New prime k－tuple theorem（2）
 $$
P, P+j(j+1)(j=1, \cdots, k)
$$

Jiang，Chunxuan（蒋春暄）

Institute for Basic Research，Palm Harbor，FL34682－1577，USA
And：P．O．Box 3924，Beijing 100854，China（蒋春暄，北京 3924 信箱，100854）
jiangchunxuan＠sohu．com，cxjiang＠mail．bcf．net．cn，jcxuan＠sina．com，Jiangchunxuan＠vip．sohu．com， jcxxxx＠163．com

Abstract：Using Jiang function we prove that for every positive integer k there exist infinitely many primes P such that each of $P+j(j+1)$ is prime．
［Chun－Xuan Jiang．New prime k－tuple theorem（2）$P, P+j(j+1)(j=1, \cdots, k)$ ．Academ Arena 2016；8（2s）：
3－4］．（ISSN 1553－992X）．http：／／www．sciencepub．net／academia．2．doi：10．7537／marsaaj0802s1602．
Keywords：new；prime；k－tuple；theorem；Jiang Chunxuan；mathematics；science；number；function

Theorem．

$$
\begin{equation*}
P, P+j(j+1)(j=1, \cdots, k) \tag{1}
\end{equation*}
$$

For every positive integer k there exist infinitely many primes P such that each of $P+j(j+1)$ is prime．
Proof．We have Jiang function［1，2，3］
$J_{2}(\omega)=\prod_{P}[P-1-\chi(P)]$,
$\prod_{j=1}^{k}[q+j(j+1)] \equiv 0 \quad(\bmod P)$,
where $q=1, \cdots, P-1$ ．
From（3）we have
If $P<2 k$ then $\chi(P)=\frac{P-1}{2}$ ，If $2 k<P$ then $\chi(P)=k$ ．
From（3）and（2）we have．

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P=3}^{P<2 k} \frac{P-1}{2} \prod_{2 k<P}(P-1-k) \neq 0 \tag{4}
\end{equation*}
$$

We prove that for every positive integer k there exist infinitely many primes P such that each of $P+j(j+1)$ is prime．

We have the asymptotic formula $[1,2,3]$

$$
\pi_{k+1}(N, 2)=\mid\{P \leq N: P+j(j+1)=\text { prime }\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega^{k}}{\phi^{k+1}(\omega)} \frac{N}{\log ^{k+1} N}\right.
$$

$$
\begin{align*}
& \text { where } \omega=\prod_{P} P \tag{2}\\
& \chi(P) \text { is the number of solutions of congruence }
\end{align*}
$$

,
where $\phi(\omega)=\prod_{P}(P-1)$ ．
Note Let $P=11,11+j(j+1)(j=1, \cdots, 9)$ are all prime．
Let $P=41,41+j(j+1)(j=1, \cdots, 39)$ are all prime．
Example 1．Let $k=1, P, P+2$ ，twin primes theorem．

From (4) we have

$$
\begin{equation*}
J_{2}(\omega)=\prod_{3 \leq P}(P-2) \neq 0 \tag{6}
\end{equation*}
$$

We prove twin primes theorem. There exist infinitely many primes P such that $P+2$ is prime. From (5) we have the best asymptotic formula

$$
\begin{equation*}
\pi_{2}(N, 2) \sim 2 \prod_{3 \leq P}\left(1-\frac{1}{(P-1)^{2}}\right) \frac{N}{\log ^{2} N} \tag{7}
\end{equation*}
$$

Exampe 2. Let $k=2, P, P+2, P+6$.
From (4) we have
$J_{2}(\omega)=\prod_{5 \leq P}(P-3) \neq 0$
We prove that there exist intinitely many primes P such that $P+2$ and $P+6$ are all prime. From (5) we have the best asymptotic formula

$$
\begin{equation*}
\pi_{3}(N, 2) \sim \frac{9}{2} \prod_{5 \leq P} \frac{P^{2}(P-3)}{(P-1)^{3}} \frac{N}{\log ^{3} N} \tag{9}
\end{equation*}
$$

Example 3. Let $k=6, P, P+j(j+1)(j=1, \cdots, 6)$
From (4) we have

$$
\begin{equation*}
J_{2}(\omega)=30 \prod_{13 \leq P}(P-7) \neq 0 \tag{10}
\end{equation*}
$$

We prove that there exist infinitely many primes P such that each of $P+j(j+1)$ is prime.
From (5) we have the best asymptotic formula

$$
\begin{equation*}
\pi_{7}(N, 2) \sim \frac{1}{16}\left(\frac{231}{48}\right)^{6} \prod_{13 \leq P} \frac{(P-7) P^{6}}{(P-1)^{7}} \frac{N}{\log ^{7} N} \tag{11}
\end{equation*}
$$

The author takes a day to write this paper.

References

1. Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. (http://www wbabin.net/math/xuan2.pdf)(http://vixra.org/pdf/0812.0004v2.pdf).
2. Chun-Xuan Jiang, The Hardy-Littlewood prime k-tuple conjecture is false. http:// www.wbabin.net/math/xuan77.pdf. This conjecture is generally believed to be true, but has not been proven (Odlyzko et al. 1999).
3. Chun-Xuan Jiang, New prime k-tuple theorem (1), http://www.wbabin.net/math/ xuan78.pdf http://wbabin.net/xuan.htm\#chun-xuan

Remark. Cramér's random model of prime theory is false.
Example. Assming that the events " P is prime" and " $P+2$ and $P+4$ are primes" are independent, we conclude that $P, P+2$ and $P+4$ are simultaneously prime with probability about $1 / \log ^{3} N$. There are about $N / \log ^{3} N$ 3-tuple prime less than N. Letting $N \rightarrow \infty$ we obtain the 3-tuple conjecture which is false.

