterminate equations with

n =1 yarjables. From (6) we have

2B 2 2 ‘ J7
4 _ e =8+8,+2S5S,(-1) cos—
e —S1+S2’ e 172 n (11

192



http://www.sciencepub.net/academia

Academia Arena 2016;8(3s)

From (10) and (11) we have the Fermat equation

n-1 nl

exp(A+2ZB) (S, +S)H(S2+S2+2SS( l)]cos ) S'+8) =1

Jj=1 (12)

Example[1]. Let 72 = 15 From (3) we have
A=(t+1,)+(, +t13)+(t +1,)+ (@, +1,)F () (1) + (8, + 1)

2 RY/4 4
B, =—(t, +t,)cos— + t, +t.)cos——(t, +t,,)cos—+ (¢, +t,,)coOS—
—(t, +1,) T (1, +15) T —(t,+1,) T (t,+1,) T

57 6r T
t.+t,)cos—+(t. +¢,)cos— — (¢, + 1, ) cOS—
—(t; + 1) T (ts+1,) T —(t,+4) T

>

2z 4r 67 kY4
=(t,+t,)cos— s +(t, +¢,)cos— T +(t, +1,)cos— T +(t, +¢,)cos— T

107 127 147
+(t5 +1,,) COS——+ (£ +1,) COS——+ (¢, +1;) COS——
(5 fig) COS—r=+ (fg 4y ) cOs—=+ (1 +1 ) cos—

>

R4 6r Or 127
=—(t,+t,)cos— T +(t, +t,;)cos— T —( +l‘12)COSE+(l‘4 +t11)cosF

157 187 21r
t,+t,)cos——+(t, +1,)cos———(t, +1;) cos—
s hyg )OS+ (fg F£5) COS = = (1 + £y ) COS—

>

4r 87 127 7
=(t,+t,)cos— T +(t, +1;)cos— T +(t, +1,)cos— s +(t, +t11)cosF

207 24 28x
+(t, +1,,) cos——+ (¢, +1,) coOS——+ (¢, +1;) cOS——
(5 + iy ) COS == (F +15) COS ==+ (f + ) cos —

>

57 107 157 20z
=—(t,+t,)cos— T +(t, +1,;)cos— T —(t, +1t,)cos— T +(t, +t11)cosF

257 307 357
t,+1t,)cos——+(t, +1,) cos———(t, +1;) cos——
s H19) COS ==+ (f F1y) COS = = (£ + £y ) cOS—

>

or 127 187 V1
=(t, +t,)cos— T +(t, +1,;)cos— s +(t,+1t,)cos— T +(t, +t11)cosF

30z 36 42
+(t;, +1,,) coOsS——— + (¢, +1,) cOS——+ (¢, + 1) COS——
(5 + i) COS—= (£ +1, ) cOS—o+ (5 + £y Jeos——

>

T 147 21r 28n
t,+1t,)c08s——+(t, +1,;)cosS———(¢; +1,,) cOS——+ (¢, +1,,) COS——
= (0 + 1) 05+ (1 +43) C0S—m =l 11, ) COS = (4 +yy ) c0s —

>

357 42 497
t,+1,)cos——+(t; +1,)cos——— (¢, +1;) cOS——
s Htg) cOS == (fg +1y ) eos === (I +fy ) cos——

;

A+2) B, =0,  A+2B,+2B =5(t;+1,)
J=1

Form (12) we have the Fermat equation

g
exp(A+2) B)=5"+8"=(8) +(5;)’ =1

J=1

(13)

(14)

From (13) we have
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exp(A+2B, +2B,) =[exp(t, +1,,)]’ ' (15)
From (11) we have

exp(A+2B, +2B,)=S; +S; 16)
From (15) and (16) we have the Fermat equation

exp(A+2B, +2B,) =] +S; =[exp(t; +1,)]" am

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational

solutions for exponent 5[1].
Theorem 1. [1-7]. Let = 3P,Where P >3 i50dd prime. From (12) we have the Fermat’s equation

3P-1
exp(A+2) B)=8"+8"=(S") +(8)) =1
/A : (18)

From (3) we have
P-1

2
exp(4+2) By ) =[exp(t, +1,,)]"
= ) (19)

From (11) we have
P-1

2
exp(A+2) B, ) =58+,
J= . (20)
From (19) and (20) we have the Fermat equation
P
2
P P P
exp(A+2) B, ) =8 +8; =[exp(t, +1,,)]
/= . 2D
Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational

solutions for £ >3 [1, 3-7].
Theorem 2. In 1847 Kummer write the Fermat’s equation

xU =zt (22)
in the form
(x+x+m)x+r7p)-(x+ry)=2" (23)

2 .. 2m

r =CcoSs—+iI1SsIn—

where P is odd prime, P P

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100

[8]..

We consider the Fermat’s equation

3p 3p 3p
Ay =z (24)
we rewrite (24)
(Y + (1) =) o5
From (24) we have
(xP +yP)(xP +fj/P)(xP +r2yP) — Z3P (26>

T .. 27
r =CcosS—+i1sin—
where 3 3
We assume the divisor of each factor is a £ th power.
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Let z,
x” +yP =[zxexp(t, +t2P)]P

Z . From (20) and (26) we have the Fermat’s equation

(27)

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer

solutions for prime exponent P,

Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24)

() + () =)

(28)

Euler proved that (25) has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no

integer solutions for all prime exponent P [1-7].
We consider Fermat equation

4P +y4P _ 4P
We rewrite (29)

) (O ="
D"+ =Y

Fermat proved that (30) has no integer solutions
for exponent 4 [8]. Therefore we prove that (31) has no

integer solutions for all prime exponent P [2,5,7].This
is the proof that Fermat thought to have had.
Remark. It suffices to prove FLT for exponent 4. Let

n=4p , where P is an odd prime. We have the
Fermat’s equation for exponent 4P and the Fermat’s

equation for exponent P [2,5,7]. This is the proof that
Fermat thought to have had. In complex hyperbolic

functions let exponent /? be 77 = IIP n=2IIP 4

n=4l1pP Every factor of exponent /? has the
Fermat’s equation [1-7]. In complex trigonometric

functions let exponent /? be 77 = IIP n=2IIP 4

n=A4llP Every factor of exponent /2 has Fermat’s
equation [1-7].Using modular elliptic curves Wiles and
Taylor prove FLT[9,10].This is not the proof that
Fermat thought to have had. The classical theory of
automorphic functions, created by Klein and Poincare,
was concerned with the study of analytic functions in
the unit circle that are invariant under a discrete group
of transformations. Automorphic functions are
generalization of the trigonometric,hyperbolic,elliptic,
and certain other functions of elementary analysis. The
complex trigonometric functions and complex
hyperbolic functions have a wide application in
mathematics and physics.
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Automorphic Functions And Fermat’s Last Theorem (2)
Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
Jiangchunxuan(@vip.sohu.com

Abstract

In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”

This means: ~ +y'=2'(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 6P ang P , Where P isan odd prime.
The proof of FLT must be direct .But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[zif tﬂ’}=i SJ
i=1 i=1

1
J 2n . S =1, t
where ¥ denotes a th root of unity, , n is an odd number, “/ are the real numbers.

Si is called the automorphic functions(complex hyperbolic functions) of order 2n with 2n—-1 variables
[5,7].

n—1
1 < 1B, (i-1)jr
S =—/|e*+2 —1)' ]’cos(ﬁ.+ -1/ ————
. ]Z:, (-D L+ (=D "
n—1
_1\G-D 2 o ) 1)
T A e cos(¢j s (ony 2D I)J”j
2n = n
: (2)
where i =1,...,2n;
2n-1 2n-1 ) a]ﬂ. . 2n-1 o a]ﬂ.
A= t, B,=> t(-DYcos——,0,=(-D"""> 1 (-1)*sin——
a=1 a=1 n a=1 n ,
2n—1 2n-1 ) a]ﬂ.
4= 1,1 D= 1, (=) cos— =
a=1 a=1
n—1 ’
'Zn—l ) a]ﬂ’ 2
g, ==Y 1,V sinT,Al +4,+2). (B,+D,)=0
a=1 J=1 (3)

From (2) we have its inverse transformation[5,7]
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2n 2n

et =) S, e"=> S(-n"
i=1 i=1
2n-1 o]
e’ cosf, =8+ S, (-1 cos L%
i=1 n

. . '+ 2n71 1" . i.ﬂ-
e”sin@, =(-DU"Y S, (-1)" s1n]7
i=1

>

2n-1

e’ cos g, =8+ Z S
i=1

1+i

(=D cos yr
n

2n-1 o]
¢’ sing, = (=1 Y S, (- sin%

i=1

(4)
(3) and (4) have the same form.
From (3) we have
n—1
2.
exp| 4 +4,+2) (B, +D))|=1
j=1
(5
From (4) we have
el S8, 5
< S S S
exp| 4 +4,+2) (B, +D)|=| > ’
=
S2n SZn—l e Sl
Si S (S
_ S (&) (8
S2n (SZn)l e (SZn )Zn—l (6)
oS,
G =%,
where I [7]..
From (5) and (6) we have circulant determinant
ael S, S S,
2 S S ... S
exp| A +4,+2). (B,+D))|=| * =1
=
S2n SZn—l Sl (7>
If 5 #0 » where 1=123,..2n , then (7) have infinitely many rational solutions.
Let 7 =1 From (3) we have A=t 30q 42 =1 From (2) we have
S, =chy, S, =shy,
we have Pythagorean theorem
ch’t, —sh’t, =1 (9)
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(9) has infinitely many rational solutions.

§,#0,5, 20,5, #0 , 1=3,..2n . 5 =0 are (2n-2) indeterminate equations with

Assume where
(2n-1) variables. From (4) we have
et =S +S,, et =S8 -8, % =82 +52+28,8,(-1) cos?Z
n
e =82+ 82 +28.8,(~1)/" cosZZ
n (100
Example. Let 77 = 15 From (3) and (10) we have Fermat’s equation
7
expld, +4,+2>. (B, +D)]=5" -5 =(5) -(5,’)’ =1
= an
From (3) we have
5
exp(4, +2B, +2B,) = [exp(z ls; 7
= (12)

From (10) we have
exp(4, +2B, +2B,) =S +S; (13
From (12) and (13) we have Fermat’s equation
5
exp(4, +2B; +2B) =8} +8; =[exp(D t;,)I
= (14)
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational

solutions for exponent 5.
Theorem. Let 7 =3P where P is an odd prime. From (7) and (8) we have Fermat’s equation

3p-1
2
exp(4, +4, +2) (B, +D )] =8 -85 =(S") -(5;") =1
J=1 (15)
From (3) we have
i} P
2 5
exp| 4, + 22 B, |= exp(z tjPJ
J=1 J=1
(16)
From (10) we have
P-1
2
exp| 4, +2) B, |=S8]+8;
j=1
(17)
From (16) and (17) we have Fermat’s equation
i) P
2 5
exp| 4,+2). B, |=S+S8) = exp(z t/.PJ
Jj=1 J=1
(18)
Euler prove that (15) has no rational solutions for Remark. It suffices to prove FLT for exponent 4. Let

exponent 3[8]. Therefore we prove that (18) has no n=4 P’ where P is an odd prime. We have the

rational solutions for prime exponent P [5.7]- Fermat’s equation for exponent 4P and the Fermat’s
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Automorphic Functions And Fermat’s Last Theorem (3) (Fermat’s Proof of FLT)

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China
jlangchunxuan(@sohu.com

Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates,
or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous
proof, which this margin is too small to contain.”
n n __ n
This means: * +y'=2"(n>2) has no integer solutions, all different from 0(i.e., it has only the trivial
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for
exponent 3.

In this paper using automorphic functions we prove FLT for exponents 4P ang P , Where P isan odd prime.
We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields
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exp(il tJj z SJ"
i=1 ’ (D

4m
where J denotes a 4m th root of unity, J" =1 ,m=1,23,..., Z are the real numbers.

i is called the automorphic functions(complex hyperbolic functions) of order 4m with 4m—1 yariables

[2,5,7].
l i—1 L 1
S = et +2¢" COS(ﬂ‘F( M}LZZ e’ cos(é’ +(l )JﬂJ
2 = 2m
(i-1) m—1 i—-1j
) { 4 +2Z e’ cos(;/ﬁ Mﬂ
2m
(2)
where 1 =1,...,4I’l’l;
4m-1 4m-1 2m—1 2m
A= t, 4= 1,(-D)" H=> t6,,(-D)% B= t, (D
a=1 a=1 a=1 a=1
B —A‘nzkzlt cosﬂ 6’——4nzz?tsinaj7[
g a=l1 ‘ 2m ’ / a=1 “ 2m ’
D=3 ner Sy sn T
¢, cos— = t, (-1) sin——
2m % el 2m
m—1 ’
A+A4,+2H+2> (B,+D,)=0
=1 . (3
From (2) we have its inverse transformation[5,7]
4m 4m
eAl — Z Si’ eAz — Z Si (_I)Hi
i=1 i=1
2m ) 2m )
ecos f=Y S, (D", esinp=> S8, (-1
i=1 i=1
B 4m-1 ]72' B . 4m-1 ’
e’ cosf =5 + Z S c0s2—, e’ sinf, = Z A s1n
i=1 m
D 4m-1 ) Uﬂ. 4m-1 ’
e’cosgd =S, + Z S, (=1) cos—, ’s1n¢ Z S, (=1 sinZZ
! il 2m 2m (4
(3) and (4) have the same form.
From (3) we have
m—1
eXp{Al +4,+2H+2) (B, +Dj)} =1
A (5
From (4) we have
Sl S4m “. SZ
m-1 S S e S
exp{Al+A2+2H+2z (B].+Dj)}= S ’
=
S4m S4m—1 o Sl
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Sl (Sl)l (Sl )4mfl
_ Sz (Sz )1 (S2)4m—1
S4m (S4m )1 .” (S4m )4m—1 (6)
where
oS,
G)=a,
avl
From (5) and (6) we have circulant determinant
Sl S4m “. SZ
m=1 S S e S
exp| 4+ A +2H+2) (B+D)|=" T 7=
j=1
S4m S4m—1 “. Sl (7>
Assume 5 #0,5, 0,5, = O, where i=3,...4m. ;=0 are (4m—2) indeterminate equations with
(4m-1)

variables. From (4) we have
e =8 +S,, e"=8-5,, &"=S+S;
, 7T . T
& =2+ 524288, cosé— & =82 +82 25,8, cos L

m 2m (8)
Example [2]. Let 4m =12 grom (3) we have

Al :(tl +1‘11)4‘(1‘2 +1‘10)4‘(1‘3 +t<;)+(t4 +t8)+(t5 +t7)+t6
Az = _(tl +t11)+(t2 +t10)_(t3 +t9)+(t4 +t8)_(t5 +t7)+t6
H:_(tz +t10)+(t4+t8)_t6

27z 4r
=(t +t11)c0s6+(t , +1,)c0s— p + (2, +t )cos36 +(t, +1;)cos— p + (¢ +t )cosSE L,

=(¢ +t11)c0s26 +(t, +t10)c0s4?+(t +1 )cos%+(t +1 )cos%+(t +t )cos&+t6,

2z 4r
D, =—(¢, +f11)0056+(f , +1,)cos— 6 —(t, +¢ )cos%+(t +t)c0s——(t +t )cosSﬂ —t,,

2z 4 1
D, =—(t, +1¢,)cos— 6 +(t, +1,,)cos 6ﬂ (t, +1¢ )cos66 +(1, +t)cosgﬂ (t5+t7)cos%+t6,

A+A4,+2(H+B +B,+D+D,)=0 A,+2B, =3(—t; +t,—t,)

. D)

From (8) and (9) we have

expld, + 4, +2(H + B + B, + D, + D)= 57 =8, = () = () =1 )
From (9) we have

exp(4, +2B,) = [exp(—t; +1, _to)]3' (11)
From (8) we have

eXp(Az +2Bz):(S1 _Sz)(S12 "'Sz2 +S1S2):S13 _S23' (12)
From (11) and (12) we have Fermat’s equation
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exp(4, +2B,) =8, =S, =[exp(~t, +1,—1,)]"

Fermat proved that (10) has no rational solutions for exponent 4 [8].
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2]

Theorem . Let 4m =4P , where P isan odd prime,
From (3) and (8) we have

(P-1)/2

(13)

is an even number.

P-1
expld, + 4, +2H +2) (B, +D)]=5" -5 =(S")' —(57)" =1

J=1

From (3) we have
P-1

e
expld, +22, (By;,+D, )] =[exp(~t, +1,, —1,,)]
= _

From (8) we have
P-1

4
exp[4, +2z (B4j—2 +D4j)] = S1P _S;
j=1

From (15) and (16) we have Fermat’s equation
P-1

=

4
exp[4, +2z (B, + D))= S1P _S; =[exp(—t, +1,, _tzp)]P

Fermat proved that (14) has no rational solutions
for exponent 4 [8]. Therefor we prove that (17) has no

rational solutions for prime exponent P,

Remark. Mathematicians said Fermat could not
possibly had a proof, because they do not understand

FLT.In complex hyperbolic functions let exponent /2
be n=TIP  n=2IIP anq n=411P  Eyery

factor of exponent /7 has Fermat’s equation [1-7].
Using modular elliptic curves Wiles and Taylor prove
FLT [9,10]. This is not the proof that Fermat thought to
have had. The classical theory of automorphic
functions,created by Klein and Poincare, was
concerned with the study of analytic functions in the
unit circle that are invariant under a discrete group of
transformation. ~Automorphic functions are the
generalization of trigonometric, hyperbolic elliptic, and
certain other functions of elementary analysis. The
complex trigonometric functions and complex
hyperbolic functions have a wide application in
mathematics and physics.
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Fermat's Last Theorem

Fermat's last Theorem: There is no positive integers x, y, z, and n > 2 such that x "+ y" = 2"
was broadcast on 15 January 1996

At the age of ten, browsing through his public library, Andrew Wiles stumbled across the world's greatest
mathematical puzzle. Fermat's Last Theorem had baffled mathematicians for over 300 years. But from that day, little
Andrew dreamed of solving it. Tonight's HORIZON tells the story of his obsession, and how, thirty years later, he
gave up everything to achieve his childhood dream.

Deep in our classroom memories lies the enduring notion that "the square of the hypotenuse is equal to the sum
of the squares of the other two sides": Pythagoras's Theorem for right-angled triangles. Written down, it is also the
simplest of mathematical equations: x >+ y* = z°

In 1637, a French mathematician, Pierre de Fermat said that this equation could not be true for X + y3 =7 or
for any equation x" + y" = z" where n is greater than 2. Tantalisingly, he wrote on his Greek text: "I have discovered
a truly marvellous proof, which this margin is too narrow to contain." No one has found the proof, and for 350 years
attempts to prove "F.L.T." attracted huge prizes, mistaken and eccentric claims, but met with failure.

Simon Singh and John Lynch's film tells the enthralling and emotional story of Andrew Wiles. A quiet English
mathematician, he was drawn into maths by Fermat's puzzle, but at Cambridge in the '70s, FLT was considered a
joke, so he set it aside. Then, in 1986, an extraordinary idea linked this irritating problem with one of the most
profound ideas of modern mathematics: the Taniyama-Shimura Conjecture, named after a young Japanese
mathematician who tragically committed suicide. The link meant that if Taniyama was true then so must be FLT.
When he heard, Wiles went after his childhood dream again. "I knew that the course of my life was changing."
For seven years, he worked in his attic study at Princeton, telling no one but his family. "My wife has only known
me while I was working on Fermat", says Andrew. In June 1993 he reached his goal. At a three-day lecture at
Cambridge, he outlined a proof of Taniyama - and with it Fermat's Last Theorem. Wiles' retiring life-style was
shattered. Mathematics hit the front pages of the world's press.

Then disaster struck. His colleague, Dr Nick Katz, made a tiny request for clarification. It turned into a gaping
hole in the proof. As Andrew struggled to repair the damage, pressure mounted for him to release the manuscript - to
give up his dream. So Andrew Wiles retired back to his attic. He shut out everything, but Fermat.

A year later, at the point of defeat, he had a revelation. "It was the most important moment in my working
life. Nothing I ever do again will be the same." The very flaw was the key to a strategy he had abandoned years
before. In an instant Fermat was proved; a life's ambition achieved; the greatest puzzle of maths was no more.
PROF. ANDREW WILES:

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark mansion. One
goes into the first room and it's dark, completely dark, one stumbles around bumping into the furniture and then
gradually you learn where each piece of furniture is, and finally after six months or so you find the light switch, you
turn it on suddenly it's all illuminated, you can see exactly where you were.

At the beginning of September I was sitting here at this desk when suddenly, totally unexpectedly, I had this
incredible revelation. It was the most, the most important moment of my working life. Nothing I ever do again will...
I'm sorry.

NARRATOR:

This is the story of one man's obsession with the world's greatest mathematical problem. For seven years
Professor Andrew Wiles worked in complete secrecy, creating the calculation of the century. It was a calculation
which brought him fame, and regret.

ANDREW WILES:

So I came to this. I was a 10-year-old and one day I happened to be looking in my local public library and I
found a book on math and it, it told a bit about the history of this problem that someone had resolved this problem
300 years ago, but no-one had ever seen the proof, no-one knew if there was a proof, and people ever since have
looked for the proof and here was a problem that I, a 10-year-old, could understand, but none of the great
mathematicians in the past had been able to resolve, and from that moment of course I just, just tried to solve it
myself. It was such a challenge, such a beautiful problem.

This problem was Fermat's last theorem.
NARRATOR:
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Pierre de Fermat was a 17th-century French mathematician who made some of the greatest breakthroughs in
the history of numbers. His inspiration came from studying the Arithmetica, that Ancient Greek text.
PROF. JOHN CONWAY:

Fermat owned a copy of this book, which is a book about numbers with lots of problems, which presumably
Fermat tried to solve. He studied it, he, he wrote notes in the margins.

NARRATOR:

Fermat's original notes were lost, but they can still be read in a book published by his son. It was one of these
notes that was Fermat's greatest legacy.
JOHN CONWAY:

And this is the fantastic observation of Master Pierre de Fermat which caused all the trouble. "Cubum autem in
duos cubos"
NARRATOR:

This tiny note is the world's hardest mathematical problem. It's been unsolved for centuries, yet it begins with
an equation so simple that children know it off by heart.

CHILDREN:

The square of the hypotenuse is equal to the sum of the squares of the other two sides.
JOHN CONWAY:

Yes well that's Pythagoras's theorem isn't it, that's what we all did at school. So Pythagoras's theorem, the
clever thing about it is that it tells us when three numbers are the sides of a right-angle triangle. That happens just
when x squared plus y squared equals z squared.

ANDREW WILES:

X squared plus y squared equals zee squared, and you can ask: well what are the whole numbers solutions of
this equation? And you quickly find there's a solution 3 squared plus 4 squared equals 5 squared. Another one is 5
squared plus 12 squared is 13 squared, and you go on looking and you find more and more. So then a natural
question is, the question Fermat raised: supposing you change from squares, supposing you replace the two by three,
by four, by five, by six, by any whole number 'n', and Fermat said simply that you'll never find any solutions,
however, however far you look you'll never find a solution.

NARRATOR:

You will never find numbers that fit this equation, if n is greater than 2. That's what Fermat said, and what's
more, he said he could prove it. In a moment of brilliance, he scribbled the following mysterious note.
JOHN CONWAY:

Written in Latin, he says he has a truly wonderful proof "Demonstrationem mirabilem" of this fact, and then
the last words are: "Hanc marginis exigiutas non caperet" - this margin is too small to contain this.
NARRATOR:

So Fermat said he had a proof, but he never said what it was.

JOHN CONWAY:

Fermat made lots of marginal notes. People took them as challenges and over the centuries every single one of
them has been disposed of, and the last one to be disposed of is this one. That's why it's called the last theorem.
NARRATOR:

Rediscovering Fermat's proof became the ultimate challenge, a challenge which would baffle mathematicians
for the next 300 years.

JOHN CONWAY:

Gauss, the greatest mathematician in the world...
BARRY MAZUR:

Oh yes, Galois...

JOHN COATES:
Kummer of course...
KEN RIBET:

Well in the 18th-century Euler didn't prove it.
JOHN CONWAY:

Well you know there's only been the one woman really...
KEN RIBET:

Sophie Germain
BARRY MAZUR:

Oh there are millions, there are lots of people
PETER SARNAK:
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But nobody had any idea where to start.
ANDREW WILES:

Well mathematicians just love a challenge and this problem, this particular problem just looked so simple, it
just looked as if it had to have a solution, and of course it's very special because Fermat said he had a solution.
NARRATOR:

Mathematicians had to prove that no numbers fitted this equation but with the advent of computers, couldn't
they check each number one by one and show that none of them fitted?

JOHN CONWAY:

Well how many numbers are there to beat that with? You've got to do it for infinitely many numbers. So after
you've done it for one, how much closer have you got? Well there's still infinitely many left. After you've done it for
1,000 numbers, how many, how much closer have you got? Well there's still infinitely many left. After you've done
a few million, there's still infinitely many left. In fact, you haven't done very many have you?

NARRATOR:

A computer can never check every number. Instead, what's needed is a mathematical proof.
PETER SARNAK:

A mathematician is not happy until the proof is complete and considered complete by the standards of
mathematics.

NICK KATZ:

In mathematics there's the concept of proving something, of knowing it with absolute certainty.
PETER SARNAK:

Which, well it's called rigorous proof.

KEN RIBET:

Well rigorous proof is a series of arguments...
PETER SARNAK:

...based on logical deductions.

KEN RIBET:

...which just builds one upon another.
PETER SARNAK:

Step by step.
KEN RIBET:

Until you get to...
PETER SARNAK:

A complete proof.
NICK KATZ:

That's what mathematics is about.
NARRATOR:

A proof'is a sort of reason. It explains why no numbers fit the equation without haaving to check every number.
After centuries of failing to find a proof, mathematicians began to abandon Fermat in favour of more serious maths.

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles was just beginning his career as a
mathematician. He went to Cambridge as a research student under the supervision of Professor John Coates.

JOHN COATES:

I've been very fortunate to have Andrew as a student, and even as a research student he, he was a wonderful
person to work with. He had very deep ideas then and it, it was always clear he was a mathematician who would do
great things.

NARRATOR:

But not with Fermat. Everyone thought Fermat's last theorem was impossible, so Professor Coates encouraged
Andrew to forget his childhood dream and work on more mainstream maths.

ANDREW WILES:

The problem with working on Fermat is that you could spend years getting nothing so when I went to
Cambridge my advisor, John Coates, was working on Iwasawa theory and elliptic curves and I started working with
him.

NARRATOR:

Elliptic curves were the in thing to study, but perversely, elliptic curves are neither ellipses nor curves.
BARRY MAZUR:

You may never have heard of elliptic curves, but they're extremely important.

JOHN CONWAY:
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OK, so what's an elliptic curve?
BARRY MAZUR:

Elliptic curves - they're not ellipses, they're cubic curves whose solution have a shape that looks like a
doughnut.

PETER SARNAK:

It looks so simple yet the complexity, especially arithmetic complexity, is immense.
NARRATOR:

Every point on the doughnut is the solution to an equation. Andrew Wiles now studied these elliptic equations
and set aside his dream. What he didn't realise was that on the other side of the world elliptic curves and Fermat's
last theorem were becoming inextricably linked.

GORO SHIMURA:

I entered the University of Tokyo in 1949 and that was four years after the War, but almost all professors were
tired and the lectures were not inspiring.
NARRATOR:

Goro Shimura and his fellow students had to rely on each other for inspiration. In particular, he formed a
remarkable partnership with a young man by the name of Utaka Taniyama.
GORO SHIMURA:

That was when I became very close to Taniyama. Taniyama was not a very careful person as a mathematician.
He made a lot of mistakes, but he, he made mistakes in a good direction and so eventually he got right answers and I
tried to imitate him, but I found out that it is very difficult to make good mistakes.

NARRATOR:

Together, Taniyama and Shimura worked on the complex mathematics of modular functions.
NICK KATZ:

I really can't explain what a modular function is in one sentence. I can try and give you a few sentences to
explain it.

PETER SARNAK:

LAUGHS
NICK KATZ:

I really can't put it in one sentence.

PETER SARNAK:

Oh it's impossible.
ANDREW WILES:

There's a saying attributed to Eichler that there are five fundamental operations of arithmetic: addition,
subtraction, multiplication, division and modular forms.
BARRY MAZUR:

Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many
internal symmetries that their mere existence seem like accidents, but they do exist.
NARRATOR:

This image is merely a shadow of a modular form. To see one properly your TV screen would have to be
stretched into something called hyperbolic space. Bizarre modular forms seem to have nothing whatsoever to do
with the humdrum world of elliptic curves. But what Taniyama and Shimura suggested shocked everyone.

GORO SHIMURA:

In 1955 there was an international symposium and Taniyama posed two or three problems.
NARRATOR:

The problems posed by Taniyama led to the extraordinary claim that every elliptic curve was really a modular
form in disguise. It became known as the Taniyama-Shimura conjecture.
JOHN CONWAY:

The Taniyama-Shimura conjecture says, it says that every rational elliptic curve is modular and that's so hard to
explain.

BARRY MAZUR:

So let me explain. Over here you have the elliptic world the elliptic curve, these doughnuts, and over here you
have the modular world, modular forms with their many, many symmetries. The Shirmura-Taniyama conjecture
makes a bridge between these two worlds. These worlds live on different planets.

It's a bridge, it's more than a bridge, it's really a dictionary, a dictionary where questions, intuitions, insights,
theorems in the one world get translated to questions, intuitions in the other world.

KEN RIBET:
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I think that when Shirmura and Taniyama first started talking about the relationship between elliptic curves and
modular forms people were very incredulous. I wasn't studying mathematics yet. By the time I was a graduate
student in 1969 or 1970 people were coming to believe the conjecture.

NARRATOR:

In fact, Taniyama-Shimura became a foundation for other theories which all came to depend on it. But
Taniyama-Shimura was only a conjecture, an unproven idea, and until it could be proved, all the maths which relied
on it was under threat.

ANDREW WILES:

Built more and more conjectures stretched further and further into the future but they would all be completely
ridiculous if Taniyama-Shimura was not true.
NARRATOR:

Proving the conjecture became crucial, but tragically, the man whose idea inspired it didn't live to see the
enormous impact of his work. In 1958, Taniyama committed suicide.
GORO SHIMURA:

I was very much puzzled. Puzzlement may be the best word. Of course I was sad that, see it was so sudden and
I was unable to make sense out of this.

NARRATOR:

Taniyama-Shimura went on to become one of the great unproven conjectures. But what did it have to do with
Fermat's last theorem?

ANDREW WILES:

At that time no-one had any idea that Taniyama-Shimura could have anything to do with Fermat. Of course in
the 80s that all changed completely.
NARRATOR:

Taniyama-Shimura says: every elliptic curve is modular and Fermat says: no numbers fit this equation. What
was the connection?
KEN RIBET:

Well, on the face of it the Shimura-Taniyama conjecture which is about elliptic curves, and Fermat's last
theorem have nothing to do with each other because there's no connection between Fermat and elliptic curves. But in
1985 Gerhard Frey had this amazing idea.

NARRATOR:

Frey, a German mathematician, considered the unthinkable: what would happen if Fermat was wrong and there
was a solution to this equation after all?
PETER SARNAK:

Frey showed how starting with a fictitious solution to Fermat's last equation if such a horrible, beast existed, he
could make an elliptic curve with some very weird properties.
KEN RIBET:

That elliptic curve seems to be not modular, but Shimura-Taniyama says that every elliptic curve is modular.
NARRATOR:

So if there is a solution to this equation it creates such a weird elliptic curve it defies Taniyama-Shimura.

KEN RIBET:

So in other words, if Fermat is false, so is Shimura-Taniyama, or said differently, if Shimura-Taniyama is

correct, so is Fermat's last theorem.
NARRATOR:

Fermat and Taniyama-Shimura were now linked, apart from just one thing.
KEN RIBET:

The problem is that Frey didn't really prove that his elliptic curve was not modular. He gave a plausibility
argument which he hoped could be filled in by experts, and then the experts started working on it.
NARRATOR:

In theory, you could prove Fermat by proving Taniyama, but only if Frey was right. Frey's idea became known
as the epsilon conjecture and everyone tried to check it. One year later, in San Francisco, there was a breakthrough.
KEN RIBET:

I saw Barry Mazur on the campus and I said let's go for a cup of coffee and we sat down for cappuccinos at this
caf i nd I looked at Barry and I said you know, I'm trying to generalise what I've done so that we can prove the full
strength of Serre's epsillon conjecture and Barry looked at me and said well you've done it already, all you have to
do is add on some extra gamma zero of m structure and run through your argument and it still works, and that gives
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everything you need, and this had never occurred to me as simple as it sounds. I looked at Barry, I looked to my
cappuccino, I looked back at Barry and said my God, you're absolutely right.
BARRY MAZUR:
Ken's idea was brilliant.
ANDREW WILES:

I was at a friend's house sipping iced tea early in the evening and he just mentioned casually in the middle of a
conversation: by the way, do you hear that Ken has proved the epsilon conjecture? And I was just electrified. I, 1
knew that moment the course of my life was changing because this meant that to prove Fermat's last theorem I just
had to prove Taniyama-Shimura conjecture. From that moment that was what I was working on. I just knew I would
go home and work on the Taniyama-Shimura conjecture.

NARRATOR:

Andrew abandoned all his other research. He cut himself off from the rest of the world and for the next seven
years he concentrated solely on his childhood passion.
ANDREW WILES:

I never use a computer. I sometimes might scribble, I do doodles I start trying to, to find patterns really, so I'm
doing calculations which try to explain some little piece of mathematics and I'm trying to fit it in with some previous
broad conceptual understanding of some branch of mathematics. Sometimes that'll involve going and looking up in a
book to see how it's done there, sometimes it's a question of modifying things a bit, sometimes doing a little extra
calculation, and sometimes you realise that nothing that's ever been done before is any use at all, and you, you just
have to find something completely new and it's a mystery where it comes from.

JOHN COATES:

I must confess I did not think that the Shimura-Taniyama conjecture was accessible to proof at present. I
thought I probably wouldn't see a proof in my lifetime.
KEN RIBET:

I was one of the vast majority of people who believe that the Shimura-Taniyama conjecture was just
completely inaccessible, and I didn't bother to prove it, even think about trying to prove it. Andrew Wiles is
probably one of the few people on earth who had the audacity to dream that you can actually go and prove this
conjecture.

ANDREW WILES:

In this case certainly for the first several years I had no fear of competition. I simply didn't think I or any one
else had any real idea how to do it. But I realised after a while that talking to people casually about Fermat was, was
impossible because it just generates too much interest and you can't really focus yourself for years unless you have
this kind of undivided concentration which too many spectators will have destroyed.

NARRATOR:

Andrew decided that he would work in secrecy and isolation.
PETER SARNAK:

I often wondered myself what he was working on.
NICK KATZ:

Didn't have an inkling.
JOHN CONWAY:

No, I suspected nothing.
KEN RIBET:

This is probably the only case I know where someone worked for such a long time without divulging what he
was doing, without talking about the progress he had made. It's just unprecedented.
NARRATOR:

Andrew was embarking on one of the most complex calculations in history. For the first two years, he did
nothing but immerse himself in the problem, trying to find a strategy which might work.
ANDREW WILES:

So it was now known that Taniyama-Shimura implied Fermat's last theorem. What does Taniyama-Shimura
say? It, it says that all elliptic curves should be modular. Well this was an old problem been around for 20 years and
lots of people would try to solve it.

KEN RIBET:

Now one way of looking at it is that you have all elliptic curves and then you have the modular elliptic curves
and you want to prove that there are the same number of each. Now of course you're talking about infinite sets, so
you can't just can't count them per say, but you can divide them into packets and you could try to count each packet
and see how things go, and this proves to be a very attractive idea for about 30 seconds, but you can't really get
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much further than that, and the big question on the subject was how you could possibly count, and in effect, Wiles
introduced the correct technique.
NARRATOR:

Andrew's trick was to transform the elliptic curves into something called Galois representations which would
make counting easier. Now it was a question of comparing modular forms with Galois representations, not elliptic
curves.

ANDREW WILES:

Now you might ask and it's an obvious question, why can't you do this with elliptic curves and modular forms,
why couldn't you count elliptic curves, count modular forms, show they're the same number? Well, the answer is
people tried and they never found a way of counting, and this was why this is the key breakthrough, that I found a
way to count not the original problem, but the modified problem. I found a way to count modular forms and Galois
representations.

NARRATOR:

This was only the first step, and already it had taken three years of Andrew's life.
ANDREW WILES:

My wife's only known me while I've been working on Fermat. I told her a few days after we got married. I
decided that I really only had time for my problem and my family and when I was concentrating very hard and I
found that with young children that's the best possible way to relax. When you're talking to young children they
simply aren't interested in Fermat, at least at this age, they want to hear a children's story and they're not going to let
you do anything else.

So I'd found this wonderful counting mechanism and [ started thinking about this concrete problem in terms of
Iwasawa theory. Iwasawa theory was the subject I'd studied as a graduate student and in fact with my advisor, John
Coates, I'd used it to analyse elliptic curves.

NARRATOR:

Andrew hopes that Iwasawa theory would complete his counting strategy.
ANDREW WILES:

Now I tried to use Iwasawa theory in this context, but I ran into trouble. I seemed to be up against a wall. I just
didn't seem to be able to get past it. Well sometimes when I can't see what to do next I often come here by the lake.
Walking has a very good effect in that you're in this state of concentration, but at the same time you're relaxing,
you're allowing the subconscious to work on you.

NARRATOR:

Iwasawa theory was supposed to help create something called a class number formula, but several months
passed and the class number formula remained out of reach.
ANDREW WILES:

So at the end of the summer of '91 I was at a conference. John Coates told me about a wonderful new paper of
Matthias Flach, a student of his, in which he had tackled a class number formula, in fact exactly the class number
formula I needed, so Flach using ideas of Kolyvagin had made a very significant first step in actually producing the
class number formula. So at that point I thought this is just what I need, this is tailor-made for the problem. I put
aside completely the old approach I'd been trying and I devoted myself day and night to extending his result.
NARRATOR:

Andrew was almost there, but this breakthrough was risky and complicated. After six years of secrecy, he
needed to confide in someone.

NICK KATZ:

January of 1993 Andrew came up to me one day at tea, asked me if I could come up to his office, there was
something he wanted to talk to me about. I had no idea what, what this could be. Went up to his office. He closed
the door, he said he thought he would be able to prove Taniyama-Shimura. I was just amazed, this was fantastic.
ANDREW WILES:

It involved a kind of mathematics that Nick Katz is an expert in.

NICK KATZ:

I think another reason he asked me was that he was sure I would not tell other people, I would keep my mouth
shut, which I did.

JOHN CONWAY:

Andrew Wiles and Nick Katz had been spending rather a lot of time huddled over a coffee table at the far end
of the common room working on some problem or other. We never knew what it was.
NARRATOR:
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In order not to arouse any more suspicion, Andrew decided to check his proof by disguising it in a course of
lectures which Nick Katz could then attend.
ANDREW WILES:

Well I explained at the beginning of the course that Flach had written this beautiful paper and I wanted to try to
extend it to prove the full class number formula. The only thing I didn't explain was that proving the class number
formula was most of the way to Fermat's last theorem.

NICK KATZ:

So this course was announced. It said calculations on elliptic curves, which could mean anything. Didn't
mention Fermat, didn't mention Taniyama-Shimura, there was no way in the world anyone could have guessed that
it was about that, if you didn't already know. None of the graduate students knew and in a few weeks they just
drifted off because it's impossible to follow stuff if you don't know what it's for, pretty much. It's pretty hard even if
you do know what's it for, but after a few weeks I was the only guy in the audience.

NARRATOR:

The lectures revealed no errors and still none of his colleagues suspected why Andrew was being so secretive.
PETER SARNAK:

Maybe he's run out of ideas. That's why he's quiet, you never know why they're quiet.

NARRATOR:

The proof was still missing a vital ingredient, but Andrew now felt confident. It was time to tell one more

person.
ANDREW WILES:

So I called up Peter and asked him if I could come round and talk to him about something.
PETER SARNAK:

I got a phone call from Andrew saying that he had something very important he wanted to chat to me about,
and sure enough he had some very exciting news.
ANDREW WILES:

Said I, I think you better sit down for this. He sat down. I said I think I'm about to prove Fermat's last theorem.
PETER SARNAK:

I was flabbergasted, excited, disturbed. I mean I remember that night finding it quite difficult to sleep.
ANDREW WILES:

But there was still a problem. Late in the spring of '93 I was in this very awkward position and I thought I'd got
most of the curves to be modular, so that was nearly enough to be content to have Fermat's last theorem, but there
was this, these few families of elliptic curves that had escaped the net and I was sitting here at my desk in May of
'93 still wondering about this problem and I was casually glancing at a paper of Barry Mazur's and there was just
one sentence which made a reference to actually what's a 19th-century construction and I just instantly realised that
there was a trick that I could use, that I could switch from the families of elliptic curves I'd been using, I'd been
studying them using the prime three, I could switch and study them using the prime five. It looked more complicated,
but I could switch from these awkward curves that I couldn't prove were modular to a different set of curves which
I'd already proved were modular and use that information to just go that one last step and I just kept working out the
details and time went by and I forgot to go down to lunch and it got to about teatime and I went down and Nada was
very surprised that I'd arrived so late and then, then she, I told her that I, I believed I'd solved Fermat's last theorem.

I was convinced that I had Fermat in my hands and there was a conference in Cambridge organised by my
advisor, John Coates. I thought that would be a wonderful place. It's my old home town, I'd been a graduate student
there, be a wonderful place to talk about it if I could get it in good shape.

JOHN COATES:

The name of the lectures that he announced was simply 'Elliptic curves and modular forms' There was no
mention of Fermat's last theorem.
KEN RIBET:

Well I was at this conference on L functions and elliptic curves and it was kind of a standard conference and all
of the people were there, didn't seem to be anything out of the ordinary, until people started telling me that they'd
been hearing weird rumours about Andrew Wiles's proposed series of lectures.

I started talking to people and I got more and more precise information. I've no idea how it was spread.
PETER SARNAK:

Not from me, not from me.

JOHN CONWAY:

Whenever any piece of mathematical news had been in the air, Peter would say oh that's nothing, wait until you

hear the big news, there's something big going to break.
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PETER SARNAK:

Maybe some hints, yeah.
ANDREW WILES:

People would ask me leading up to my lectures what exactly I was going to say and I said well, come to my
lecture and see.
KEN RIBET:

It's a very charged atmosphere a lot of the major figures of arithmetical, algebraic geometry were there.
Richard Taylor and John Coates, Barry Mazur.

BARRY MAZUR:

Well I'd never seen a lecture series in mathematics like that before. What was unique about those lectures were
the glorious ideas how many new ideas were presented, and the constancy of his dramatic build-up that was
suspenseful until the end.

KEN RIBET:

There was this marvellous moment when we were coming close to a proof of Fermat's last theorem, the tension
had built up and there was only one possible punchline.
ANDREW WILES:

So after I'd explained the 3/5 switch on the blackboard, I then just wrote up a statement of Fermat's last
theorem, said I'd proved it, said I think I'll stop there.
JOHN COATES:

The next day what was totally unexpected was that we were deluged by enquiries from newspapers, journalists
from all around the world.
ANDREW WILES:

It was a wonderful feeling after seven years to have really solved my problem, I've finally done it. Only later
did it come out that there was a, a problem at the end.

NICK KATZ:

Now it was time for it to be refereed which is to say for people appointed by the journal to go through and
make sure that the thing was really correct.

So for, for two months, July and August, I literally did nothing but go through this manuscript, line by line and
what, what this meant concretely was that essentially every day, sometimes twice a day, I would E-mail Andrew
with a question: I don't understand what you say on this page on this line. It seems to be wrong or I just don't
understand.

ANDREW WILES:

So Nick was sending me E-mails and at the end of the summer he sent one that seemed innocent at first. I tried
to resolve it.
NICK KATZ:

It's a little bit complicated so he sends me a fax, but the fax doesn't seem to answer the question, so I E-mail
him back and I get another fax which I'm still not satisfied with, and this in fact turned into the error that turned out
to be a fundamental error and that we had completely missed when he was lecturing in the spring.

ANDREW WILES:

That's where the problem was in the method of Flach and Kolyvagin that I'd extended, so once I realised that at
the end of September, that there was really a, a problem with the way I'd made the construction I spent the fall trying
to think what kind of modifications could be made to the construction. There, are lots of simple and rather natural
modifications that any one of which might work.

PETER SARNAK:

And every time he would try and fix it in one corner it would sort of some other difficulty would add up in
another corner. It was like he was trying to put a carpet in a room where the carpet had more size than the room, but
he could put it in in any corner and then when he ran to the other corner it would pop up in this corner and whether
you could not put the carpet in the room was not something that he was able to decide.

NICK KATZ:

I think he externally appeared normal but at this point he was keeping a secret from the world and I think he
must have been in fact pretty uncomfortable about it.
JOHN CONWAY:

Well you know we were behaving a little bit like Kremlinologists. Nobody actually liked to come out and ask
him how he's getting on with, with the proof, so somebody would say I saw Andrew this morning. Did he smile?
Well yes, but he didn't look too happy.

ANDREW WILES:
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The first seven years I'd worked on this problem. I loved every minute of it. However hard it had been there'd
been, there'd been setbacks often, there'd been things that had seemed insurmountable but it was a kind of private
and very personal battle I was engaged in.

And then after there was a problem with it doing mathematics in that kind of rather over-exposed way is
certainly not my style and I have no wish to repeat it.

NARRATOR:

Other mathematicians, including his former student Richard Taylor, tried to help fix the mistake. But after a
year of failure, Andrew was ready to abandon his flawed proof.
ANDREW WILES:

In September, I decided to go back and look one more time at the original structure of Flach and Kolyvagin to
try and pinpoint exactly why it wasn't working, try and formulate it precisely. One can never really do that in
mathematics but I just wanted to set my mind at rest that it really couldn't be made to work. And I was sitting here at
this desk. It was a Monday morning, September 19th and I was trying convincing myself that it didn't work, just
seeing exactly what the problem was when suddenly, totally unexpectedly, I had this incredible revelation. I, 1
realised what was holding me up was exactly what would resolve the problem I'd had in my Iwasawa theory attempt
three years earlier was, it was the most, the most important moment of my working life. It was so indescribably
beautiful, it was so simple and so elegant and I just stared in disbelief for twenty minutes. Then during the day I
walked round the department, I'd keep coming back to my desk and looking to see it was still there, it was still there.
Almost what seemed to be stopping the method of Flach and Kolyvagin was exactly what would make horizontally
Iwasawa theory. My original approach to the problem from three years before would make exactly that work, so out
of the ashes seemed to rise the true answer to the problem. So the first night I went back and slept on it, I checked
through it again the next morning and by 11 o'clock I satisfied and I went down, told my wife I've got it, I think I've
got it, I've found it, and it was so unexpected, she, I think she thought I was talking about a children's toy or
something and said got what? and I said I've fixed my proof, I, I've got it.

JOHN COATES:

I think it will always stand as, as one of the high achievements of number theory.
BARRY MAZUR:

It was magnificent.
JOHN CONWAY:

It's not every day that you hear the proof of the century.
GORO SHIMURA:

Well my first reaction was: I told you so.
NARRATOR:

The Taniyama-Shimura conjecture is no longer a conjecture, and as a result Fermat's last theorem has been
proved. But is Andrew's proof the same as Fermat's?
ANDREW WILES:

Fermat couldn't possibly have had this proof. It's a 20th-century proof. There's no way this could have been
done before the 20th-century.
JOHN CONWAY:

I'm relieved that this result is now settled. But I'm sad in some ways because Fermat's last theorem has been
responsible for so much. What will we find to take its place?
ANDREW WILES:

There's no other problem that will mean the same to me. I had this very rare privilege of being able to pursue in
my adult life what had been my childhood dream. I know it's a rare privilege but if, if one can do this it's more
rewarding than anything I could imagine.

BARRY MAZUR:
One of the great things about this work is it embraces the ideas of so many mathematicians. I've made a partial
list: Klein, Fricke, Hurwitz, Hecke, Dirichlet, Dedekind...
KEN RIBET:
The proof by Langlands and Tunnell...
JOHN COATES:
Deligne, Rapoport, Katz...
NICK KATZ:

Mazur's idea of using the deformation theory of Galois representations...
BARRY MAZUR:

Igusa, Eichler, Shimura, Taniyama...
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PETER SARNACK:
Frey's reduction...
NICK KATZ:
The list goes on and on...
BARRY MAZUR:
Bloch, Kato, Selmer, Frey, Fermat.

XA VG 7 TR H 5 SR A0E W 2 By K B AR, A A T PR 7 it 2R 7 38 AE 9% S e 33k b, T oAbl it 28
PRAERH T 3% 5 e 3, X2 Dudm NBEAR, HA M TG 2 R KR A TR ARG, T E ARG E
1991 45 fij B 48 1) 9l T K g BEAEBH. 5% 7092 BT R M6 R0 PR 2R 0 iE B 2 T R e HL81 ok DAt R B, k7T s
VN, EHEE AL ST R, A E N AN AT, RiF53CE ELE et R rE A snE XA E oK
HiE. EPNEE BN T I 2010-08 F40< K> T o0 5 A0 3% 5 R0E B IR R T ok, 5 2K
BT RE SRR, B SEARRNE, BB SR R EE AR TR, 525 AR N BCE A PR T %
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Riemann Paper (1859) Is False
Chun-Xuan. Jiang

P. O. Box3924, Beijing 100854, China
Jiangchunxuan@vip.sohu.com

Abstract
In 1859 Riemann defined the zeta function C(S) From Gamma function he derived the zeta function with
Gamma function é/(S) ¢ (s) and g(s) are the two different functions. It is false that ¢ (s) replaces C(S)

After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 7, (@) can

replace RH.

AMS mathematics subject classification: Primary 11M26.
In 1859 Riemann defined the Riemann zeta function (RZF)[1]

IR T |
S()=T-P)' =) —
n=1 n

s=0+t,i=N-1

variable $ in @ 20,10 » which is absolutely convergent.
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2]

> QP)

where O and ! are real, P ranges over all primes. RZF is the function of the complex

CU+ti)#0 (2)
In 1998 Jiang proved [3]
S(s)# 0’ 3
where 00 <1
Riemann paper (1859) is false [1] We define Gamma function [1, 2]
F(ij = et dt
2) <0 _ 4

.2
For O > 0 . On setting t=n"7rx , we observe that
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_% S —s ® —n’7x
7[1“511‘=ij2€ dx

(5
Hence, with some care on exchanging summation and integration, for O > 1 ,
S \— 0 (& 2
T = g(s):.[ x?2 e" ™ ldx
w1 8(x)-1
= .[0 x? (—( ) dx
2 ) 6)
where g (s) is called Riemann zeta function with gamma function rather than &(s) ,
(x)=> e
n==e0 , D
. . . . . (x) .
is the Jacobi theta function. The functional equation for 1s
1
2 _ -1
X2 x)=Hx"), (8)

and is valid for X >0

Finally, using the functional equation of J(x) , we obtain

= 7[5 1 ®, - 22 S(x)l
“S)F(sj{s(s_lfﬁ (7 +x 2 ) (2 }
2 (9

From (9) we obtain the functional equation

[ j;(s> _— [ j;(l )
10)

The function g(s) satisfies the following

1. ¢(s) has no zero for @ > 1 ;

2. The only pole of g(s) isat § =1 ; it has residue 1 and is simple;

=-2,—-4,..

3. ¢(s) has trivial zeros at but é/(S) has no zeros;

4. The nontrivial zeros lie inside the region 0<o <1l and are symmetric about both the vertical line
o=1/2
The strip 0<0 <1 jscalled the critical strip and the vertical line O = 1/2 is called the critical line.

Conjecture (The Riemann Hypothesis). All nontrivial zeros of g(s) lie on the critical line & =1 /2 , which is
false. [3]

g(s) and &(s) are the two different functions. It is false that g(s) replaces &(s) , Pati proved that is not

all complex zeros of ¢(s) lie on the critical line: @ = 1/2 [4].

Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly
related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang
J (@)

discovered Jiang function which can replace RH, Riemann zeta function and L-function in view of its
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J, (@0)#0 Jn(a))=0’then

then the prime equation has infinitely many prime solutions; and if

the prime equation has finitely many prime solutions. By using /(@) Jiang proves about 600 prime theorems
including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in primes[7,8].

proved feature: if

In the same way we have a general formula involving g (s)

[ee] [e]

J:O XHZ F(nx)dx :Z J:O X' F (nx)dx

n=l1 n=1

- i ni j: VIF()dy = (s) j: YUF(y)dy

>

an
where F(y) is arbitrary.

From (11) we obtain many zeta functions g (s) which are not directly related to the number theory.
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly
related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green

and Tao prove that there exist infinitely many arithmetic progressions of length k consisting only of primes which
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT which is
Fermat’s marvelous proof[7, 13].

Primes Represented by R +mh, [14]

(D Let "=3 and M =2 We have
P=P+2F}
We have Jiang function

Ji(@)=]] (P*-3P+3-x(P))#0

3<p
L} " pa
Where AP)=2P=1 30 25 =1 (o9 Py, XP)=—P+2 4 27 21 (g Py, 2(P)=1
otherwise.
Since /, () # O, there exist infinitely many primes A and F such that l is a prime.

We have the best asymptotic formula
7,(N,3)=[{P, P, : B, P, <N, B’ +2P, = P, prime}]
_Jy(@)w N’ _lH P(P*-3P+3-y(P)) N’
6@ () log’ N 335 (P-1)° log* N
o=]] P (@) =[] (P-D

where 2<p is called primorial, 2<p .
It is the simplest theorem which is called the Heath-Brown problem [15].

(2) Let " =5 be an odd prime, 2|m and M # +b" )
we have
P, =P +mp}
We have
Ji(@)=]] (P*-3P+3-x(P))#0

3<P

>
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P-1
P-1
X(P)=-P+2 if M b= 1(modP); x(P)=1 otherwise.
Since /, (@)#0 , there exist infinitely many primes A and F, such that l is a prime.
We have
J 2
(N3~ h@e N
2PRD(w) log” N
n 2
The Polynomial B+ (P2 +1) Captures Its Primes [14]

(1) Let 1= 4, We have
=B +(B,+1)
We have Jiang function

Ji(@)=]] (P*-3P+3-x(P))#0

3<p
Where x(P)=P if P=1 (mod 4); x(P)=P-4 if P=1 (mod8) ; X(P)=-P+2 otherwise.
Since 7, (@)#0 , there exist infinitely many primes A and F such that B is a prime.

We have the best asymptotic formula
7,(N.3)=|{R, B, : B,P, < N,R +(P, +1)’ = P, prime}
_Ji(@w N’
8@’ (w) log’ N
It is the simplest theorem which is called Friedlander-Iwaniec p'roblem [16].
(2) Let n=4m , We have

Wherem:1’2’3’m

We have Jiang function

Ji@)= T (P*-3P+3—x(P)#0

3<P<PR

where A(P)=P—4m 8m|(P=1); z(P)=P—4 i 8|(P-1) . X(P)=P 4 4(P-1) ;
Z(P)=-P+2 otherwise.
Since J3 (0)) =0 , there exist infinitely many primes Pl and P2 such that P3 is a prime. It is a generalization

of Euler proof for the existence of infinitely many primes.
We have the best asymptotic formula

Jy(w)o N?
7,(N,3) ~ 8m®*(w) log* N
(3) Let "=2b we have

P =R"+(P,+1)

where b is an odd.
We have Jiang function
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Ji(@) =[] (P*-3P+3-y(P))#0

3<P

Where
We have the best asymptotic formula

Jy(w)o N?
7,(N,3) ~ 4b®* (@) log* N

(4) Let '~ E), We have

2(P)=P=2b  4b(P=1): z(P)=P=2  4|(P~1). AP)=—P42

otherwise.

P, =R +(P+1)

where ~ 0 is an odd. Prime.
we have Jiang function

Jj@)=]] (P*-3P+3-4(P))#0

3<p
= Pl(P-1); y(P)=
where x(P) P0+1if 0|( ); x(P)=0
Since /5 (@)#0 , there exist infinitely many primes
We have the best asymptotic formula

J(@wo N’
7,(N,3) ~ 2P®’(w) log’ N

/(@) is closely related to

the prime distribution. Using /(@) we are able to
tackle almost all prime problems in the prime
distributions.

The Jiang function

Acknowledgements

The Author would like to express his deepest
appreciation to R. M. Santilli, L. Schadeck and Chen I-
wan for their helps and supports.

References

1. B. Riemann, Uber die Anzahl der Primzahlen
under einer gegebener Grosse, Monatsber Akad.
Berlin, 671-680 (1859).

2. P.Bormein,S.Choi, B. Rooney, The Riemann
hypothesis, pp28-30, Springer-Verlag, 2007.

3. Chun-Xuan. lJiang, Disproofs of Riemann
hypothesis, Algebras Groups and Geometries 22,
123-136(2005).  http://www.i-b-r.org/docs/Jiang
Riemann. pdf

4. Tribikram Pati, The Riemann hypothesis, arxiv:
math/0703367v2, 19 Mar. 2007.

5.  Laurent Schadeck, Private communication. Nov. 5.

2007.
6. Laurent Schadeck, Remarques sur quelques
tentatives de demonstration Originales de

I’Hypothése de Riemann et sur la possiblilité De

217

Pl and

10.

11.

12.

13.

14.

>

otherwise.

P : :
2 such that 3 is also a prime.

les prolonger vers une th é orie des nombres
premiers consistante, unpublished, 2007.
Chun-Xuan. Jiang, Foundations of Santilli’s
isonumber theory with applications to new
cryptograms, Fermat’s theorem and Goldbach’s
conjecture, Inter. Acad. Press, 2002. MR2004c:
11001, http://www.i-b-r.org/Jiang. pdf
Chun-xuan. Jiang, The simplest proofs of both
arbitrarily long arithmetic progressions of primes,
Preprint (2006).

B. Kra, The Green-Tao theorem on arithmetic
progressions in the primes: an ergodic point of
view, Bull. Am. Math. Soc. 43, 3-23(2006).

B. Green and T. Tao, The primes contain
arbitrarily long arithmetic progressions. To appear,
Ann. Math.

T.Tao,The dichotomy between structure and
randomness, arithmetic progressions, and the
primes. In proceedings of the international
congress of mathematicians (Madrid. 20006).
Europ. Math, Soc. Vol.1, 581-609, 2007.

A. Wiles, Modular elliptic curves and Fermat’s
last theorem, Ann. Math. 141, 443-551 (1995)
Chun-Xuan. Jiang, Fermat’s marvelous proofs for
Femart’s last theorem, preprint (2007), submit to
Ann. Math.

Chun-Xuan. Jiang, Prime theorem in Santilli’s
isonumber theory (II), Algebras Groups and
Geometries 20, 149-170(2003).



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

15. D.R.Heath-Brown, Primes represented by x° +y4 . o Amn. Math, 148
captures its primes. Ann. ath. ,

3 3
X +2Y" Acta Math. 186, 1-84(2001). 945-1040(1998).
16. J. Friedlander and H. Iwaniec, The polynomial

The New Prime theorems (991) - (1040)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book
proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS,

THES, MPIM, MSRI. In this paper using Jiang function £ (@) we prove that the new prime theorems (991)-
(1040) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest

solution 7 (Ny,2) 21 . This is the Book theorem.

1t will be another million years, at least, before we understand the primes.

Paul Erdos (1913-1996)

TATEMENT OF INTENT

If elected. I am willing to serve the IMU and the international mathematical community as president of the
IMU. I am willing to take on the duties and responsibilities of this function.

These include (but are not restricted to) working with the IMU’s Executive Committee on policy matters and its
tasks related to organizing the 2014 ICM, fostering the development of mathematics, in particular in developing
countries and among young people worldwide, representing the interests of our community in contacts with other
international scientific bodies, and helping the IMU committees in their function.

--IMU president, Ingrid Daubechies—

Satellite conference to ICM 2010

Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve
methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s
conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple
conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false:

(http://www.wbabin.net/math/xuan77.pdf)

(http://vixra.org/pdf/1003.0234v1.pdf).

The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann hypothesis. In 1996
Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang
function, Jiang prove almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s
isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress.
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal (Green and
Tao theorem is false) to see.

(http://www.wbabin.net/math/xuan39e.pdf)

(http://www.vixra.org/pdf/0904.0001v1.pdf).

There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level.
Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. For fostering the
development of Jiang prime theory IMU is willing to take on the duty and responsibility of this function to see[new
prime k-tuple theorems (1)-(20)] and [the new prime theorems (1)-(990)]: (http://www.wbabin.net/xuan.htm#chun-
xuan) (http://vixra.org/numth/)

The New Prime theorem (991)

P,jP*" +k—j(j=1,--,k=1)
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Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1902
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51902 .
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*” +k—j]=0 (modP),g =1,-,P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1902 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1902)" ¢"(w) log" N (¢,

7 (N.2)=|[{P<N: jP* +k - j = prime||~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=37 . From (2) and(3) we have
Sy (@) =0 @)
we prove that for k=37
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,7 )
(1) contain infinitely many prime solutions

The New Prime theorem (992)
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P,jP*™ +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1904
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51904 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg™ +k—j]=0 (modP),g =1,--,P~1
= 3
1t X(P)SP=2 4o from (2) and (3) we have
J,(0)#0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1904 .
such that each of /P + k= is a prime.
. , 1 y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1904)" ¢"(w) log" N (¢,

7 (N,2) = HP <SN:jP*™ +k—j= prime}\ ~
w)=TI(P-1
where ¢( ) P( )

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
k=3,517,29,113,137,239,953

Example 1. Let . From (2) and(3) we have
J,(0)=0 7
k=3,517,29,113,137,239,953
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let K # 3:5:17,29,113,137,239,953.
From (2) and (3) we have
J,(w)#0 ()

We prove that for k+3,5,17,29,113,137,239,953 ’

(1) contain infinitely many prime solutions
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The New Prime theorem (993)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1906
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j=1,k=1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
Hl[quw’ +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 1906 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1906)" ¢"(w) log" N (¢,

7, (N.2)=[{P<N: jP* +k— j = prime}|~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,1907 . From (2) and(3) we have

J2(@) =0 €

we prove that for k=3,1907 ’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,1907 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,1907 )
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(1) contain infinitely many prime solutions

The New Prime theorem (994)

P,jP*" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1908
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51908 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg™* +k=j]=0 (mod P),qg =1, P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1908 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, ()™ N
k=1 1k k
(1908)" '¢" (@) log" N (¢,

7,(N,2) =HPS N:jP*" +k—j :prime}‘ ~

Hw) =11(P=1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,7,13,19,37,107 . From (2) and(3) we have

J,(@)=0

D
we prove that for k=3,5,7,13,19,37, 107’
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let ¥ 7 3:5.7:13,19,37,107
From (2) and (3) we have
J,(w)#0 ()
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We prove that for k#3,5,7,13,19,37,107 )

(1) contain infinitely many prime solutions

The New Prime theorem (995)

P, jP°" +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP" + k= j(j =1, k=1) D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=T[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq‘m +k=j]=0 (modP),q=1,-,P-1
J= (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1910 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1910)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP*" +k - j = prime||~

#) =TI(P-1)

where
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,11,383 . From (2) and(3) we have
Jo(@) =0 @)

k=3,11,383

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11,383 .
From (2) and (3) we have

223



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

J,(w)#0 (2)

We prove that for k#3,11,383 )
(1) contain infinitely many prime solutions

The New Prime theorem (996)

P,jP°? +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

- 1912 ]
Using Jiang function we prove that JPT k=] contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP + k= j(j =1 k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qum +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D92 f_
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1912)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP*" +k - j = prime||~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,479,1913 . From (2) and(3) we have

J2(@) =0 €
we prove that for k=3,5,479,1913 ,

(1) contain no prime solutions. 1 is not a prime.
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Example 2. Let k#3,5, 479’1913.

From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,479,1913 )

(1) contain infinitely many prime solutions

The New Prime theorem (997)

P,jP"" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j Pl g j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP v k= j(j =1, k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jqw” +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1914 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 4k k
(1914 " (@) log" N,

7 (N.2)=[{P<N: jP*" +k = j = prime}|~

L o) =11(P=1)

whe

>
From (6) we are able to find the smallest solution 7, (No,2) 21 .
Example 1. Let k=3,7,23,67 . From (2) and(3) we have

J2(@) =0 €

k=3,7,23,67

we prove that for
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k # 3’ 7923’ 67 .
From (2) and (3) we have
J,(@)#0 o

We prove that for k#3,7,23,67 ;

(1) contain infinitely many prime solutions

The New Prime theorem (998)

P,jP"" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51916

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 1916 .
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg”"* +k—j]=0 (modP),qg =1,--,P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1916 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
S2(@)=0 (s)
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1916)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP*" +k — j = prime||~

Hw) =T1(P=1)

where

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5 . From (2) and(3) we have

J(@)=0 7
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we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (999)

P, jP°" +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51918 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51918 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg”" +k—j]=0 (mod P),g =1, P~1
= 3
1t XS P=2 en from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1918 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, ()™ N
k-1 1k k
(1918)" '¢" (@) log" N (¢,

7,(N,2) =HPS N:jP""® +k—j =prime}‘ ~

Hw) =T1(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
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Example 1. Let k=3 From (2) and(3) we have
J,(0)=0 (7

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1000)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
g g p y y p p
solutions.

Theorem. Let X bea given odd prime.
- 51920 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k—j]=0 (modP),qg =1,--,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1920 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1920)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP™ +k - j = prime||~

where Ho) = I;I(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

228



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

E k=3,57,1113,17,31,41,61,97,193,241,641
xample 1. Let
. From (2) and(3) we have
J2(@) =0 €
k=3,57,1113,17,31,41,61,97,193,241,641
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let K # 35T 11,13,17,31,41,61,97,193,241,641
From (2) and (3) we have
J,(w)#0 (2)
We prove that for K # 35 T11,13,17,31,41,61,97,193,241,641

(1) contain infinitely many prime solutions

The New Prime theorem (1001)

P,jP** +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P2 g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P, jP + k= j(j=1,k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qum +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D92 p i
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1922)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP +k — j = prime||~
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#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
Jo(@) =0 )

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1002)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51924

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
. 1924 ..
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k=j]=0 (modP),g =1,--,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1924 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]
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J,(w)o"™ N
k-1 1k k
(1924)" ¢ (w) log" N (¢,

7, (N.2)=|[{P< N: jP™ +k— j = prime||~

H@)=1(P-1)

whe
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,53,149 . From (2) and(3) we have
J2(@) =0 €
we prove that for k=3,5,53,149 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,53,149 .
From (2) and (3) we have
J,(w)#0 (2)
k#3,5,53,149

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (1003)

P,jP*” +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51926

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51926 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (modP),g =1,--,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy (@) #0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1926 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
J(0)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1926)" ¢"(w) log" N (¢,

7 (N2) =[{P< N: P + k= j = prime]| ~

#) =TI(P-1)

where

ﬂk(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,19,643 . From (2) and(3) we have

Jo(@) =0 )
k=3,7,19,643

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,19,643 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,7,19,643 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1004)
P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51928

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51928 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where rp, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (mod P),g =1, P~1
=1 (3)
1t X(P)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1928 .
such that each of 7 +% 7/ isa prime.
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Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k=1 1k k
(1928)" '¢" () log" N (¢,

7,(N,2) =HPS N:jP** +k—j :prime}‘ ~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=35 . From (2) and(3) we have

J(0)=0 7

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5 .
From (2) and (3) we have

J,(w)#0 )

We prove that for k#3,5 )
(1) contain infinitely many prime solutions

The New Prime theorem (1005)

P, jP" +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 51930 .
Using Jiang function we prove that JP k=] contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
. 51930 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (modP),g =1,--,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4
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We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

90
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 4k k
1930) ¢ (@) log' N,

7, (N.2)=[{P<N: jP™ +k— j = prime||~

Hw) =TI(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,11193 1. From (2) and(3) we have
J,(0)=0 (7

k=3,11,1931

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11,1931 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,11,1931 )
(1) contain infinitely many prime solutions

The New Prime theorem (1006)

P, jP" +k=j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
j plo32 — j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP*? + k= j(j =1, k=1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=T[P-1- (P)]

(2)
w=I1P
where po, X (P) is the number of solutions of congruence
k-1
H][quz +k—j} =0 (modP),g=1,---,P—1
i (3)

234



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

1t X(P)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D192
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1932)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP +k — j = prime||~

where o) = 11_’[(P b .

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,7,13,29,43,47,139,967,1933 . From (2) and(3) we have

J2(@) =0 €
k=3,5,7,13,29,43,47,139,967,1933

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k +#3,5,7,13,29,43,47,139,967,1933 '
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k #3,5,7,13,29,43,47,139,967,1933 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1007)

P, jP"* +k—j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 1934

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51934 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)= TI[P—1- £(P)] o

o=I1P

where P, X (P) is the number of solutions of congruence
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k-1

H[qufm +k—j}50 (mod P),q=1,---,P—1

=
£ X(P)SP-2
J,(w)#0

3
then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1934 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
J,(w)#0 .
If then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1934)" ¢"(w) log" N (¢,

7, (N.2)=[{P< N: jP™ +k — j = prime||~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3 From (2) and(3) we have
J,(0)=0

D
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1008)

P, jP" +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

P g

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.

Theorem. Let X bea given odd prime.
P, jP" +k—j(j=1,k-1)

Q)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P
(@) =TI[P=1- 7(P)] o
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o=I1P

where P, X (P) is the number of solutions of congruence
k-1
[ jg** +k-j]=0 (mod P),g =1,--,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1936 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
J2 (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1936)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP +k— j = prime}|~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,5,17,23,89 . From (2) and(3) we have

J,(0)=0 (7

k=3,5,17,23,89
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17, 23’89.
From (2) and (3) we have

J,(w)#0 ()
We prove that for k#3,5,17,23,89 )

(1) contain infinitely many prime solutions

The New Prime theorem (1009)

P, jP”" 4k = j(j =1k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51938 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* +k—j(j=1,k-1)

contain infinitely many prime solutions and no prime solutions.

(D
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Proof. We have Jiang function [1,2]
Jy (@)= TI[P=1- £(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qus +k-j]=0 (mod P),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D9 p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 sk k
(1938)" '¢"(w) log" N (¢,

7,(N,2) =HPS N:jP" +k—j :prime}‘ ~

H@)=1(P-1)

whe

7Z'k(N0,2)21'

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,103

J,(w)=0

. From (2) and(3) we have

7
we prove that for k=3, 7’103,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3, 79103'
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,7,103 )
(1) contain infinitely many prime solutions

The New Prime theorem (1010)

P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 1940
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
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P, jP* v k= j(j =1, k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq"’“o +k=j]=0 (modP),q=1,-,P-1
J= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1940 .
such that each of /P + k= is a prime.
sing Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1940)" ¢ (@) log" N (¢,

7, (N.2)=[{P<N: jP* +k — j = prime}|~

#) =TI(P-1)

where
>

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,11971 . From (2) and(3) we have

J2(@) =0 €

k=3,511,971
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,11,971 .

From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,5,11,971 )

(1) contain infinitely many prime solutions

The New Prime theorem (1011)

P, jPP" +k=j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

239



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

. 51942
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51942 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (modP),g =1,--,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1942 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(1942)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1012)

P, jP** +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
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Abstract
. 51944

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51944 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k=j]=0 (modP),g =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

L
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1944)" ¢ (w) log" N (¢,

7 (N.2)=[{P< N jP* +k— j = prime}|~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

k=3,5,7,13,19,37,109,163,487

Example 1. Let . From (2) and(3) we have

J,(@)=0

D
k=3,5,7,13,19,37,109,163,487
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Lot K #3:5:7,13,19,37,109,163,487
From (2) and (3) we have
J,(w)#0 ()

We prove that for K # 35, 7:13,19,37,109,163,487

(1) contain infinitely many prime solutions

The New Prime theorem (1013)

P, jP* +k—j(j=1-,k-1)
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Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51946
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P, jP" vk —j(j=1-k=1)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P

(@) =TI[P~1- 7(P)] o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k—j]=0 (modP),g =1,--,P~1
=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

pl9% p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1946)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP* +k = j = prime||~

Hw) =T1(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1014)
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P, jP*® +k—j(j=1,-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51948

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51948 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (mod P),qg =1, P~1
J=1 (3
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1948 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 1k k
(1948)" 9" (w) log" N (¢,

7 (N.2)=[{P<N: jP" +k— j = prime}|~

#) =TI(P-1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,1949 . From (2) and(3) we have

J,(0)=0 7

k=3,5,1949
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,1949 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,5,1949 )
(1) contain infinitely many prime solutions
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The New Prime theorem (1015)

P, jP* +k—j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51950

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1, k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu%o +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1950
such that each of /P + k= is a prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1950)" ¢" (@) log" N (¢,

7, (N.2)=[{P<N: jP* +k — j = prime}|~

) =11(P-1)
where P .
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

k=3,7,11,31,79,131,151,1951

Example 1. Let . From (2) and(3) we have

J,(@)=0

D
k=3,7,11,31,79,131,151,1951
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let K # 3 7:11,31,79,131,151,1951
From (2) and (3) we have
J,(w)#0 ()
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We prove that for K # 3 T-11,31,79,131,151,1951

(1) contain infinitely many prime solutions

The New Prime theorem (1016)

P, jP*" +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51952 .
Using Jiang function we prove that JP +k -J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P’jPI‘JSZ +k_j(j=13""k_1)'

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=T11[P-1-y(P

(@) =TI[P=1- 7(P)] o

w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*? +k-j]=0 (mod P),g =1,-,P-1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1952 .
such that each of /P + k= is a prime.

. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If /) (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 4k k
(1952)" ¢ (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~

Hw) =T1(P=1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,517.971 . From (2) and(3) we have

J,(0)=0 (7)

k=3,517,977

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17,977 .
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From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,5,17,977 )

(1) contain infinitely many prime solutions
The New Prime theorem (1017)

P,jP* +k—j(j=1,-,k=1)

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
Abstract

POt g

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 51954 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg** +k—j]=0 (modP),g =1,--,P~1
j=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1954 .
such that each of /P + k=7 is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(1954 ¢" (@) log" N,

7 (N.2)=[{P<N: jP* +k — j = prime||~

#0) =TI(P-1)

where

ﬂ-k(Nmz)Zl'

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

we prove that for k= 3,
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,

(1) contain infinitely many prime solutions
The New Prime theorem (1018)

P,jP” +k—j(j=1,--,k—=1)

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

P g

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 51956 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- y(P)]

(2
w=11P
where P, X (P) is the number of solutions of congruence
k-1
[ jg** +k-j]=0 (mod P),g =1,--,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1956 .
such that each of /P + k= is a prime.
. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
J,(w)#0 .
If then we have asymptotic formula [1,2]

J,(w)o"™ N
(1956) ' ¢* (@) log" N ¢,

7 (N.2)=|[{P<N: jP* +k— j = prime}|~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,57,13,653 . From (2) and(3) we have

J2(@) =0 €
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k=3,5,7,13,653
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,7,13,653 .
From (2) and (3) we have
J,(w)#0 (8)
We prove that for k#3,5,7,13,653 )

(1) contain infinitely many prime solutions

he New Prime theorem (1019)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

- 51958 ;
Using Jiang function we prove that JP k=] contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP* + k= j(j =1,k =1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[jq‘%* +k=j]=0 (mod P),q=1,-,P~1
/= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

9% p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k-1 1k k
(1958)" ¢"(w) log" N (¢,

7, (N,2) = HP <N P = prime}‘ ~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,23 . From (2) and(3) we have
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J,(0)=0 (7)

we prove that for k=3, 23,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k# 3’23.
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,23 )
(1) contain infinitely many prime solutions

The New Prime theorem (1920)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51960

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP + k= j(j =1 k=1) D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I11P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu%‘) +k=j]=0 (modP),q=1,-,P-1
J= (3
1t XP)SP=2 4o from (2) and (3) we have
J,(0)#0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 1960 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1960)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k - j = prime}|~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
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k=3,511,29,71,197,491

Example 1. Let . From (2) and(3) we have

J2(@) =0 €

k=3,511,29,71,197,491
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,11,29,71,197,491
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,1 1’29’71’1979491,

(1) contain infinitely many prime solutions

The New Prime theorem (1021)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j Pl 4 f j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP? + k= j(j=1,k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
nl[qu%z +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t X(P)SP=2 4o from (2) and (3) we have
Jy(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D192 p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1962)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP*? +k — j = prime||~

where o) = I;I(P b .
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7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,7,19 . From (2) and(3) we have
J,(0)=0 (7

we prove that for k=3,7.19 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,19 .
From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,7,19 )
(1) contain infinitely many prime solutions

The New Prime theorem (1022)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51964 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51964 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k—j]=0 (modP),g =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1964 .
such that each of /P + k= is a prime.
Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1964)" ¢"(w) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~
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#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,983 . From (2) and(3) we have
J,(0)=0 (7

we prove that for k=3,5,983 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,983 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,983 )
(1) contain infinitely many prime solutions

The New Prime theorem (1023)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j P66 | j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP + k= j(j =1 k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
Hl[qu%6 +k=j]=0 (modP),q=1,-,P-1
J= (3
1t X(P)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1966 .
such that each of /P + k=] is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
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J,(w)o"™ N
k-1 1k k
(1966)" ¢" (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime}|~

where o) = 11_’[(P D .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have
Jo(@) =0 )

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1024)

P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 51968 .
Using Jiang function we prove that J P +k_J contain infinitely many prime solutions and no prime
g g p y y p p

solutions.
Theorem. Let X bea given odd prime.
. 51968 .
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"* +k=j]=0 (mod P),qg =1, P~1
J=1 (3
1t XP)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

9 p
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
Jy(0)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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" J,(w)#0

then we have asymptotic formula [1,2]
J, (o)™ N
k=1 gk k
(1968)" ¢" (@) log" N (¢,

7,(N,2) =HPS N:jP"* +k—j :prime}‘ ~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,5,7,13,17,83 . From (2) and(3) we have

J2(@) =0 €
we prove that for k=3,57,13,17,83 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,7,13,17,83 .
From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,7,13,17,83 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1025)

P,jP"" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51970

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP" v k= j(j=1k=1) n
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq“m +k=j]=0 (modP),q=1,-,P-1
/= (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1970 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1970)" ¢ (@) log" N (¢,

7 (N,2)=|(P<N: jP° +k— j = prime}| ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=31 1. From (2) and(3) we have
J,(0)=0 (7

we prove that for k=31 1,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k=311 )
(3) contain infinitely many prime solutions

The New Prime theorem (1026)

P,jP°" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
PO i

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
solutions.
Theorem. Let X bea given odd prime.
P,jP" v k= j(j=1,k=1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[jq“m +k=j]=0 (modP),q=1,-,P-1
7= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

Dl f
such that each of /P + Jisa prime.
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Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 4k k
(1972)" ¢ (@) log" N (¢,

7 (N,2) =[{P<N: jP”” 4k~ j = prime|| ~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,59,1973 . From (2) and(3) we have

Jo(@) =0 @)

k= 3, 5’59’1973
we prove that for ’
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,559,1973 '
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,59,1973 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1027)

P, P + k= j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

- 51974 .
Using Jiang function we prove that JPT k=] contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
. 51974 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k—j]=0 (modP),g =1,--,P~1
J=1 (3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4
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We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

D\
such that each of /P + Jisa prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1974)" ¢ (@) log" N (¢,

7, (N.2)=[{P<N: jP™ +k — j = prime||~

Hw) =TI(P=1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3,7,43,283,659 . From (2) and(3) we have

Jo(@) =0 )
we prove that for k=3,7,43,283,659 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,43,283,659
From (2) and (3) we have
J,(w)#0 (8)
We prove that for k#3,7,43,283,659 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1028)

P,jP"" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P g
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
g g p y y p p
solutions.

Theorem. Let X bea given odd prime.
- 51976 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"" +k—j]=0 (modP),g =1,--,P~1
=1 (3)

1t X(P)SP=2 4o from (2) and (3) we have
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Jy(@)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

1976 f_
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 4k k
(1976)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP +k - j = prime}|~

Hw) =T1(P=1)

where

7, (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,5,53 . From (2) and(3) we have

J2(@) =0 €

we prove that for k=3,5,53 ’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,53 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,53 )
(1) contain infinitely many prime solutions

The New Prime theorem (1029)

P,jP°" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j Pl 4 j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P, jP "tk = j(j =1k =1) n
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- (P)]

(2
w=I1P
where P, X () is the number of solutions of congruence
=
H][qux +k—j} =0 (modP),q=1,---,P—1
: 3

258



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

i Z(P)SP-2
J,(w)#0

then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

Dl f
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(0)a"™ N
k=1 1k k
(1978)" 9" (w) log" N (¢,

7,(N,2) =HPS N:jP"" +k—j :prime}‘ ~

where o) = 11_’[(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=3,47,1979 . From (2) and(3) we have

J,(0)=0 (7

k=3,47,1979
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,47,1979 .
From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,47,1979 )

(1) contain infinitely many prime solutions

The New Prime theorem (1030)

P,jP*™ +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
. 51980
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* +k—j(j=1,k-1)
contain infinitely many prime solutio;ls and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T1[P-1- 7 (P)]

(D

@)
o=I1P

where P, X (P) is the number of solutions of congruence
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k-1
Hl[jqwso +k—j}50 (mod P),q =1,---,P—1

J=
£ X(P)SP-2
J,(w)#0

3
then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 1980 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(1980)" ¢ (w) log" N (¢,

7, (N.2)=[{P<N: jP*™ +k— j = prime}|~

) =11(P-1)
where P .
>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

E k=3,57,11,13,19,23,31,37,61,67,199,331,397
xample 1. Let

J,(w)=0

. From (2) and(3) we have

D
k=3,57,11,13,19,23,31,37,61,67,199,331,397
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,7,11,13,19,23,31,37,61,67,199,331,397
From (2) and (3) we have

J,(w)#0 (2)

We prove that for K # 35 7:11,13,19,23,31,37,61,67,199,331,397

(1) contain infinitely many prime solutions

The New Prime theorem (1031)

P, jP* +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

jpwsz iy

Using Jiang function we prove that J contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P,jP* +k—j(j=1,--,k=1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(D
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Jy(@)= TI[P—1- £(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[jq'm +k=j]=0 (modP),q=1,-,P-1
7= (3)
1t XP)SLP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

L
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1982)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP® +k — j = prime}|~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7)
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1032)

P, jP™ 4 k= j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

jP1984 iy

Using Jiang function we prove that J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
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- 51984 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg* +k—j]=0 (modP),g =1,--,P~1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
J, (@) #0 (4)
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1984 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k=1 1k k
(1984)" ¢ (w) log" N (¢,

7, (N.2)=[{P< N: jP*™ k= j = prime||~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=35, 17. From (2) and(3) we have

J2(@) =0 €
we prove that for k=35, 17,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17 .
From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,5,17 )
(1) contain infinitely many prime solutions

The New Prime theorem (1033)

P, jP* +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

262



Academia Arena 2016;8(3s) http://www.sciencepub.net/academia

. 1986
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 51986 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg™ +k—j]=0 (modP),qg =1,--,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1986 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(1986)" ¢" (@) log" N (¢,

7 (N.2)=[{P<N: jP* +k — j = prime||~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=3,7,1987 . From (2) and(3) we have

J2(@) =0 €

k=3,7,1987
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,7,1987 .

From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,7,1987 )
(1) contain infinitely many prime solutions

The New Prime theorem (1034)
P,jP* +k—j(j=1,--k=1)

Chun-Xuan Jiang
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Jiangchunxuan@vip.sohu.com

Abstract
. 1988
Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 151988 .o
PaJP +k—.](J=17"'ak_1)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k—j]=0 (mod P),qg =1, P~1
=1 (3)
1t XP)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P

IO
such that each of /P + Jisa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J, (o)™ N
k=1 1k k
(1988)" '¢"(w) log" N (¢,

7,(N,2) =HPS N:jP* +k—j :prime}‘ ~

#) =TI(P-1)

where

7 (Ny,2) 21

From (6) we are able to find the smallest solution

Example 1. Let k=35, 29. From (2) and(3) we have

J,(0)=0 7

we prove that for k=35, 29,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,29 .
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k#3,5,29 )
(1) contain infinitely many prime solutions

The New Prime theorem (1035)
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P, jP*" +k—j(j=1,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51990

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP* v k= j(j=1,k=1) O
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[jq‘”‘) +k=j]=0 (modP),q=1,-,P-1
7= (3)
1t XP)SP=2 4o from (2) and (3) we have
Jy(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 1990 .
such that each of /2 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1990)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime||~

#) =TI(P-1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=31 1. From (2) and(3) we have
J@)=0 »
we prove that for k=31 1,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,11 .
From (2) and (3) we have
J,(w)#0 ()

We prove that for k=311 )
(1) contain infinitely many prime solutions
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The New Prime theorem (1036)
P,jP*” +k—j(j=1,--,k=1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51992

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 151992 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"” +k—j]=0 (modP),qg =1,--,P~1
=1 (3)
1t XP)SP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1992 .
such that each of 7 +%7J isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
JZ (0)) = O (5 )

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1992)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime||~

#0) =TI(P-1)

where

From (6) we are able to find the smallest solution 7 (Ny,2) 21 .

Example 1. Let k=35, 7’13’167’499’997’1993. From (2) and(3) we have

J2(@) =0 €
k=3,5,7,13,167,499,997,1993

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let K #3:3,7,13,167,499,997,1993
From (2) and (3) we have
J,(w)#0 .
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We prove that for k#3,5,7,13,167,499,997,1993 ,

(1) contain infinitely many prime solutions

The New Prime theorem (1037)

P, jP™ + k= j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
P i
Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
g g p y y p p
solutions.

Theorem. Let X bea given odd prime.
- 51994 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=T[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg™* +k=j]=0 (modP),g =1,--,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1994 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If /) (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(1994)" ¢ (w) log" N (¢,

7 (N.2)=[{P<N: jP* +k— j = prime}|~

where o) = I;I(P b .

7 (Ny,2) 21

From (6) we are able to find the smallest solution
Example 1. Let k=3 From (2) and(3) we have

J2(@) =0 €

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3 .
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From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,
(1) contain infinitely many prime solutions

The New Prime theorem (1038)

P, jP™* +k=j(j =1,k =1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

P p i

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime
g g p y y P p

solutions.

Theorem. Let X bea given odd prime.

P, jP” +k—j(j=1-k=1)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P

(@) =TI[P~1- 7(P)] o

w=11P
where P, X (P) is the number of solutions of congruence
k-1
[ jg** +k-j]=0 (mod P),g =1,-,P-1
= 3
1t XP)SLP=2 4o from (2) and (3) we have
Jy(@)#0 4
We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes P
. 1996 :
such that each of /P + k= is a prime.

. - y(P)=P-1 T
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)a"™ N
k-1 1k k
(1996)" ¢" (@) log" N (¢,

7 (N.2)=[{P< N jP* +k— j = prime}|~

L o) =11(P=1)

whe

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3, 5’1997. From (2) and(3) we have

J2(@) =0 €

k=3,5,1997

we prove that for
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,1997 .

From (2) and (3) we have
J,(w)#0 (8)

We prove that for k#3,5,1997 )
(1) contain infinitely many prime solutions

The New Prime theorem (1039)

P, jP* k- j(j=1-,k-1)
Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract
. 51998

Using Jiang function we prove that J
solutions.

+k—j

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 151998 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k=j]=0 (mod P),g =1, P~1
Jj=1 (3
1t X(P)SLP=2 4o from (2) and (3) we have
J(0)#0 4

We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
. 1998 .
such that each of 7 +% 7/ isa prime.

Using Fermat’s little theorem from (3) we have x¥(P)=P-1 . Substituting it into (2) we have
J2(@)=0 (s)
We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J,(0)o"™ N
k-1 1k k
(1998)" 9" () log" N (¢,

7, (N,2) = HP <N P = prime}‘ ~

#) =TI(P-1)

where

>
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,7,19,223,1999 . From (2) and(3) we have
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J,(w)=0

D
k=3,7,19,223,1999

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Lot ¥ 7 3:7:19,223,1999.

From (2) and (3) we have

J,(w)#0 ()

We prove that for k#3,7,19,223,1999 )

(1) contain infinitely many prime solutions
The New Prime theorem (1040)

P, jP* +k—j(j=1,,k-1)

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com
Abstract

P00 | p

Using Jiang function we prove that J J contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
- 152000 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- (P)]

(2)
w=11P
where P, X (P) is the number of solutions of congruence
k-1
M| jg*" +k-j]|=0 (mod P),g =1,---,P~1
= 3
1t XP)SP=2 4o from (2) and (3) we have
Jy(@)#0 4
We prove that (1) contain infinitely many prime solutions that is for any K there are infinitely many primes P
- 2000 .
such that each of /P + k= is a prime.
. - y(P)=P-1 e
Using Fermat’s little theorem from (3) we have . Substituting it into (2) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N
(2000) "' ¢* (@) log" N (4,

7 (N2)=[{P<N: jP™ +k = j = prime]| ~
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Hw) =T1(P=1)

where
From (6) we are able to find the smallest solution 7 (Ny,2) 21 .
Example 1. Let k=3,1117,41,101,251,401 . From (2) and(3) we have

J2(@) =0 €

we prove that for k=31 1’17’41’101’251’401,

(1) contain no prime solutions. 1 is not a prime.

Example 2, Let K # 311,17,41,101,251,401

From (2) and (3) we have

J,(w)#0 (2)

We prove that for k#3,11,17,41,101,251,401 ,

(1) contain infinitely many prime solutions

Jn+1 (0))

Remark. The prime number theory is basically to count the Jiang function and Jiang prime k -tuple

o(J) = Jz(f))a)kfl =H(1 1+;((P)j(l 1)
singular series ¢ (@) P P P

[1,2], which can count the number of prime

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series

a(H)zl;I( V(P)J(l Ly

P is false [3-17], which cannot count the number of prime numbers[3].
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Chun-Xuan Jiang

Jiang’s function in prime distribution

P. O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@yvip.sohu.com
Dedicated to the 30-th anniversary of hadronic mechanics

Abstract
We define that prime equations
fi(Pl”}Z)”f;{(Pl’}Z) (5)
o o . PP . o
are polynomials (with integer coefficients) irreducible over integers, where " are all prime. If Jiang’s
function e l(a)) =0 then (5) has finite prime solutions. If e l(a)) #0 then there are infinitely many primes
LTREN such that fl o fk are primes. We obtain a unite prime formula in prime distribution

Zpa(Non+ 1) =|{B,+-,B, <N f,,+-, f, are k primes}|

k k n
[ (@egsy! xTonl@e N
i=1 nl¢g"™"(w) log"™" N (8)

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6].
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough
to be useful.

(1+o0(1)).

Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every
reason to believe that there are some mysteries which the human mind will never penetrate.

Leonhard Euler

1t will be another million years, at least, before we understand the primes.

Paul Erdos
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Suppose that Euler totient function

#w) =T (P-D)=c0

s W0, (D
w=I1P
where 2P s called primorial.
Suppose that( @, ) = Where P(@) . We have prime equations
R:a)n+l,--~,P¢(w)—a)n+h¢(w) (2)
n=0,1,2,
where

(2) is called 1nﬁn1tely many prime equations (IMPE). Every equation has infinitely many prime solutions.
We have

7z(N)
= 1+o(1
T, > o )( +o(1)).

i

P<N
P=h; (mod ) (3)
T ) < ) = . = .
where ~ % denotes the number of primes F<N in F=an+h n=0,12, , 7(N) the number of

primes less than or equal to N

We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in
prime distribution.

Let @ =30 and #(30)=8 . From (2) we have eight prime equations
B =30n+1 P, =30n+7 P, =30n+l11 P, = 30n+13 P = 30n+17

P = 30n+19 P = 30n+23 B = 30n+29 n=0,12,-

D)
Every equation has infinitely many prime solutlons.
THEOREM. We define that prime equations
fi(})l”})n)”f;{(})l”})n) (5)

are polynomials (with integer coefficients) irreducible over integers, where B
function Spr(@)=0

ok such that each Je is a prime.
PROOF. Firstly, we have Jiang’s function [1-11]

Ja(@)=TI[(P-1)" - (P)]
. ’ (6)
where £ (P) is called sieve constant and denotes the number of solutions for the following congruence
k
I f(qy+q,)=0 (mod P)
B ’ &
where @1 =1,---,P-1,---,q, :1’...’p_1'

J”“(w) denotes the number of sets of Pl’m’P”

S(Byes By fi(Boros B)

>*n are primes. If Jiang’s

then (5) has finite prime solutions. If Sy (@) =0 then there exist infinitely many primes

prime  equations such  that

are prime equations. If e 1(0)) 0 then (5) has finite prime solutions. If

nt 1(0)) 0 using x(P) we sift out from (2) prime equations which can not be represented it n, then

residual prime equations of (2) are By, prime equations such that KB B fi(Byo B

prime equations. Therefore we prove that there exist

S(Bes By fi(Byees B)

infinitely many primes LT such that

are primes.
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Secondly, we have the best asymptotic formula [2,3,4,6]
7, (N,n+1) =|{Pl,--~,Pn SN:f,, f,arek primes}|

k k n
— H (deg](;)—l ~ Jn+llga))a) ]Z[
i n!¢""(w) log"™" N

(1+o(1)).

(8)
(8) is called a unite prime formula in prime distribution. Let n=Lk=0 , £ (@) = p(w)
have prime number theorem

. N
7, (N,2) = le <N:Bis pnme}‘ =@(l+0(1)).

. From (8) we

9

Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this
old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by
this theorem.

Example 1. Twin primes P,P+2 (300BC).
From (6) and (7) we have Jiang’s function

Jy(@)=T1(P=2)%0
J,(w)#0 '

Since in (2) exist infinitely many P prime equations such that P+2 s a prime equation.

Therefore we prove that there are infinitely many primes P suchthatP+2 isa prime.

Let @ =30 and £ (30)=3 . From (4) we have three P prime equations
P, =30n+11, P =30n+17, £ =30n+29

From (8) we have the best asymptotic formula

7,(N,2) =[{P< N+ P+2 prime]| = 2222 _N

¢’ (o) log" N

1 N
- 23%[1— T j Y (1+o0(1)).

In 1996 we proved twin primes conjecture [1]

(1+o(1))

2N _(1+o)
Remark. £ (@) denotes the number of P prime equations, ¢ (@) log" N the number of
solutions of primes for every P prime equation.
N=F+P,

Example 2. Even Goldbach’s conjecture 2. Every even number N 26 s the sum of two primes.

From (6) and (7) we have Jiang’s function

P
J(w)=T1(P-2)1I 0
3<p PIN P—
Since Jo(@)#0 as N =0 iy (2) exist infinitely many A prime equations such that N-K is a prime

equation. Therefore we prove that every even number N 26 s the sum of two primes.
From (8) we have the best asymptotic formula

7,(N,2)=|{R < N,N - P, prime}| = J(@w N

¢’ (w) log" N

(1+o(1)).
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zzg[l ! jnp_l NN(1+0(1))

(P-1)* )PV P—2 log’
In 1996 we proved even Goldbach’s conjecture [1]
Example 3. Prime equations P,P+2,P+6 .

From (6) and (7) we have Jiang’s function
Jy(@) = [I(P=3)#0

>

Jz (@) is denotes the number of P prime equations such that P+2 and P+ 6 are prime equations. Since
p q

£ (@) #0 in (2) exist infinitely many P prime equations such that P+2 and P+6 e prime equations.

Therefore we prove that there are infinitely many primes P such that P+2 and P+0 are primes.

Ly @=30, J,(30)=2

. From (4) we have two P prime equations
P, =30n+11, P =30n+17
From (8) we have the best asymptotic formula

Jy,(w)o®> N
¢’ (w) log’ N

7,(N,2) = |{P <SN:P+2,P+6are primes}| = (1+o(1)).

Example 4. Odd Goldbach’s conjecture N=R+h+H
From (6) and (7) we have Jiang’s function

p— 2_ _—1
Ji(@)=11(P 3P+3))11:]Iv(1 — _3P+3j¢0

. Every odd number N 29 s the sum of three primes.

Since J3 (@) #0 a
N-FE-P,

2 is a prime equation. Therefore we prove that every odd number N 29 s the sum of three primes.
From (8) we have the best asymptotic formula

s N>y (2) exist infinitely many pairs of A and F prime equations such that

Jy(w)o N°
24’ (w) log’ N

1 1 N*?
=T l+—— [[T| 1-— — (1+0(1))
3<P (P-1)" )ov P’ -3P+3)log’ N

Example 5. Prime equation B =RpE+2 .
From (6) and (7) we have Jiang’s function

J3(a)):313D(P2—3P+2)¢0

7,(N,3)=|{B,P, <N :N-P - P, prime}| = (1+o(1))

. P P . . P . . . .
/5 (@) denotes the number of pairs of “! and ~ 2 prime equations such that ~3 is a prime equation. Since

Jy(@)#0

. R : P P . . P . . .
in (2) exist infinitely many pairs of "1 and ~ 2 prime equations such that ~3 is a prime equation.

Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula

Jy(w)o N°
4¢’(w) log’ N

7,(N,3)=|[{B,P, < N : BP, +2 prime}| = (1+o(1)).

Note. deg (PIPZ) =2 .
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_p3 3
Example 6 [12]. Prime equation B=F+2F .

From (6) and (7) we have Jiang’s function

Jy(@)= [ (P=1) = z(P)] %0

<P
L} Ll
where X(P)=3(P—1) ;¢ 2 3 =1(mod P) : x(P)=0 27 #l(modP) : X(P)=P=1 4 i
Since T2 (@) #0 o P P . P. .
ince in (2) there are infinitely many pairs of ~ ! and ~ 2 prime equations such that 1S a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and P such that l is a prime.
From (8) we have the best asymptotic formula

Jy(@)w N°
6¢° (@) log® N

7,(N3)=|[{P.P, < N: P + 2P, prime}| = (1+o(1)).

_ p4 2
Example 7 [13]. Prime equation B=R+(F+]) .
From (6) and (7) we have Jiang’s function

Jy(@)=TL[(P=1) = 2(P)]#0

<P
where £(P)=2(P=1) ., P=1(mod4) : x(P)=2(P-3) ., P=1(mod8) : XP)=0 4 wise.
Since /5 (@)#0 in (2) there are infinitely many pairs of A and F prime equations such that l is a prime

equation. Therefore we prove that there are infinitely many pairs of primes A and F such that lE is a prime.
From (8) we have the best asymptotic formula

2
S@o NT_ oy,
8¢ (w) log” N
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of
length k.
P.P,=PR+d,P,=F+2d, P, =R +(k-1d.(B,d)=1
From (8) we have the best asymptotic formula

7,(N.2)={{P, <N:B,P, +d, P +(k —1)d are primes}|

7[2(]\7,?)):‘{1)1,}3‘2 <N:P, prime}‘ =

QL))

J(0)o™ N
= 2(k ) — (1 +o0(1)).
¢ () log' N
If Jy(@)=0 then (10) has finite prime solutions. If Jy(@) %0 then there are infinitely many primes ~!

such that LT are primes.
To eliminate ¢ from (10) we have

P=2P,~B, P =(j-DP-(j-2)P.3<j<k

From (6) and (7) we have Jiang’s function

Jy(@)= T (P=) II(P=1)(P—k+1)#0
Jy(@)#0

in (2) there are infinitely many pairs of A and F prime equations such that IR are

..’B{

Since

. . e : . P P, P,
prime equations. Therefore we prove that there are infinitely many pairs of primes ~ ! and ~ 2 such that™ 3’
are primes.

From (8) we have the best asymptotic formula
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7, (N.3)=[{B,P, < N:(j—DP,—(j—2)P, prime,3 < j < k}}|
k-2 2 1 Pk—Z Pk—Z P_ 1 N2
e N oy =2 g PP N
2¢" (w) log" N 22<P<k (P—1)"" k<P (P-1) log" N

P,P+2,P+2*

(1+o0(1))

Example 9. It is a well-known conjecture that one of is always divisible by 3. To generalize

above to the K — primes, we prove the following conjectures. Let 77 be a square-free even number.

N P,P+n,P+n’
3(n+1)

b
where

— 2
From (6) and (7) we have /,(3)=0 , hence one of P,P+nP+n is always divisible by 3.
» P.P+n,P+n’,--,P+n'

where 5|(n+b),b=2,3.

_ 5 .y
From (6) and (7) we have JZ(S)_O,henceoneofP’P+”ap+n ,oo,P+n

is always divisible by 5.
3 P.P+n,P+n’,-,P+n’
7|(n+b),b=2,4.
where |( )
— 2 6
From (6) and (7) we have S,(N=0 , hence one of P,P+n,P+n’, -, P+n is always divisible by 7.

4 P.P+n,P+n’, P+n”
|(n+b),b=3,4,5,9.
From (6) and (7) we have S, =0
s P,P+n,P+n’,--,P+n"

. 13|(n+6),6=2,6,7,11.

wher

P,P+n,P+n’,---,P+n"

, hence one of is always divisible by 11.

wher
— 2

From (6) and (7) we have J2(13)_O,hence one of P,P+n,P+n,,P+n

¢ P, P+n,P+n’, - P+n'

17| +b),0=3,5,6,7,10,11,12,14,15.

From (6) and (7) we have J,(17)=0

5 P,P+n,P+n’,--,P+n"

. 19|(n+b),b=4,5,6,9,16.17.

From (6) and (7) we have J,(19)=0

Example 10. Let 77 be an even number.

1 P,P+ni,i:1,3,5,--~,2k+1
J,(w)#0

is always divisible by 13.

wher

P,P+n,P+n’,---,P+n'"

, hence one of is always divisible by 17.

wher

P,P+n,P+n’,--,P+n"

, hence one of is always divisible by 19.

From (6) and (7) we have

P,P+n are primes for anyk.
) P,P+n',i=2,4,6,--,2k

. Therefore we prove that there exist infinitely many primes P such that
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J,(w)#0

From (6) and (7) we have . Therefore we prove that there exist infinitely many primes P such that

P,P+n

are primes for any k.

Example 11. Prime equation 2PZ - Pl + P3
From (6) and (7) we have Jiang’s function

J3(a))=3<1'£(P2—3P+2)¢0
Jy(@)#0 .

Since in (2) there are infinitely many pairs of A and B prime equations such that l is prime

equations. Therefore we prove that there are infinitely many pairs of primes A and F such that B is a prime.
From (8) we have the best asymptotic formula

Ji(w)o N?
2¢° (o) log’ N

7,(N.,3)=|{R.B, <N : P, prime}| = (1+o(1)).

2P} =P, +P, 420. . , .
In the same way we can prove = ? 3ot 6. Chun-Xuan Jiang, Foundations of Santilli’s
which has the same Jiang’s function. isonmuber theory with applications to new
Jiang’s function is accurate sieve function. Using cryptograms, Fermat’s theorem and Goldbach’s
it we can prove any irreducible prime equations in conjecture, Inter. Acad. Press, 2002, MR2004c:
prime distribution. There are infinitely many twin 11001, http://www.i-b-r.org/jiang.pdf
primes but we do not have rigorous proof of this old 7. Chun-Xuan Jiang,Prime theorem in Santilli’s
conjecture by any method [20]. As strong as the isonumber theory, 19(2002), 475-494.
numerical evidence may be, we still do not even know 8. Chun-Xuan Jiang, Prime theorem in Santilli’s
whether there are infinitely many pairs of twin primes isonumber theory (II), Algebras Groups and
[21]. All the prime theorems are conjectures except the Geometries, 20(2003), 149-170.
prime number theorem, because they do not prove the 9.  Chun-Xuan Jiang, Disproof’s of Riemann’s
simplest twin primes. They conjecture that the prime hypothesis, Algebras Groups and Geometries,
distribution is randomness [12-25], because they do not 22(2005), 123-136. http:/www.i-b-
understand theory of prime numbers. r.org/docs/Jiang Riemann.pdf
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Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime k.

tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple conjecture.

(A) Jiang prime k -tuple theorem [1, 2].
We define the prime k -tuple equation

p-ptn (D
An,i=1,k—1
where | ! .
we have Jiang function [1, 2]
J(o)=11(P-1-y(P
(@) =TI(P=1-7(P)) o
w=11P
where P x(P) is the number of solutions of congruence
k-1
I[I(g+n)=0 (modP
(g +n) ( )’q=1,---,p—1. .
it X (P)<P-1 then £ (@) #0 . There exist infinitely many primes P such that each of & is prime.
if £ (P)=r-1 then £ (@) =0 . There exist finitely many primes P such that each of & is prime.

J2 (w) is a subset of Euler function ¢(a)) [2].
" J,(w)#0

7[,{(N,2)=HPS N:P+n, :prime}‘ ~

, then we hae the best asymptotic formula of the number of prime P [1,2]
J, (o)™

N N
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#0) =TI(P-1).

Clk) = H(l—wj (1—%
, P

P (5)

Example 1. Let k=2,P,P+2
From (3) we have
2(2)=0, ;((P)=1ifp>2’ (6)
Substituting (6) into (2) we have
Jy(@)=T1(P=2) %0

, twin primes theorem.

7

There exist infinitely many primes P such that P+2 is prime. Substituting (7) into (4) we have the best
asymptotic pormula

1 N
7, (N,2)=fP<N:P+2=prime;|~211(1- .
(M2) = primel] =211 -1 Tog N (8

Example 2. Let k=3, P’P+2’P+4.

From (3) we have

2(2)=0, x(3)=2 9)

From (2) we have

S (@) =0 (10)

It has only a solution P:3, P+2:5, P+4=T 0Oneof P, P+2,P+4 is always divisible by 3.
Example 3. Let k=4, P’P+n,where n =2’6’8.

From (3) we have
2(2)=0,7Q)=L ¥(P)=3 ;P>3 an
Substituting (11) into (2) we have
Jy(@) = TL(P=4)#0

) (12)
There exist infinitely many primes P such that each of P +7 is prime.
Substituting (12) into (4) we have the best asymptotic formula
, 27 P (P-4 N
7z4(N,2)=‘{PSN:P+n=przme}‘~—1‘[ ( 4) :
3 r5 (P-1)" log' N (13)

Example 4. Let k=5 , P, P+n , where n=2,6,8,12 .
From (3) we have
2(2)=0,7Q)=1 () =3, (P)=4 4, P>5 (14
Substituting (14) into (2) we have
Jy(w)=T1(P-5)#0
()= T1(P-5) o
There exist infinitely many primes P such that each of P +7 is prime. Substituting (15) into (4) we have the
best asymptotic formula
15 _(P-5P" N
7[5(N,2)=‘{P£N:P+n=prime}‘~TH( )5 .
20 P21 (P-1) log’ N (16)

Example 5. Let k=06 , P, P+n , where n= 27678712314'
From (3) and (2) we have
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Z(2)=O, 1(3)=1a Z(S)=4’ J2(5)=0 a7
It has only @ solution £ =3 P+2=7 P+6=11 P+8=13 P+12=17 P+14=19 Ope of
P+n i always divisible by 5.

(B) The Hardy-Littlewood prime k -tuple conjecture[3-14].
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999).

We define the prime k -tuple equation
P,P+n,

QD)
where 2|n[’l =1,...,k_1'
In 1923 Hardy and Littlewood conjectured the asymptotic formula
N
7, (N,2)=[{P<N:P+n, = prime}|~ H(k)—
log" V. (19
where
—k
P 1
H(k) :H(l— W )j(l——j
i P P (20)

v(P) is the number of solutions of congruence

k-1
M(g+n)=0 (modP) 4y . p o
v(P)<P _ H(k)#0

From (21) we have . For any prime k -tuple equation there exist infinitely many

primes P such that each of P +n is prime, which is false.
Conjectore 1. Let k=2,P,P+2
Frome (21) we have

, twin primes theorem

v(p)=1 (22)
Substituting (22) into (20) we have
HQ2)=T1 P

PP-1 (23)
Substituting (23) into (19) we have the asymptotic formula

P
7,(N,2)=[{P<N:P+2= prime}|~ 1— ]\,f
P P-1log" N (24)
which is false see example 1.
Conjecture 2. Let k=3,P,P+2,P+ 4.
From (21) we have
v(2)=1, V(P)=2ifp>2 (25)
Substituting (25) into (20) we have
P*(P-2

HE)=4n 2 L=2

PP (26)

Substituting (26) into (19) we have asymptotic formula

2 —
7z3(N,2)=‘{PSN:P+2=prime,P+4:prim}‘~4HP(P 32) ]\3]
P (P=1)" log' N (57

which is false see example 2.
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Conjecutre 3. Let k= 4, P, P+n , where
From (21) we have

V(2)=17 V(3)=27 V(P):3 1fP>3
Substituting (28) into (20) we have
3 —
H (4) = 2 11 w
2 P3 (P-1)

n=2,6,8'

Substituting (29) into (19) we have asymptotic formula

7z4(N,2)=HPSN:P+n=prime} ~=TI

Which is false see example 3.

Conjecture 4. Let k=5, P,P+n
From (21) we have

v(2)=1 v(@B)=2, v(5)=3, v(P)=4 ;P

, where

Substituting (31) into (20) we have
15 _ P* (P-4
H(5)= — 11 —( S )
4 p>s (P-1)

n=2,6,8,12

>5

Substituting (32) into (19) we have asymptotic formula
15 __P'(P-4) N

7[5(N,2)=|{PSN:P+n=prl’me}|~—H

Which is false see example 4.

Conjecutre 5. Let k= 6, P, P+n,where n=2,6,8,12,14'

From (21) we have

v(2)=1v(@B)=2, v(5)=4, v(P)=5 ;P>5

Substituting (34) into (20) we have
15° P-5P°
H(6)=— H—( )6
27 P>5 ( P— 1)

Substituting (35) into (19) we have asymptotic formula

7[6(N,2)=‘{P£N:P+n=prime}‘~—l‘[

(28)
(29)
27 _P*(P-3) N
2 73 (P=1)" log" N (50
1)
(32)
45 P>5 (P_l)5 IOgSN (33)
(34)
(35)
15> _(P-5)P° N
22 s (P=1)° log® N (36)

which is false see example 5.

Conclusion.

The Hardy-Littlewood prime k -tuple
conjecture is false. The tool of addive prime number
theory is basically the Hardy-Littlewood prime tuples

conjecture. Jiang prime k -tuple theorem can replace

Hardy-Littlewood prime k -tuple Conjecture. There
cannot be really modern prime theory without Jiang
function.
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