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Abstract: Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the 
Book proof. No great mathematicians study prime problems and prove Riemann hypothesis in AIM, CLAYMI, IAS, 

THES, MPIM, MSRI. In this paper using Jiang function 2 ( )J 
 we prove that the new prime theorems (891)-（940) 

contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest solution 

0( , 2) 1k N 
. This is the Book theorem. 
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It will be another million years, at least, before we understand the primes. 
Paul Erdos (1913-1996) 

The New Prime theorem（891） 
 

1702, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1702jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1702, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1702

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1702jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1702 2
1

( )
( ,2) : ~

(1702) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3, 47k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3, 47k   
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 47k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3, 47k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（892） 
 

1704, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1704jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1704, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1704

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1704jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 
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2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1704 2
1

( )
( ,2) : ~

(1704) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,853k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,853k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,853k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,853k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（893） 
 

1706, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1706jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1706, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1706

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 
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P  such that each of 
1706jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1706 2
1

( )
( ,2) : ~

(1706) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（894） 
 

1708, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1708jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1708, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1708

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1708jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1708 2
1

( )
( ,2) : ~

(1708) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,29,1709k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,29,1709k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5, 29,1709k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5, 29,1709k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（895） 
 

1710, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1710jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1710, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1710

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1710jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1710 2
1

( )
( ,2) : ~

(1710) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,11,19,31,191,571k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,11,19,31,191,571k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,19,31,191,571k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,11,19,31,191,571k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（896） 
 

1712, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1712jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1712, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1712

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 
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If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1712jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1712 2
1

( )
( ,2) : ~

(1712) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,17,857k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,17,857k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17,857k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17,857k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（897） 
 

1714, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1714jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1714, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 
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1
1714

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1714jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1714 2
1

( )
( ,2) : ~

(1714) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（898） 
 

1716, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1716jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1716, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P 
，

( )P
 is the number of solutions of congruence 

1
1716

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1716jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1716 2
1

( )
( ,2) : ~

(1716) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,53,67,157,859k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,53,67,157,859k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,53,67,157,859k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,53,67,157,859k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（899） 
 

1718, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1718jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1718, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1718

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1718jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1718 2
1

( )
( ,2) : ~

(1718) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 

 
The New Prime theorem（900） 

 
1720, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1720jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1720, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1720

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1720jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1720 2
1

( )
( ,2) : ~

(1720) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,11, 41,431,1721k 

 
. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11, 41,431,1721k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,11, 41, 431,1721k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,11, 41, 431,1721k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（901） 
 

1722, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1722jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 



 Academia Arena 2016;8(1s)          http://www.sciencepub.net/academia 

 

709 

1722, ( 1, , 1)P jP k j j k    .               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1722

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1722jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1722 2
1

( )
( ,2) : ~

(1722) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7, 43,83,1723k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7, 43,83,1723k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7, 43,83,1723k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7, 43,83,1723k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（902） 
 

1724, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1724jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 
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Theorem. Let k  be a given odd prime. 
1724, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1724

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1724jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1724 2
1

( )
( ,2) : ~

(1724) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,863k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,863k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,863k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,863k  ， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（903） 

 
1726, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1726jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1726, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1726

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1726jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1726 2
1

( )
( ,2) : ~

(1726) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（904） 
 

1728, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
1728jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1728, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1728

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1728jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1728 2
1

( )
( ,2) : ~

(1728) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,17,19,37,73,97,109,433k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,17,19,37,73,97,109,433k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,17,19,37,73,97,109, 433k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,19,37,73,97,109, 433k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（905） 
 

1730, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1730jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1730, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1730

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1730jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1730 2
1

( )
( ,2) : ~

(1730) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11,347k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,347k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,347k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11,347k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（906） 
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1732, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1732jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1732, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1732

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1732jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1732 2
1

( )
( ,2) : ~

(1732) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,1733k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,1733k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,1733k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,1733k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（907） 
 

1734, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1734jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1734, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1734

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1734jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1734 2
1

( )
( ,2) : ~

(1734) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,103k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,103k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,103k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,103k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（908） 
 

1736, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1736jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1736, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1736

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1736jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1736 2
1

( )
( ,2) : ~

(1736) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5, 29k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5, 29k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,29k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 
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We prove that for 
3,5,29k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（909） 

 
1738, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1738jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1738, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1738

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1738jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1738 2
1

( )
( ,2) : ~

(1738) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3, 23k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3, 23k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3, 23k 

. 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 
3, 23k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（910） 

 
1740, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1740jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1740, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1740

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1740jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1740 2
1

( )
( ,2) : ~

(1740) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,11,13,31,59,61,349,1741k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,11,13,31,59,61,349,1741k 

, 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 
3,5,7,11,13,31,59,61,349,1741k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,11,13,31,59,61,349,1741k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（911） 
 

1742, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1742jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1742, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1742

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1742jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1742 2
1

( )
( ,2) : ~

(1742) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（912） 
 

1744, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1744jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1744, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1744

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1744jp +

k j
 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1744 2
1

( )
( ,2) : ~

(1744) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,17k  . From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,17k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（913） 
 

1746, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1746jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1746, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1746

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1746jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1746 2
1

( )
( ,2) : ~

(1746) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 
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Example 1. Let 
3,7,19,1747k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,19,1747k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,7,19,1747k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,19,1747k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（914） 
 

1748, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1748jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1748, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1748

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1748jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1748 2
1

( )
( ,2) : ~

(1748) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 
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From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5, 47k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5, 47k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,47k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,47k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（915） 

 
1750, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1750jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1750, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1750

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1750jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1750 2
1

( )
( ,2) : ~

(1750) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 
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where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,11,71, 251k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,71, 251k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,11,71, 251k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,11,71, 251k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（916） 
 

1752, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1752jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1752, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1752

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1752jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 
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1

1752 2
1

( )
( ,2) : ~

(1752) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13, 293,1753k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13, 293,1753k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13, 293,1753k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13, 293,1753k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（917） 
 

1754, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1754jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1754, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1754

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1754jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1754 2
1

( )
( ,2) : ~

(1754) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（918） 
 

1756, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1756jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1756, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1756

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1756jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1756 2
1

( )
( ,2) : ~

(1756) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（919） 
 

1758, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1758jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1758, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1758

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1758jp

+
k j

 is a prime. 
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Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1758 2
1

( )
( ,2) : ~

(1758) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7,1759k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,7,1759k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,1759k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,1759k  ， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（920） 

 
1760, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1760jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1760, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1760

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 
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P  such that each of 
1760jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1760 2
1

( )
( ,2) : ~

(1760) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,11,17,23, 41,89,353,881k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,11,17,23, 41,89,353,881k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,11,17,23, 41,89,353,881k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,11,17,23, 41,89,353,881k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（921） 

 
1762, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1762jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1762, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1762

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 
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We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1762jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1762 2
1

( )
( ,2) : ~

(1762) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（922） 

 
1764, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1764jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1764, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1764

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 
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2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1764jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1764 2
1

( )
( ,2) : ~

(1764) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,19, 29,37,43,127,883k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,7,13,19, 29,37,43,127,883k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,19, 29,37,43,127,883k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,13,19, 29,37,43,127,883k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（923） 
 

1766, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1766jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1766, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 
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1
1766

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1766jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1766 2
1

( )
( ,2) : ~

(1766) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（924） 
 

1768, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1768jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1768, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 
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where P
P 
，

( )P
 is the number of solutions of congruence 

1
1768

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1768jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1768 2
1

( )
( ,2) : ~

(1768) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,53,127, 443k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,53,127, 443k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,53,127,443k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,53,127,443k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（925） 
 

1770, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1770jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1770, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1770

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1770jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1770 2
1

( )
( ,2) : ~

(1770) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,7,11,31k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,11,31k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,11,31k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,7,11,31k 

， 
(1) contain 

infinitely many prime solutions 
 

 

The New Prime theorem（926） 
 

1772, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1772jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
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1772, ( 1, , 1)P jP k j j k    .               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1772

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1772jp

+ k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1772 2
1

( )
( ,2) : ~

(1772) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,887k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,887k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,887k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,887k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（927） 
 

1774, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1774jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 
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Theorem. Let k  be a given odd prime. 
1774, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1774

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1774jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1774 2
1

( )
( ,2) : ~

(1774) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（928） 
 

1776, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1776jP k j 

 contain infinitely many prime solutions and no prime 
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solutions. 

Theorem. Let k  be a given odd prime. 
1776, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1776

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1776jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1776 2
1

( )
( ,2) : ~

(1776) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,7,13,17,149,593,1777k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,17,149,593,1777k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,13,17,149,593,1777k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,7,13,17,149,593,1777k 

， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（929） 
 

1778, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 
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Using Jiang function we prove that 
1778jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1778, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1778

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1778jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1778 2
1

( )
( ,2) : ~

(1778) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（930） 
 

1780, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 
1780jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1780, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1780

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1780jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1780 2
1

( )
( ,2) : ~

(1780) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,5,11k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,11k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3, 5,11k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3, 5,11k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（931） 
 

1782, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1782jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1782, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1782

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1782jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1782 2
1

( )
( ,2) : ~

(1782) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7,19, 23,67,163,199,1783k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,7,19, 23,67,163,199,1783k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7,19,23,67,163,199,1783k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7,19,23,67,163,199,1783k  ， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（932） 
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1784, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1784jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1784, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1784

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1784jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1784 2
1

( )
( ,2) : ~

(1784) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
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The New Prime theorem（933） 
 

1786, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1786jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1786, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1786

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1786jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1786 2
1

( )
( ,2) : ~

(1786) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,1787k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,1787k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,1787k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,1787k 

， 
(1) contain infinitely many prime solutions 
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The New Prime theorem（934） 
 

1788, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1788jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1788, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1788

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1788jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1788 2
1

( )
( ,2) : ~

(1788) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,7,13,1789k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,13,1789k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,5,7,13,1789k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 



 Academia Arena 2016;8(1s)          http://www.sciencepub.net/academia 

 

744 

We prove that for 
3,5,7,13,1789k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（935） 

 
1790, ( 1, , 1)P jP k j j k     

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1790jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1790, ( 1, , 1)P jP k j j k   

.               （1） 
contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1790

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1790jp + k j  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1790 2
1

( )
( ,2) : ~

(1790) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,11,359k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,11,359k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,11,359k 

. 
From (2) and (3) we have 
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2 ( ) 0J  
                     （8） 

We prove that for 
3,11,359k 

， 
(1) contain infinitely many prime solutions 
 

 
The New Prime theorem（936） 

 
1792, ( 1, , 1)P jP k j j k   

 
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1792jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1792, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1792

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1792jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1792 2
1

( )
( ,2) : ~

(1792) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5,17, 29,113, 257,449k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 
3,5,17, 29,113, 257,449k 

, 
(1) contain no prime solutions. 1 is not a prime. 
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Example 2. Let 
3,5,17, 29,113,257,449k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5,17, 29,113,257,449k 

， 
(1) contain infinitely many prime solutions 
 
 

 

The New Prime theorem（937） 
 

1794, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1794jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1794, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
， ( )P  is the number of solutions of congruence 

1
1794

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1794jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1794 2
1

( )
( ,2) : ~

(1794) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 3,7, 47,79,139k  . From (2) and(3) we have 

2 ( ) 0J  
                     （7） 
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we prove that for 
3,7, 47,79,139k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 3,7, 47,79,139k  . 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,7, 47,79,139k  ， 
(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（938） 
 

1796, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1796jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1796, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1796

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1796jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1796 2
1

( )
( ,2) : ~

(1796) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 

Example 1. Let 
3,5k 

. From (2) and(3) we have 
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2 ( ) 0J  
                     （7） 

we prove that for 
3,5k 

, 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 
3,5k 
， 

(1) contain infinitely many prime solutions 
 

 

The New Prime theorem（939） 
 

1798, ( 1, , 1)P jP k j j k     
Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1798jP k j 

 contain infinitely many prime solutions and no prime 
solutions. 

Theorem. Let k  be a given odd prime. 
1798, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1798

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If 
( ) 2P P  

 then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1798jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P P   . Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1798 2
1

( )
( ,2) : ~

(1798) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 
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Example 1. Let 
3,59k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,59k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,59k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,59k  ， 
(1) contain infinitely many prime solutions 

The New Prime theorem（940） 
 

1800, ( 1, , 1)P jP k j j k   
 

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
 
Abstract 

Using Jiang function we prove that 
1800jP k j   contain infinitely many prime solutions and no prime 

solutions. 

Theorem. Let k  be a given odd prime. 
1800, ( 1, , 1)P jP k j j k    .               （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

2
2

( ) [ 1 ( )]
P

J P P 


   
                    （2） 

where P
P 
，

( )P
 is the number of solutions of congruence 

1
1800

1
0 (mod ), 1, , 1

k

j
jq k j P q P




        

         （3） 

If ( ) 2P P    then from (2) and (3) we have 

2 ( ) 0J  
                        （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely many primes 

P  such that each of 
1800jp

+
k j

 is a prime. 

Using Fermat’s little theorem from (3) we have 
( ) 1P P  

. Substituting it into (2) we have 

2 ( ) 0J  
                      （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J  
 then we have asymptotic formula [1,2] 

 
1

1800 2
1

( )
( ,2) : ~

(1800) ( ) log

k

k k k k

J N
N P N jP k j prime

N

 


 




    

  （6） 

where 
( ) ( 1)

P
P    

. 

From (6) we are able to find the smallest solution 0( , 2) 1k N 
. 
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Example 1. Let 
3,5,7,11,13,19,31,37,41,61,101,151,181,1801k 

. From (2) and(3) we have 

2 ( ) 0J  
                     （7） 

we prove that for 3,5,7,11,13,19,31,37,41,61,101,151,181,1801k  , 
(1) contain no prime solutions. 1 is not a prime. 

Example 2. Let 
3,5,7,11,13,19,31,37,41,61,101,151,181,1801k 

. 
From (2) and (3) we have 

2 ( ) 0J  
                     （8） 

We prove that for 3,5,7,11,13,19,31,37,41,61,101,151,181,1801k  ， 
(1) contain infinitely many prime solutions 
 

 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ   and Jiang prime k -tuple 

singular series 

1
2 ( ) 1 ( ) 1

( ) 1 (1 )
( )

k
k

k P

J P
J

P P

  


 


 

     
  [1,2], which can count the number of prime 

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series 

( ) 1
( ) 1 (1 ) k

P

P
H

P P


  

    
   is false [3-17], which cannot count the number of prime numbers[3]. 
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Szemerédi’s theorem does not directly to the 
primes, because it cannot count the number of primes.  

Cram é r’s random model cannot prove any prime 

problems. The probability of 
1/ log N

 of being 

prime is false. Assuming that the events “ P  is prime”, 

“ 2P   is prime” and “ 4P   is prime” are 

independent, we conclude that P , 2P  , 4P   
are simultaneously prime with probability about 

31/ log N . There are about 
3/ logN N  primes less 

than N . Letting N   we obtain the prime 
conjecture, which is false. The tool of additive prime 
number theory is basically the Hardy-Littlewood prime 
tuples conjecture, but cannot prove and count any 
prime problems[6]. 

Mathematicians have tried in vain to discover 
some order in the sequence of prime numbers but we 
have every reason to believe that there are some 
mysteries which the human mind will never penetrate. 

Leonhard Euler(1707-1783) 
It will be another million years, at least, before 

we understand the primes. 
 
Paul Erdos(1913-1996) 

 
 

Jiang’s function 1( )nJ   in prime distribution 
 

Chun-Xuan Jiang 
 

P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 

Dedicated to the 30-th anniversary of hadronic mechanics 
 
Abstract: We define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P  
              （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
 

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. 
Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough 
to be useful. 

 
Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every 

reason to believe that there are some mysteries which the human mind will never penetrate. 
Leonhard Euler 
It will be another million years, at least, before we understand the primes. 
Paul Erdös 
 
Suppose that Euler totient function 

2
( ) ( 1)

P
P 


    

 as   ，            （1） 
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where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 1, , ( )i    . We have prime equations 

1 ( ) ( )1, ,P n P n h       
                 （2） 

where 0,1, 2,n   . 
（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. We 

have 

(mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                （3） 

where ih denotes the number of primes iP N
 in i iP n h 

 0,1, 2,n   , ( )N  the number of 

primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in 

prime distribution. 

Let 30   and (30) 8  . From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
, 

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 

0,1, 2,n  
          （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

1 1 1( , , ), , ( , , )n k nf P P f P P  
                        （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many 

primes 1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

1
3

( ) [( 1) ( )]n
n

P
J P P 


   

,                     （6） 

where 
( )P

 is called sieve constant and denotes the number of solutions for the following congruence 

1
1

( , , ) 0 (mod )
k

i n
i

f q q P

 

,                    （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P P  
 are prime equations. If 1( ) 0nJ  

 then (5) has finite prime solutions. If 

1( ) 0nJ  
 using ( )P  we sift out from (2) prime equations which can not be represented 1, , nP P

, then 

residual prime equations of (2) are 1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  

prime equations. Therefore we prove that there exist infinitely many primes 1, , nP P
 such that 

1 1( , , ), ,nf P P 
 1( , , )k nf P P

 are primes. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

primes}are,,:,,{)1,( 111 kffNPPnN knk  
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1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
        （8） 

（8）is called a unite prime formula in prime distribution. Let 1, 0n k  , 2 ( ) ( )J   
. From (8) we 

have prime number theorem 

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.      （9） 
 
 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this 

old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 
they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
this theorem. 

Example 1. Twin primes , 2P P  (300BC). 
From (6) and (7) we have Jiang’s function 

2
3

( ) ( 2) 0
P

J P


   
. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

2
3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N   in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a 

prime equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 
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Example 3. Prime equations 
, 2, 6P P P 

. 
From (6) and (7) we have Jiang’s function 

2
5

( ) ( 3) 0
P

J P


   
, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime 

equations. Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  
primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 






 

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

 2
3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N   in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 
2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
        

     . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

 2
3

3
( ) 3 2 0

P
J P P


    

 

3 ( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Since 3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 

      

, 
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where ( ) 3( 1)P P    if 

1

32 1(mod )
P

P


 ; ( ) 0P   if 

1

32 1(mod )
P

P


 ; ( ) 1P P    
otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a 

prime equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 1) ( ) 0
P

J P P 

      

 

where 
( ) 2( 1)P P  

 if 
1(mod 4)P 

; 
( ) 2( 3)P P  

 if 
1(mod8)P 

; 
( ) 0P 

 
otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a 

prime equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.    （10） 

From (8) we have the best asymptotic formula 

primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  
 

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 

such that  2 , , kP P
 are  primes. 

To eliminate d  from (10) we have 

3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

3
3

( ) ( 1) ( 1)( 1) 0
P k k P

J P P P k
  

       
 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 

3, , kP P
 are prime equations. Therefore we prove that there are infinitely many pairs of primes 1P

 and 2P
 

such that 3, , kP P
 are primes. 

From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
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2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
     

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P 

 is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n  , 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n 
 is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n  

, 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n  
 is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n  

, 

where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n    is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n   , 

where 
11 ( ), 3,4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n  
 is always divisible by 

11. 

5. 
2 12, , , ,P P n P n P n  

, 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n  
 is always divisible by 

13. 

6. 
2 16, , , ,P P n P n P n  

, 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n    is always divisible by 
17. 

7. 
2 18, , , ,P P n P n P n   , 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n  
 is always divisible by 

19. 

Example 10. Let n  be an even number. 

1. 
, , 1,3,5, ,2 1iP P n i k  

, 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such 

that 
, iP P n

 are  primes for any k . 
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2. , , 2, 4,6, , 2iP P n i k   . 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such 

that , iP P n  are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 
2

3
3

( ) ( 3 2) 0
P

J P P


    
. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a 

prime. 
From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

 

In the same way we can prove 
2

2 3 12P P P 
 which has the same Jiang’s function. 

 
Jiang’s function is accurate sieve function. Using 

it we can prove any irreducible prime equations in 
prime distribution. There are infinitely many twin 
primes but we do not have rigorous proof of this old 
conjecture by any method [20]. As strong as the 
numerical evidence may be, we still do not even know 
whether there are infinitely many pairs of twin primes 
[21]. All the prime theorems are conjectures except the 
prime number theorem, because they do not prove the 
simplest twin primes. They conjecture that the prime 
distribution is randomness [12-25], because they do not 
understand theory of prime numbers. 
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The Hardy-Littlewood prime k-tuple conjecture is false 
 

Chun-Xuan Jiang 
 

P. O. Box 3924, Beijing 100854, P. R. China 
Jiangchunxuan@vip.sohu.com 

 

Abstract: Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the Hardy-Littlewood prime 

k -tuple conjecture is false. Jiang prime k -tuple theorem can replace the Hardy-Littlewood prime k -tuple 
conjecture. 

 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

, ip p n
,                        （1） 

where 
2 , 1, 1in i k 

. 
we have Jiang function [1, 2] 

2 ( ) ( 1 ( ))
P

J P P    
,                  （2） 

where P
P 

, 
( )P

 is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

, 
1, , 1q p 

.                  （3） 

If ( ) 1P P    then 2 ( ) 0J  
. There exist infinitely many primes P  such that each of iP n

 is 

prime. If 
( ) 1P P  

 then 2 ( ) 0J  
. There exist finitely many primes P  such that each of iP n

 is 

prime. 2 ( )J 
 is a subset of Euler function 

( ) 
[2]. 

If 2 ( ) 0J  
, then we hae the best asymptotic formula of the number of prime P [1, 2] 

 
1

2 ( )
( ,2) : ~ ( )

( ) log log

k

k i k k k

J N N
N P N P n prime C k

N N

 


 



    
   （4） 
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( ) ( 1)
P

P    
， 

1 ( ) 1
( ) 1 1

k

P

P
C k

P P




  
     

                                    （5） 

Example 1. Let 2, , 2k P P  , twin primes theorem. 
From (3) we have 

(2) 0, ( ) 1P  
 if 2P  ,                （6） 

Substituting (6) into (2) we have 

2
3

( ) ( 2) 0
P

J P


   
                        （7） 

There exist infinitely many primes P  such that 2P   is prime. Substituting (7) into (4) we have the best 
asymptotic pormula 

  2 23

1
( ,2) : 2 ~ 2 (1 ) .

( 1) log
k

P

N
N P N P prime

P N



     

   （8） 

Example 2. Let 3, , 2, 4k P P P   . 
From (3) we have 

(2) 0, (3) 2  
                    （9） 

From (2) we have 

2 ( ) 0J  
.                        （10） 

It has only a solution 3P  , 2 5P   , 4 7P   . One of , 2, 4P P P   is always divisible by 3. 

Example 3. Let 
4, ,k P P n 

, where 
2,6,8n 

. 
From (3) we have 

(2) 0, (3) 1, ( ) 3P    
 if 3P  .              （11） 

Substituting (11) into (2) we have 

2
5

( ) ( 4) 0
P

J P


   
,                          （12） 

There exist infinitely many primes P  such that each of P n  is prime. 
Substituting (12) into (4) we have the best asymptotic formula 

 
3

4 4 45

27 ( 4)
( ,2) : ~

3 ( 1) logP

P P N
N P N P n prime

P N





    

        （13） 

Example 4. Let 5k  , P , P n , where 2,6,8,12n  . 
From (3) we have 

(2) 0, (3) 1, (5) 3, ( ) 4P      
 if 5P           （14） 

Substituting (14) into (2) we have 

2
7

( ) ( 5) 0
P

J P


   
                         （15） 

There exist infinitely many primes P  such that each of P n  is prime. Substituting (15) into (4) we have 
the best asymptotic formula 

 
4 4

5 11 5 57

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （16） 

Example 5. Let 6k  ，P , P n , where 2,6,8,12,14n  . 
From (3) and (2) we have 
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2(2) 0, (3) 1, (5) 4, (5) 0J     
         （17） 

It has only a  solution 5P  , 2 7P   , 6 11P   , 8 13P   , 12 17P   , 14 19P   . One 

of P n  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 
This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.1999). 

We define the prime k -tuple equation 

, iP P n
                             （18） 

where 
2 , 1, , 1in i k 

. 
In 1923 Hardy and Littlewood conjectured the asymptotic formula 

 ( ,2) : ~ ( )
log

k i k

N
N P N P n prime H k

N
    

,            （19） 
where 

( ) 1
( ) 1 1

k

P

P
H k

P P




  
     

                    （20） 

( )P  is the number of solutions of congruence 
1

1
( ) 0 (mod )

k

i
i

q n P



  

，  1, ,q P  .             （21） 

From (21) we have ( )P P   and ( ) 0H k  . For any prime k -tuple equation there exist infinitely many 

primes P  such that each of iP n
 is prime, which is false. 

Conjectore 1. Let 
2, , 2k P P 

, twin primes theorem 
Frome (21) we have 

( ) 1P                       （22） 
Substituting (22) into (20) we have 

(2)
1P

P
H

P
 

                  （23） 
Substituting (23) into (19) we have the asymptotic formula 

 2 2
( ,2) : 2 ~

1 logP

P N
N P N P prime

P N
     

      （24） 
which is false see example 1. 

Conjecture 2. Let 
3, , 2, 4k P P P  

. 
From (21) we have 

(2) 1, ( ) 2P  
 if 2P                 （25） 

Substituting (25) into (20) we have 
2

33

( 2)
(3) 4

( 1)P

P P
H

P


 

                    （26） 
Substituting (26) into (19) we have asymptotic formula 

 
2

3 3 33

( 2)
( , 2) : 2 , 4 ~ 4

( 1) logP

P P N
N P N P prime P prim

P N





      

  （27） 
which is false see example 2. 
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Conjecutre 3. Let 4k  , 
,P P n

, where 
2,6,8n 

. 
From (21) we have 

(2) 1, (3) 2, ( ) 3P      if 3P              （28） 
Substituting (28) into (20) we have 

3

43

27 ( 3)
(4)

2 ( 1)P

P P
H

P


 

                 （29） 
Substituting (29) into (19) we have asymptotic formula 

 
3

4 4 43

27 ( 3)
( ,2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

   （30） 
Which is false see example 3. 

Conjecture 4. Let 
5, ,k P P n 

, where 
2,6,8,12n 

 
From (21) we have 

(2) 1, (3) 2, (5) 3, ( ) 4P        if 5P               （31） 
Substituting (31) into (20) we have 

4 4

5 55

15 ( 4)
(5)

4 ( 1)P

P P
H

P


 

                 （32） 
Substituting (32) into (19) we have asymptotic formula 

 
4 4

5 5 5 55

15 ( 4)
( , 2) : ~

4 ( 1) logP

P P N
N P N P n prime

P N





    

   （33） 
Which is false see example 4. 

Conjecutre 5. Let 6k  , P , P n , where 
2,6,8,12,14n 

. 
From (21) we have 

(2) 1, (3) 2, (5) 4, ( ) 5P        if 5P         （34） 
Substituting (34) into (20) we have 

5 5

13 65

15 ( 5)
(6)

2 ( 1)P

P P
H

P


 

                 （35） 
Substituting (35) into (19) we have asymptotic formula 

 
5 5

6 13 6 65

15 ( 5)
( , 2) : ~

2 ( 1) logP

P P N
N P N P n prime

P N





    

  （36） 
which is false see example 5. 
 

Conclusion. The Hardy-Littlewood prime k -tuple 
conjecture is false. The tool of addive prime number 
theory is basically the Hardy-Littlewood prime tuples 

conjecture. Jiang prime k -tuple theorem can replace 

Hardy-Littlewood prime k -tuple Conjecture. There 
cannot be really modern prime theory without Jiang 
function. 
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Automorphic Functions And Fermat’s Last Theorem(1) 
 

Chun-Xuan Jiang 
 

P.O.Box 3924,Beijing 100854,China 
jiangchunxuan@sohu.com 

 
Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly 
marvelous proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an odd 
prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

1
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a n th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order n  with 1n  variables 

[1-7]. 
1

2
( 1)

1

1 ( 1)
[ 2 ( 1) cos( ( 1) )]j

n

BA i j j
i j

j

i j
S e e

n n











    

    （2） 
where i=1,2,…,n; 

1

1

n

A t






 
,      

1

1

( 1) cos
n

j
j

j
B t

n





 



 
,                      （3） 
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1
1

1

( 1) ( 1) sin
n

j j
j

j
t

n





 







  
,     

1

2

1

2 0

n

j
j

A B





 
 

(2) may be written in the matrix form 
 

1

2

3

2

1 1 0 0

( 1)
1 cos sin sin

2

2 2 ( 1)1
1 cos sin sin

( 1) ( 1) ( 1)
1 cos sin sin

2

n

nS
n n nS

n
S

n n nn

S
n n n

n n n

  

  

  

 
      

   
   
    
   
   
        

  








    


 

1

1

1

1

1 1

2 2

2 cos

2 sin

2exp sin

A

B

B

n n

e

e

e

B





 

 
 
 
 
 
 
 
  



(4) 

where 
( 1) / 2n

 is an even number. 
From (4) we have its inverse transformation 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( ) sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n n

B
n n n

n n n

  


  


  

 

 
     
  
      
  
  
          
  








    


 

1

2

3

n

S

S

S

S

 
 
 
 
 
 
 
 



 (5) 
From (5) we have 

1

n
A

i
i

e S



,   

1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
 

1
1

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
,                                 （6） 

In (3) and (6) it  and iS
 have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and proved FLT 
[1-7] Substituting (4) into (5) we prove (5). 

 

1

1

1

1

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)1sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n

e n

n n ne
ne

n n nn

B
n n n

n n n
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1

1

1

1

1 1
2

2 2

1 1 0 0

( 1)
1 cos sin sin

2 2 cos
2 2 ( 1) 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)

1 cos sin sin
2

A

B

B

n n

en

n n n e
n e

n n n

B
n n n

n n n

  


   


  

 

 
        
   
      
   
   
        
  








    


 

1

1

1

1

1 1

2 2

0 0 0

0 0 0
2 2 cos

1 2 sin0 0 0
2

2exp( )sin( )

0 0 0
2

A

B

B

n n

n

en

e

n e
n

B
n





 

 
   
   
   
   

    
   
   
     
  








    


 

1

1

1

1

1 1

2 2

cos

sin

exp( )sin( )

A

B

B

n n

e

e

e

B





 

 
 
 
   
 
 
  



,                                          （7） 

where 

1
2

1

1 (cos )
2

n

j

j n

n





 
,   

1
2

1

(sin )
2

n

j

j n

n






. 

From (3) we have 
1

2

1

exp( 2 ) 1

n

j
j

A B





 
.                           （8） 

From (6) we have 

1 2 1 1 1 1 11

2
2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )

( ) ( )
exp( 2 )

( ) ( )

n nn

n

j
j

n n n n n n

S S S S S S

S S S S S S
A B

S S S S S S







 

  

 

 

       

 
,        （9） 

where   

( ) i
i j

j

S
S

t





[7]. 
From (8) and (9) we have the circulant determinant 
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1 21

2
2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S

S S S
A B

S S S







  





   


          （10） 

If 
0iS 

, where 
1,2, ,i n 

, then (10) has infinitely many rational solutions. 

Assume 1 0S 
, 2 0S 

, 
0iS 

 where 
3, 4, , . 0ii n S 

 are 2n  indeterminate equations with 

1n  variables. From (6) we have 

1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cosjB j j

e S S S S
n


   

.        （11） 
From (10) and (11) we have the Fermat equation 

1 1
2 2

2 2
1 2 1 2 1 2 1 2

1
1

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j

j
j

j
A B S S S S S S S S

n


 




         
 （12） 

Example[1]. Let 15n  . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t             
 

1 1 14 2 13 3 12 4 11

2 3 4
( ) cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

5 6 7
( ) cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

2 1 14 2 13 3 12 4 11

2 4 6 8
( )cos ( )cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

10 12 14
( )cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

3 1 14 2 13 3 12 4 11

3 6 9 12
( )cos ( )cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

15 18 21
( ) cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

4 1 14 2 13 3 12 4 11

4 8 12 16
( ) cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

20 24 28
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

5 1 14 2 13 3 12 4 11

5 10 15 20
( ) cos ( )cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

25 30 35
( ) cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

6 1 14 2 13 3 12 4 11

6 12 18 24
( ) cos ( ) cos ( )cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

5 10 6 9 7 8

30 36 42
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 
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7 1 14 2 13 3 12 4 11

7 14 21 28
( )cos ( )cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

5 10 6 9 7 8

35 42 49
( ) cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 
7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t


     
.                       (13) 

Form (12) we have the Fermat equation 
7

15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S


     
.                   (14) 

From (13) we have 
5

3 6 5 10exp( 2 2 ) [exp( )]A B B t t   
.                 （15） 

From (11) we have 
5 5

3 6 1 2exp( 2 2 )A B B S S   
.                     (16) 

From (15) and (16) we have the Fermat equation 
5 5 5

3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t     
.                  （17） 

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 
solutions for exponent 5[1]. 

Theorem 1. [1-7]. Let 3n P ,where 3P   is odd prime. From (12) we have the Fermat’s equation 
3 1

3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1
P

P P P P
j

j

A B S S S S




     
.                (18) 

From (3) we have 
1

2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t





  
.                     (19) 

From (11) we have 
1

2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S





  
.                        (20) 

From (19) and (20) we have the Fermat equation 
1

2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t





    
.           （21） 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 

solutions for 3P   [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

P P Px y z 
                           （22） 

in the form 
2 1( )( )( ) ( )P Px y x ry x r y x r y z    

                     （23） 

where P  is odd prime, 

2 2
cos sinr i

P P

 
 

. 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 
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[8].. 
We consider the Fermat’s equation 

3 3 3P P Px y z 
                        （24） 

we rewrite (24) 
3 3 3( ) ( ) ( )P P Px y z                        (25) 

From (24) we have 
2 3( )( )( )P P P P P P Px y x ry x r y z                  （26） 

where 

2 2
cos sin

3 3
r i

 
 

 

We assume the divisor of each factor is a P th power. 

Let 
1

x
S

z


, 
2

y
S

z


. From (20) and (26) we have the Fermat’s equation 

2[ exp( )]P P P
P Px y z t t   

                 (27) 
Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 

solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

3 3 3( ) ( ) ( )P P Px y z                    (28) 
Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no integer 

solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

4 4 4P P Px y z                      (29) 
We rewrite (29) 

4 4 4( ) (( ) ( )P P Px y z                  （30） 
4 4 4( ) ( ) ( )P P Px y z                   （31） 

 
Fermat proved that (30) has no integer solutions 

for exponent 4 [8]. Therefore we prove that (31) has no 

integer solutions for all prime exponent P  
[2,5,7].This is the proof that Fermat thought to have 
had. 
Remark. It suffices to prove FLT for exponent 4. Let 

4n P , where P  is an odd prime. We have the 

Fermat’s equation for exponent 4P  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be n P  , 2n P   

and 4n P  . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be n P  , 2n P   

and 4n P  . Every factor of exponent n  has 
Fermat’s equation [1-7].Using modular elliptic curves 
Wiles and Taylor prove FLT[9,10].This is not the proof 
that Fermat thought to have had. The classical theory of 
automorphic functions, created by Klein and Poincare, 

was concerned with the study of analytic functions in 
the unit circle that are invariant under a discrete group 
of transformations. Automorphic functions are 
generalization of the trigonometric,hyperbolic,elliptic, 
and certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Automorphic Functions And Fermat’s Last Theorem（2） 
 

Chun-Xuan Jiang 
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Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly 
marvelous proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 6P  and P , where P  is an odd 
prime. The proof of FLT must be direct .But indirect proof of FLT is disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

2 1 2
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

                        （1） 

where J  denotes a 2n th root of unity, 
2 1nJ  , n is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 2n  with 2 1n   variables 

[5,7]. 

1

1

2
( 1)

1

1 ( 1)
2 ( 1) cos ( 1)

2
j

n

i jBA j
i j

j

i j
S e

n n










 
         

  


 

2

1
( 1) 2

( 1) 1

1

( 1) ( 1)
2 ( 1) cos ( 1)

2
j

n
i

DA i j j
j

j

i j
e e

n n







 



 
          

  


 ,       （2） 

where   
1,..., 2i n

; 
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2 1 2 1 2 1
( 1)

1
1 1 1

, ( 1) cos , ( 1) ( 1) sin
n n n

j j j
j j

j j
A t B t t

n n
 

  
  

   


  


  

       
, 

2 1 2 1
( 1)

2
1 1

( 1) , ( 1) cos
n n

j
j

j
A t D t

n
 

 
 

  


 

    
, 

1
2 1 2

( 1)
1 2

1 1

( 1) ( 1) sin , 2 ( ) 0

n
n

j j
j j j

j

j
t A A B D

n





 







 

       
       （3） 

From (2) we have its inverse transformation[5,7] 

1 2

2 2
1

1 1

, ( 1)
n n

A A i
i i

i i

e S e S 

 

   
 

2 1

1 1
1

cos ( 1) cosj

n
B ij

j i
i

ij
e S S

n









  
, 

2 1
( 1)

1
1

sin ( 1) ( 1) sinj

n
B j ij

j i
i

ij
e S

n










  
, 

2 1
( 1)

1 1
1

cos ( 1) cosj

n
D j i

j i
i

ij
e S S

n










  
 

2 1
( 1)

1
1

sin ( 1) ( 1) sinj

n
D j j i

j i
i

ij
e S

n










  
                          （4） 

(3) and (4) have the same form. 
From (3) we have 

1

2

1 2
1

exp 2 ( ) 1

n

j j
j

A A B D





 
    
 
  


                   （5） 

From (4) we have 

1 2 21

2
2 1 3

1 2
1

2 2 1 1

exp 2 ( )

nn

j j
j

n n

S S S

S S S
A A B D

S S S







 
    
 
  







   


 

 

1 1 1 1 2 1

2 2 1 2 2 1

2 2 1 2 2 1

( ) ( )

( ) ( )

( ) ( )

n

n

n n n n

S S S

S S S

S S S













   


             (6) 

where   

( ) i
i j

j

S
S

t





[7].. 
From (5) and (6) we have circulant determinant 
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1 2 21

2
2 1 3

1 2
1

2 2 1 1

exp 2 ( ) 1

nn

j j
j

n n

S S S

S S S
A A B D

S S S







 
     
 
  







   


          （7） 

If 
0iS
，where 

ni 2,...,3,2,1
, then (7) have infinitely many rational solutions. 

Let 1n . From (3) we have 11 tA   and 12 tA  . From (2) we have 

11 ch tS        12 sh tS                   （8） 
we have Pythagorean theorem 

1shch 1
2

1
2  tt                                   （9） 

(9) has infinitely many rational solutions. 

Assume 
0,0,0 21  iSSS

, where 
ni 2,...,3

. 
0iS

 are 
)22( n

 indeterminate equations 

with 
)12( n

 variables. From (4) we have 

n

j
SSSSeSSeSSe jBAA j


cos)1(2,, 21

2
2

2
1

2

2121
21 

, 

n

j
SSSSe jD j


cos)1(2 1

21
2
2

2
1

2 
                     （10） 

Example. Let 15n . From (3) and (10) we have Fermat’s equation 

1)()()](2exp[ 310
2

310
1

30
2

30
1

7

1
21  



SSSSDBAA jj
j  （11） 

From (3) we have 

5
5

5

1
631 )][exp()22exp( j

j

tBBA 




         （12） 
From (10) we have 

5
2

5
1631 )22exp( SSBBA 

            (13) 
From (12) and (13) we have Fermat’s equation 

5
5

5

1

5
2

5
1631 )][exp()22exp( j

j

tSSBBA 




       (14) 
Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational 

solutions for exponent 5. 

Theorem. Let Pn 3  where P  is an odd prime. From (7) and (8) we have Fermat’s equation 

1)()()](2exp( 32
2

32
1

6
2

6
1

2

13

1
21  





PPPP
jj

P

j

SSSSDBAA
  (15) 

From (3) we have 

P

jP
j

j

P

j

tBA







































 






5

1
3

2

1

1
1 exp2exp

              (16) 
From (10) we have 
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PP
j

P

j

SSBA 213

2

1

1
1 2exp 

















 





               (17) 
From (16) and (17) we have Fermat’s equation 

P

jP
j

PP
j

P

j

tSSBA








































 






5

1
213

2

1

1
1 exp2exp

    (18) 
 
Euler prove that (15) has no rational solutions for 

exponent 3[8]. Therefore we prove that (18) has no 

rational solutions for prime exponent P [5,7]. 
 

Remark. It suffices to prove FLT for exponent 4. Let 

Pn 4 , where P  is an odd prime. We have the 

Fermat’s equation for exponent P4  and the Fermat’s 

equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has the 
Fermat’s equation [1-7]. In complex trigonometric 

functions let exponent n  be Pn  , Pn  2  

and Pn  4 . Every factor of exponent n  has 
Fermat’s equation [1-7]. Using modular elliptic curves 
Wiles and Taylor prove FLT [9, 10]. This is not the 
proof that Fermat thought to have had. The classical 
theory of automorphic functions, created by Klein and 
Poincare, was concerned with the study of analytic 
functions in the unit circle that are invariant under a 
discrete group of transformation. Automorphic 
functions are the generalization of trigonometric, 
hyperbolic, elliptic, and certain other functions of 
elementary analysis. The complex trigonometric 
functions and complex hyperbolic functions have a 
wide application in mathematics and physics. 
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Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly 
marvelous proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 4P  and P , where P  is an odd 
prime. We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of  FLT is 
disbelieving. 

 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

4 1 4
1

1 1

exp
m m

i i
i i

i i

t J S J




 

 
 

 
 

,                        （1） 

where J  denotes a 4m th root of unity, 
4 1mJ  , m=1,2,3,…, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 4m  with 4 1m   variables 

[2,5,7]. 

1

1

1

1 ( 1) ( 1)
2 cos 2 cos

4 2 2
j

m
BA H

i j
j

i i j
S e e e

m m

 
 





     
        

    


 

2

( 1) 1

1

( 1) ( 1)
2 cos

4 2
j

i m
DA

j
j

i j
e e

m m




 



   
    

  


         （2） 

where   1,..., 4i m ; 
 

4 1 4 1

1 2
1 1

, ( 1)
m m

A t A t 
 

 

 

 

   
,      

2 1 2

2 2 1
1 1

( 1) , ( 1)
m m

H t t 
 

 





 

    
, 

4 1 4 1

1 1

cos , sin ,
2 2

m m

j j

j j
B t t

m m
 

 

   


 

 

   
 

4 1 4 1

1 1

( 1) cos , ( 1) sin
2 2

m m

j j

j j
D t t

m m
 

 
 

   


 

 

    
, 

1

1 2
1

2 2 ( ) 0
m

j j
j

A A H B D




    
.                                  （3） 

From (2) we have its inverse transformation[5,7] 

1 2

4 4
1

1 1

, ( 1)
m m

A A i
i i

i i

e S e S 
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2 2
1

2 1 2
1 1

cos ( 1) , sin ( 1)
m m

H i H i
i i

i i

e S e S 


 

    
, 

4 1 4 1

1 1 1
1 1

cos cos , sin sin
2 2

j j

m m
B B

j i j i
i i

ij ij
e S S e S

m m

 
 

 

 
 

    
, 

4 1 4 1

1 1 1
1 1

cos ( 1) cos , sin ( 1) sin
2 2

j j

m m
D Di i

j i j i
i i

ij ij
e S S e S

m m

 
 

 

 
 

     
. （4） 

(3) and (4) have the same form. 
From (3) we have 

1

1 2
1

exp 2 2 ( ) 1
m

j j
j

A A H B D




 
     

 


                （5） 
From (4) we have 

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( )

m

m

j j
j

m m

S S S

S S S
A A H B D

S S S







 
     

 






   


 

1 1 1 1 4 1

2 2 1 2 4 1

4 4 1 4 4 1

( ) ( )

( ) ( )

( ) ( )

m

m

m m m m

S S S

S S S

S S S













   


    (6) 

where 

( ) i
i j

j

S
S

t





[7] 
From (5) and (6) we have circulant determinant 

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( ) 1

m

m

j j
j

m m

S S S

S S S
A A H B D

S S S







 
      

 






   


   （7） 

Assume 1 20, 0, 0iS S S  
, where 3,..., 4 .i m  

0iS 
 are (4 2)m  indeterminate equations 

with 
(4 1)m

 variables. From (4) we have 
1 2 2 2 2

1 2 1 2 1 2, ,A A He S S e S S e S S     
 

2 2 2
1 2 1 22 cos

2
jB j

e S S S S
m


  

,  

2 2 2
1 2 1 22 cos

2
jD j

e S S S S
m


  

   （8） 

Example [2]. Let 4 12m  . From (3) we have 

1 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t          
, 

2 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t           
, 

2 10 4 8 6( ) ( )H t t t t t     
, 
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1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( ) cos ( ) cos ( ) cos ( )cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( )cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( )cos ( ) cos ( ) cos ( )cos ( )cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( ) cos ( ) cos ( ) cos ( )cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

 

1 2 1 2 1 22( ) 0A A H B B D D      
,  2 2 3 6 92 3( )A B t t t    

.          （9） 
From (8) and (9) we have 

12 12 3 4 3 4
1 2 1 2 1 2 1 2 1 2exp[ 2( )] ( ) ( ) 1A A H B B D D S S S S          

.     (10) 
From (9) we have 

3
2 2 3 6 9exp( 2 ) [exp( )]A B t t t    

.                  (11) 
From (8) we have 

2 2 3 3
2 2 1 2 1 2 1 2 1 2exp( 2 ) ( )( )A B S S S S S S S S      

.             (12) 
From (11) and (12) we have Fermat’s equation 

3 3 3
2 2 1 2 3 6 9exp( 2 ) [exp( )]A B S S t t t      

.                (13) 
Fermat proved that (10) has no rational solutions for exponent 4 [8]. 
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2] 

Theorem . Let 4 4m P , where P  is an odd prime, ( 1) / 2P   is an even number. 
From (3) and (8) we have 

1
4 4 4 4

1 2 1 2 1 2
1

exp[ 2 2 ( )] ( ) ( ) 1
P

P P P P
j j

j

A A H B D S S S S




        
. (14) 

From (3) we have 
1

4

2 4 2 4 2 3
1

exp[ 2 ( )] [exp( )]

P

P
j j P P P

j

A B D t t t






     
.         (15) 

From (8) we have 
1

4

2 4 2 4 1 2
1

exp[ 2 ( )]

P

P P
j j

j

A B D S S






   
.              (16) 

From (15) and (16) we have Fermat’s equation 
1

4

2 4 2 4 1 2 2 3
1

exp[ 2 ( )] [exp( )]

P

P P P
j j P P P

j

A B D S S t t t






       
.  (17) 

 
Fermat proved that (14) has no rational solutions 

for exponent 4 [8]. Therefor we prove that (17) has no 

rational solutions for prime exponent P . 
 

Remark. Mathematicians said Fermat could not 
possibly had a proof, because they do not understand 

FLT.In complex hyperbolic functions let exponent n  

be n P  ，  2n P   and 4n P  . Every 

factor of exponent n  has Fermat’s equation [1-7]. 
Using modular elliptic curves Wiles and Taylor prove 
FLT [9,10]. This is not the proof that Fermat thought to 
have had. The classical theory of automorphic 
functions,created by Klein and Poincare, was 
concerned with the study of analytic functions in the 
unit circle that are invariant under a discrete group of 
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transformation. Automorphic functions are the 
generalization of trigonometric, hyperbolic elliptic, and 
certain other functions of elementary analysis. The 
complex trigonometric functions and complex 
hyperbolic functions have a wide application in 
mathematics and physics. 
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Riemann Paper (1859) Is False 
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Abstract: In 1859 Riemann defined the zeta function 
( )s

. From Gamma function he derived the zeta function 

with Gamma function 
( )s

. 
( )s

 and ( )s are the two different functions. It is false that 
( )s

 replaces 

( )s . After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 

( )nJ 
 can replace RH. 

 
AMS  mathematics subject classification: Primary 11M26. 
 
In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



   
 ,       （1） 

where , 1s ti i    ，  and t  are real, P ranges over all primes. RZF is the function of the 

complex variable s  in 
0, 0t  

，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti   .                   （2） 
In 1998 Jiang proved [3] 
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( ) 0s 
,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 

1
2

02

s
ts

e t dt
 

 
  
 


.                  （4） 

For 0  . On setting 
2t n x , we observe that 

21
2 2

02

s s
s n xs

n x e dx
 

  
  
 


.            （5） 

Hence, with some care on exchanging summation and integration, for 1  , 

21
2 2

0
1

( )
2

s s
n x

n

s
s x e dx 

 




  
    
   


 

1
2

0

( ) 1

2

s x
x dx

   
  

 


,            （6） 

where 
( )s

 is called Riemann zeta function with gamma function rather than 
( )s

, 

2

( ) : n x

n

x e 






 
,                （7） 

is the Jacobi theta function. The functional equation for ( )x  is 
1

12 ( ) ( ),x x x                     （8） 

and is valid for 0x  . 

Finally, using the functional equation of 
( )x

, we obtain 

12 1
2 2 2

1

1 ( ) 1
( ) ( ) ( ) .

( 1) 2

2

s
s s x

s x x dx
s s s

 


    
    

    
 



   （9） 
From (9) we obtain the functional equation 

1

2 2
1

( ) (1 )
2 2

s ss s
s s   


      
     
    .              （10） 

The function 
( )s

 satisfies the following 

1. 
( )s

 has no zero for 1  ; 

2. The only pole of 
( )s

 is at 1s  ; it has residue 1 and is simple; 

3. ( )s  has trivial zeros at 2, 4, ...s     but ( )s  has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1 / 2  . 

The strip 0 1   is called the critical strip and the vertical line 1 / 2   is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of ( )s  lie on the critical line 1 / 2  , which is 
false. [3] 
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( )s
 and 

( )s
 are the two different functions. It is false that 

( )s
 replaces 

( )s
, Pati proved that is 

not all complex zeros of 
( )s

 lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 

proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, 

then the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime 
theorems including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in 
primes[7,8]. 

In the same way we have a general formula involving 
( )s

 

1 1

0 0
1 1

( ) ( )s s

n n

x F nx dx x F nx dx
  

 

 

  
 

1 1

0 0
1

1
( ) ( ) ( )s s

s
n

y F y dy s y F y dy
n


  

 



   
,       （11） 

where 
( )F y

 is arbitrary. 

From (11) we obtain many zeta functions 
( )s

 which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 

and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT  which is 
Fermat’s marvelous proof[7, 13]. 

Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3

3 1 22P P P 
. 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2 1P P    if 

1

32 1
P

  (mod P ); ( ) 2P P     if 

1

32 1
P

  (mod P ); ( ) 1P   
otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
3 3

2 1 2 1 2 1 2 3( ,3) { , : , , 2 prime}N P P P P N P P P    
 

2 2 2
3

3 3 3 3
3

( ) 1 ( 3 3 ( ))
~

6 ( ) log 3 ( 1) logP

J N P P P P N

N P N

  

 

  


 


. 

where 2 P

P



 is called primorial, 2

( ) ( 1)
P

P


  
. 

It is the simplest theorem which is called the Heath-Brown problem [15]. 
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（2）Let 0n P
 be an odd prime, 

2 m
 and 

0Pm b  . 
we have 

0 0

3 1 2
P PP P mP 

 
We have 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where ( ) 2P P     if 0 0; ( ) ( 1) 2P m P P P P    
 if 

0

1

1

P

Pm



  (mod P ); 

( ) 2P P   
 if 

0

1

1

P

Pm



 (mod P ); 
( ) 1P 

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have 
2

3
2 3 3

0

( )
( ,3) ~ .

2 ( ) log

J N
N

P N

 



 . 

The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 

（1）Let 4n  , We have 
4 2

3 1 2( 1)P P P  
, 

We have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where 
( )P P 

 if 1P   (mod 4); 
( ) 4P P  

 if 1P  （mod 8）; 
( ) 2P P   

 otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
4 2

2 1 2 1 2 1 2 3( ,3) { , : , , ( 1) prime}N P P P P N P P P     
 

2
3

3 3

( )
~

8 ( ) log

J N

N

 

 . 
It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 
1, 2,3,m  

. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
iP P

J P P P 
 

    
, 

where ( ) 4P P m    if 
8 ( 1) ; ( ) 4m P P P  

 if 
8 ( 1)P 

; ( )P P  if 
4 ( 1)P 

; 

( ) 2P P   
 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a 
generalization of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 
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2 ( ,3) ~N

2
3

3 3

( )

8 ( ) log

J N

m N

 

 . 

（3）Let 2n b .  We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

Where ( ) 2P P b    if 
4 ( 1); ( ) 2b P P P  

 if 
4 ( 1)P 

; ( ) 2P P     otherwise. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3

( )

4 ( ) log

J N

b N

 

 . 

（4）Let 0n P
, We have 

0 2
3 1 2( 1)PP P P  

. 

where 0P
 is an odd. Prime. 

we have Jiang function 
2

3
3

( ) ( 3 3 ( )) 0
P

J P P P 


    
, 

where 0( ) 1P P  
 if 0 ( 1); ( ) 0P P P 

 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 

2 ( ,3) ~N

2
3

3 3
0

( )

2 ( ) log

J N

P N

 


. 

The Jiang function 
( )nJ 

 is closely related to the prime distribution. Using 
( )nJ 

 we are able to tackle 
almost all prime problems in the prime distributions. 
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