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Abstract: Using Jiang function /(@) we prove that the new prime theorems (341)- (390) contain infinitely
many prime solutions and no prime solutions. Analytic and combinatorial number theory (August 29-September 3,
ICM2010) is a conjecture. The sieve methods and circle method are outdated methods which cannot prove twin
prime conjecture and Goldbach’s conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the
Hardy-Littlewood prime k-tuple conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false:
(http://www.wbabin.net/math/xuan77.pdf) (http://vixra.org/pdf/1003.0234v1.pdf). Mathematicians do not speak
advanced mathematical papers in ICM2010. ICM2010 is lower congress.
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The New Prime theorem (391)

P’jP702 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP702 + k _j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
- 702 .
Pa]P +k—](]:15"'ak_l)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jo(@)=TI[P=1- 2(P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
0[jg" +k=j]=0 (modP),g =1, P
=1 (3)
it XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 702 .
P such thateach of /P + k=7 is a prime.
if XP)=P=1 o from (2) and (3) we have
J,(0)=0

We prove that (1) contain no prime solutions [1,2]

(5

141



Academia Arena 2016;8(1s) http://www.sciencepub.net/academia

If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(702)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP"™ +k = j = prime]| ~

#(@) =11(P~1)
k=3,7,19,79,139

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

@D,
we prove that for k= 3,7,19,79,139 ’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k+#3,7,19,79,139 '
From (2) and (3) we have

J,(0)#0 ()

We prove that for k#3,7,19,79,139 )

(1) contain infinitely many prime solutions

The New Prime theorem (392)

PajP704 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP Rageny J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
i p704 (7 = cee -
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
H][qu +k-j]=0 (modP),q=1,---,P-1
7= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 704 .
P such thateach of /P + k=7 is a prime.
i XP)=P=1 o fom (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

(5
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If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(704)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#(@) =11(P~1)

Example 1. Let k=3,5,17,23,89,353 . From (2) and(3) we have
e D)
W€ prove that for k= 3’5’17’ 239899353 5

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,517,23,89,353 '
From (2) and (3) we have
J,(0)#0 o

We prove that for k= 3,5,17,23,89,353

(1) contain infinitely many prime solutions

where

The New Prime theorem (393)

PajP706 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP 4k — J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
/ 706 / | — DY —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j]=0 (modP),q=1,---,P-1
7= (3)
i XP)SP=2 o from (2) and (3) we have
(@) #0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 706 .
P such thateach of /P + k=7 is a prime.
if XP)=P=1 o from (2)and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N

7 (N,2)=|(P< N jP™ +k— j = prime|| ~

(706)" "' ¢* (@) log* N 6
w)=11(P-1
where ) P ( ) .
Example 1. Let k=3 From (2) and(3) we have
J,(w)=0 (7)
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k> 3.
From (2) and (3) we have
J,(0)#0 (2)

We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (394)

P’jP708 +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

- 5708 .
Using Jiang function we prove that JjP +k -J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let K bea given odd prime.

Pajpmg+k—j(j:15"'ak_l)'

QP)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =TI[P—1- 7(P)] o

w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k=j]=0 (mod P),g=1,--,P-1
= 3
it XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 708 .
P such thateach of /P + k=] is a prime.

i XP)=P=1 o fom (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(708)" " ¢" (w) log" N )

72,{(N,2)=HPS N:jpP™ +k—j=prime}‘ ~

H) =TI(P-1)
k=3,5,7,13,709

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

D
we prove that for k=3,5,7,13, 709’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k+3,5,7,13,709 .
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k+3,5,7,13,709

(1) contain infinitely many prime solutions

The New Prime theorem (395)

Pajpﬂo +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P,jP7]0+k—j(j:17"'ak_l) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

2
where “= 11_’[ F , X (P) is the number of solutions of congruence
';r_li[jq”uk—j}zo (modP),g=1,---,P—1 o
it XP)SP=2 4en from (2) and (3) we have
J,(®)#0 "
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 710 .
P such that each of /P +k_J

£ XP)=P =1 o fom (2)and (3) we have

is a prime.
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J,(@)=0

(5
We prove that (1) contain no prime solutions [1,2]
J, (@) #0 .
If then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP" +k = j = prime]| ~ (@) .
(710)" ¢" (w) log" N )
w)=11(P-1
where H) P ( ) .
Example 1. Let k=31 1. From (2) and(3) we have
J2(@)=0 D
we prove that for k=31 1,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k=311 .
From (2) and (3) we have
J,(0)#0 ()

We prove that for k#3,11
(1) contain infinitely many prime solutions

The New Prime theorem (396)

Pajpﬂz +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P2
Using Jiang function we prove that J J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

Pajpﬂz+k—j(j:15"'ak_l)'

QP)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =TI[P—1- 7(P)] o

w=I1P

where rp, X (P) is the number of solutions of congruence
k-1
N[jg" +k=j]=0 (modP),g =1, P
j=l (3
i XP)SP=2 4o from (2) and (3) we have
J, (@) #0 "
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 712 .
P such thateach of /P + k=7 is a prime.
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it XP)=P=1 o fom (2) and (3) we have
J,(@)=0

(5
We prove that (1) contain no prime solutions [1,2]
J,(®)#0 .
If then we have asymptotic formula [1,2]
J N
ﬁk(N,2)=HPSN:ij +k—j=prime}‘ ~ 2(?0),( -
(712)" ¢ (w) log" N )
w)=11(P-1
where H) P ( ) .
. k=35
xample 1. Let . From (2) and(3) we have
J,(w)=0 @
we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5 .
From (2) and (3) we have
J,(®)#0 .

We prove that for k#3,5 ,
(1) contain infinitely many prime solutions

The New Prime theorem (397)

PajP7l4 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P k-
Using Jiang function we prove that J J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let K bea given odd prime.

P jPY + k= j(j =1 k=1)

QP!

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@ =T[P-1- Z(P)] o

w=I1P

where P, X (P) is the number of solutions of congruence
k-1
0[jg™ +k=j]=0 (modP),g =1, P~
=1 (3
i XP)SP=2 4o from (2) and (3) we have
J,(@) %0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
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. 714 .
P such thateach of /P + k= is a prime.
it XP)=P=1 o fom (2) and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(714" ¢" (@) log* N )

7 (N,2)=[{P<N: jP™ 4k = j = prime]| ~

¢(@) =11(P~1)
k=3,7,43,103

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

D
k=3,7,43,103

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,43,103 .
From (2) and (3) we have

J,(0)#0 (2

We prove that for k # 3,7,43,103’

(1) contain infinitely many prime solutions

The New Prime theorem (398)

PajP7l6 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P 4+ k— J

Using Jiang function we prove that J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

PajP7l6+k—j(j:15”'ak_l)'

QP!

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =[P-1- (P o

w=I1P

where P, X (P) is the number of solutions of congruence
k-1
M| jg" +k=j|=0 (mod P),q=1,---,P—1
=1 (3
it XP)SP=2 4 from (2) and (3) we have
J,(@) %0 @
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We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
. 716 .
P such that each of /P + k—J

£ XP)=P=1 o from (2)and (3) we have

is a prime.

JZ (0)) = 0 (5)
We prove that (1) contain no prime solutions [1,2]
i D@ %0 .
then we have asymptotic formula [1,2]
k-1

7,(N,2)= HP SN:jP" +k—j= prime}‘ ~ Jz(fi)lwk ]Y

(716)" ¢* () log" N 6

w)=11(P-1
where @) P ( ) .
Example 1. Let k=3,5,359 . From (2) and(3) we have
JZ (0)) = 0 (7)
k=3,5,359

we prove that for
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,359 .
From (2) and (3) we have
J,(0)#0 (2)

We prove that for k# 3’5’359,
(1) contain infinitely many prime solutions

The New Prime theorem (399)

Pajpﬂx +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP [y /- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let K bea given odd prime.
P’jP718+k_j(j:1’..-’k—l) (1>

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- (P)] o
where “= II_’IP ) x(P)
Iﬁ][qu +k—j} =0 (modP),qg=1,---,P-1

J=1

i X(P)sP-2

is the number of solutions of congruence

(3)
then from (2) and (3) we have
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J, (@) #0 i

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 718 .
P such that each of /P + k=7 is a prime.

i# XP)=P=1 o fom (2) and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(718) ' ¢* (@) log* N 6)

ﬂk(N,2)=HPS N:jP™ +k—j=prime}‘ ~

where Ho) = II_’I(P D .

Example 1. Let k=3 From (2) and(3) we have

J,(0)=0 (7)

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k> 3.
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (400)

P’jP720 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

- 15720 .
Using Jiang function we prove that P +k_]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
P, jP™ + k= j(j =1, k=1) (D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =TI[P-1- 7(P)] o

w=I1P

where L
k-1 "
M| jg™ +k=j|=0 (mod P),q=1,--,P—1

J=1

i X(P)sP-2

x(P) is the number of solutions of congruence

(3
then from (2) and (3) we have
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J, (@) #0 "
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 720 .
P such thateach of /P + k=7 is a prime.
i# XP)=P=1 o fom (2) and (3) we have
We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]
) , ) L™ N
ﬂk(N,2)=HPSN:]P720+k—]=przme}‘~ 2(/(7)1 - -
(720" ¢* () log" N )

| @) =1I(P-)
k=3,57,1113,17,19,31,37,41,61,73,181,241

wher

Example 1. Let . From (2) and(3) we have

J,(w)=0 (7)
k=3,5,7,11,13,17,19,31,37,41,61,73,181,241
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,7,1 1,13,17,19,31,37,41,61,73,181,241
From (2) and (3) we have
J,(0)#0 (2)

We prove that for k # 3,5,7,1l,13,17,19,31,37,41,61,73,181,241’

(1) contain infinitely many prime solutions

The New Prime theorem (401)

P’jP722 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract

. 5722 .
Using Jiang function we prove that JjP +k_]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let K bea given odd prime.

P jP +k—j(j=1-k=1)

contain infinitely many prime solutions and no prime solutions. (1)
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- y(P)] o
where “= 11_’[ F , X (P) is the number of solutions of congruence

';r_li[jq”%k—j}zo (mod P),g=1,---,P—1 .
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i X(P)sP-2
J,(@)#0

then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 722 .
P such thateach of /P + k=7 is a prime.
if XP)=P=1 o fom (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(722)" ¢" (w) log" N )

7 (N,2)=[{P<N: jP™ 4k = j = prime]| ~

where o) = lf_’I(P D .

Example 1. Let k=3 From (2) and(3) we have

J,(w)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k> 3.
From (2) and (3) we have

J,(0)#0 (2)
We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (402)

P,jP™ k= j(j =1, k=1
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract
JP* k-

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let K bea given odd prime.
P,jP™ +k—j(j=1,--k-1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =TI[P=1- 2(P)] o
whare O P (P)
kff[qu +k-j]=0 (modP),q=1,---,P-1

=

is the number of solutions of congruence

(3
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i X(P)sP-2
J,(@)#0

then from (2) and (3) we have
D)
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 724 .
P such thateach of /P + k=7 is a prime.
if XP)=P=1 o fom (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(724)' ¢" (@) log* N )

7 (N,2)=[{P<N: PP 4k = j = prime]| ~

| @) =1I(P-)
k=35

wher

Example 1. Let
J,(@)=0

. From (2) and(3) we have

7

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k>5 .
From (2) and (3) we have

J,(®)#0 .

We prove that for k>5 ,
(1) contain infinitely many prime solutions

The New Prime theorem (403)

Paan() +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P+ k— J

Using Jiang function we prove that J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.

P jP™ +k—j(j=1-k=1)

contain infinitely many prime solutions and no prime solutions. (1)
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- y(P)] o
where “= 11_’[ F , X (P) is the number of solutions of congruence

';r_li[jq”uk—j}zo (mod P),g=1,---,P—1 .
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i XP)SP=2 4o from (2) and (3) we have

J,(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
P such that each of jpn6 + k=J is a prime.

if XP)=P=1 o fom (2)and (3) we have

JZ (0)) = 0 (5>
We prove that (1) contain no prime solutions [1,2]
i D (@)£0 .
then we have asymptotic formula [1,2]
J N
7 (N,2)=[{P<N: jP™ 4k = j = prime]| ~ (0)0 .
(726)" ¢" (w) log" N )

#(@) =11(P~1)

Example 1. Let k=3,7,23,67,727 . From (2) and(3) we have
e 7
we prove that for k=3,7,23, 67,727’

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,23,67,727 .
From (2) and (3) we have
J,(0)#0 ()

We prove that for k#3,7,23,67, 727’

(1) contain infinitely many prime solutions

where

The New Prime theorem (404)

Pajpnx +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
- 728 Lo
Pa]P +k—](]:15"'ak_l)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jo(@)=TI[P=1- 2(P)] o

o=I1P =y (p)

where is the number of solutions of congruence
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k-1
H[ths +k—j]50 (modP),g=1,---,P—1

J=1

(3

it XP)SP=2 4o from (2) and (3) we have
J,(@)%0 ”

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
P such that each of ™ + k=Jj

if XP)=P=1 o from (2) and (3) we have

J,(@)=0 (5)

We prove that (1) contain no prime solutions [1,2]

i (@) %0

is a prime.

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(728)" ¢" (w) log" N )

72,{(N,2)=HPS N:jP™ +k—j=prime}‘ ~

#(@) =11(P~1)

Example 1. Let k=3,5,29,53 . From (2) and(3) we have

J2(@)=0 D
we prove that for k=3,5,29,53 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,29,53 .
From (2) and (3) we have
J,(@)#0 .

We prove that for k = 3’5’29a53’
(1) contain infinitely many prime solutions

where

The New Prime theorem (405)

PajP730 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP B0k — J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P, jP™ + k= j(j =1, k=1) (D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jo(@)=TI[P-1- (P)] o
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w=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg™ +k=j|=0 (mod P),q=1,---,P—1
=1 (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0

D)
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 730 .
P such thateach of /P + k=] is a prime.
if XP)=P=1 o fom (2) and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(730) "' ¢* (@) log* N )

7 (N.2)=[{P<N: jP™ +k = j = prime}| ~

H) =TI(P-1)
k=311

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

7

we prove that for k=31 1,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11 .

From (2) and (3) we have

J,(0)#0 ()

We prove that for k#3,11 ,
(1) contain infinitely many prime solutions

The New Prime theorem (406)

P,jP™ +k—j(j =1, k=1
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-

Using Jiang function we prove that
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let K bea given odd prime.
P, jP™ + k= j(j =1, k=1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(D

156



Academia Arena 2016;8(1s)

http://www.sciencepub.net/academia

Jy(@)=TI[P-1- (P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
M| jg"™ +k=j|=0 (mod P),q=1,--,P—1
=1 (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 732
P such that each of /P +

£ XP)=P=1 o fom (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

~J isa prime.

7 (N.2)=[{P<N: jP™ +k = j = prime}| ~

#(@) =11(P~1)
k=3,5,7,13,367,733

where

Example 1. Let
J,(@)=0

we prove that for k=3,5,7,13,367,733 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,7,13,367,733

From (2) and (3) we have
J, (@) #0

We prove that for k+3,5,7,13,367,733 ’

(1) contain infinitely many prime solutions

The New Prime theorem (407)

then we have asymptotic formula [1,2]

. From (2) and(3) we have

(5)
J,(w)o"™ N
k-1 1k k
(732)" ¢ (w) log" N 6)
@D,
(8)

P,jP™* +k—j(j=1,k-1)

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
Using Jiang function we prove that
solutions.

Theorem. Let K bea given odd prime.

P, jP™ k= j(j =1 k=1)

JP™ k-

J

contain infinitely many prime solutions and no prime

(D

contain infinitely many prime solutions and no prime solutions.
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Proof. We have Jiang function [1,2]
Jo(@) =TI[P-1= 7(P)]

o=I1P
where P 4 (P) is the number of solutions
k-l
nl[qu +k=j]=0 (modP),q=1,---,P-1
J=
i XP)SP=2 4o from (2) and (3) we have
J, (@) #0

(2

of congruence

(3

4

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 734 .
P such thateachof /P +%7J jisa prime.

it XP)=P =1 on fom (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

If Jy(@)#0 then we have asymptotic formula [1,2]

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

where o) = lf_’I(P b .

Example 1. Let k=3 From (2) and(3) we have
J,(@)=0

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k> 3.
From (2) and (3) we have

J,(®)#0

We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (408)

(5)
J,(w)o"™ N
k-1 4k k
(734)" ¢" (@) log" N (6
D)
(8)

P,jP™ +k—j(j=1,k=1)

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

PO -
Using Jiang function we prove that J J
solutions.

Theorem. Let K bea given odd prime.

P jP™ +k—j(j=1-k=1)

contain infinitely many prime solutions and no prime

(D

contain infinitely many prime solutions and no prime solutions.
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Proof. We have Jiang function [1,2]
Jo(@)=TI[P~1- 7(P)]

o=IIP
P b

where 4 (P) 1s the number of solutions

=
H[jq736+k—j}50 (modP),g=1,---,P—1

J-l
then from (2) and (3) we have
J, (@) #0

(2

of congruence

(3

4

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 736 .
P such thateachof /P +%7J jisa prime.

it XP)=P =1 on fom (2)and (3) we have
J,(@)=0

(5
We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]
. . . J,(0)o" N
7 (N,2)=|{P< N2 jP™ k= j = prime]] ~ (736) 14 (@) log’ N )
(6
w)=I11(P-1
where ) P ( ) .
Example 1. Let k=3,517,47 . From (2) and(3) we have
J2(@)=0 D
we prove that for k=3,517.47 ,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,17,47 .
From (2) and (3) we have
J,(w)#0 ()
k#3,517,47

We prove that for
(1) contain infinitely many prime solutions

The New Prime theorem (409)

PajP738 +k—j(j:15"'ak_1)

Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract

iP™ +k—j
Using Jiang function we prove that J J
solutions.

Theorem. Let X bea given odd prime.

P jP™ +k—j(j=1-k=1)

159
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(D



Academia Arena 2016;8(1s) http://www.sciencepub.net/academia

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j|=0 (modP),q=1,--,P-1
7= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 738 .
P such that each of /P + k=7 is a prime.

it XP)=P=1 o fom (2)and (3) we have

We prove that (1) contain no prime solutions [1,2]
i D (@)£0 .
then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ + k= j = prime}| ~ (@) !
(738)" ¢" (w) log" N )

| @) =1I(P-)

Example 1. Let k=3,7,19,739 . From (2) and(3) we have

J2(@)=0 D
we prove that for k=3,7,19,739 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,19,739 .
From (2) and (3) we have
J,(@)#0 (8)

We prove that for k#3,7,19,739 ’

(1) contain infinitely many prime solutions

wher

The New Prime theorem (410)

P, jP™ +k—j(j =1, k=1
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let K bea given odd prime.
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/ 740 / | — oo p—
Pa]P +k—](]_15 ak 1) (D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jo(@)=TI[P~1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,--,P-1
7= (3)
i XP)SP=2 o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 740 .
P such thateach of /P + k=7 is a prime.
it XP)=P=1 o fom (2)and (3) we have

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(740)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#(@) =11(P~1)

Example 1. Let k=3,5,11,149 . From (2) and(3) we have
J2(@)=0 D

k=3,511,149
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,11, 149.
From (2) and (3) we have
J,(0)#0 (2)

We prove that for k # 3’5’11a149’

(1) contain infinitely many prime solutions

where

The New Prime theorem (411)

PajPMz +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
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Theorem. Let X bea given odd prime.
- D742 .
Pa]P +k—](]:15"'ak_l)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
where “= II_’I F , X (P) is the number of solutions of congruence
ﬁj[qu +k=j]=0 (modP),q=1,---,P-1
7= (3)
it XP)SP=2 4o from (2) and (3) we have
J,(@) %0 ™

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 742 .
P such thateach of /P + k= is a prime.
i XP)=P=1 o fom (2) and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(742)" "' ¢" (@) log* N 6

7 (N.2)=[{P<N: jP"™ +k = j = prime]| ~

H) =TI(P-1)
k=3,107,743

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

D)
we prove that for k=3,107, 743,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k= 3,107, 743.
From (2) and (3) we have

J, (@) #0 .

We prove that for k#3,107, 743’

(1) contain infinitely many prime solutions

The New Prime theorem (412)

P, jP™ vk —j(j =1, k=1
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P +k—j

Using Jiang function we prove that J contain infinitely many prime solutions and no prime
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solutions.
Theorem. Let X bea given odd prime.
FpTa4 (7 = cee -
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k=j]=0 (modP),q=1,---,P-1
7= (3)
i XP)SP=2 o from (2) and (3) we have
J,(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 744 .
P such thateach of /P + k=] is a prime.
it XP)=P=1 o fom (2)and (3) we have

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(744)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP™ +k = j = prime}| ~

He) =TI(P-1)

Example 1. Let k=3,5"7,13,373 From (2) and(3) we have
e D)
we prove that for k=3,5,7,13,373 ’

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,7,13,373 .

From (2) and (3) we have
Jz (w)#0 N
We prove that for k#3,5,7,13,373 ’

(1) contain infinitely many prime solutions

where

The New Prime theorem (413)

PajP746 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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- 746 .
Using Jiang function we prove that JPTAk—] contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
F p746 (7 = vee —_
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,---,P-1
7= (3)
it X(P)SP=2 e from (2) and (3) we have
(@) #0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 746 .
P such thateach of /P + k= is a prime.
it XP)=P=1 o fom (2) and (3) we have

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(746)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

where Ho) = II’I(P b .

Example 1. Let k=3 From (2) and(3) we have
J,(0)=0 (7

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k> 3.
From (2) and (3) we have

J,(0)#0 ()

We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (414)

P, jP™ vk —j(j =1k~
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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- 748 .
Using Jiang function we prove that JPT rk—] contain infinitely many prime solutions and no prime

solutions.

Theorem. Let K bea given odd prime.
PajP748+k_j(j:15”'ak_l) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P
(@) =P-1- (P o
w=I1P
where P, X (P) is the number of solutions of congruence

k-1

H[jq748 +k—j]50 (modP),g=1,---,P—1

J=

i X(P)sP-2
J,(@)#0

(3
then from (2) and (3) we have
4)
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 748 .
P such that each of /P + k=]
it XP)=P=1 o fom (2) and (3) we have
J,(w)=0
We prove that (1) contain no prime solutions [1,2]

i (@) %0

is a prime.

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(748) "' ¢" (@) log" N )

ﬂk(N,2)=HPS N:jP™ +k—j=prime}‘ ~

He) =TI(P-1)
k=3,5,23

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

7

we prove that for k=3,5,23 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,23 .
From (2) and (3) we have
J,(0)#0 (2

We prove that for k# 3’5a23’
(1) contain infinitely many prime solutions

The New Prime theorem (415)

P,jP™ +k—j(j =1, k=1
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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jP750 +k_]

Using Jiang function we prove that
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
PajP750+k_j(j:15”'ak_l) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J>(@) =TI[P -1~ 7(P) o
where “= 11_’1 F , X (P) is the number of solutions of congruence
lﬁl[qu +k-j]=0 (modP),q=1,---,P-1

J=1
i X(P)sP-2
J(@)#0

(3
then from (2) and (3) we have

D)
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 750 .
P such that each of /P +k_J

it XP)=P=1 o fom (2) and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

is a prime.

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(750) "' ¢* (@) log* N )

7 (N.2)=[{P<N: jP"™ +k = j = prime}| ~

¢(@) =11(P~1)
k=3,7,11,31,151,751

where

Example 1. Let . From (2) and(3) we have

J,(w)=0 @

we prove that for k=3,7,11,31,151,751’

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k+3,7,11,31,151,751 '

From (2) and (3) we have

J,(0)#0 (2)
We prove that for K #37-11L3L15L751

(1) contain infinitely many prime solutions

The New Prime theorem (416)
P,jP” +k—j(j=1,---,k—1)

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
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Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P,jP> +k—j(j=1,-,k-1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where 4 (P) is the number of solutions of congruence
k-1
nl[qu +k-j]=0 (modP),q=1,---,P-1
7= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
. 752 .
P such that each of /P + k—J

it XP)=P=1 o fom (2)and (3) we have

is a prime.

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k=1 1k k
(752)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP" +k = j = prime}| ~

H) =TI(P-1)

where .

Example 1. Let k=3,517 . From (2) and(3) we have

J,(w)=0 (7)
k=3,517

we prove that for
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17 .
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k # 3’5a17’
(1) contain infinitely many prime solutions

The New Prime theorem (417)
P,jP™ +k—j(j=1,--,k-1)

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
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Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
P,jP™ +k—j(j=1,-,k-1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jo(@)=TI[P-1- (P)] o
where “= II_’I F , X (P) is the number of solutions of congruence
_’;r_li[jq754+k—j}zo (mod P),g=1,---,P—1 o
i X(P)sP-2

J,(®)#0

then from (2) and (3) we have
D)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

754
P such that each of Jp k J

£ XP)=P=1 o from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

o L(@)#0

is a prime.

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 gk k
(754)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP"™ +k = j = prime}| ~

#(@) =11(P~1)

Example 1. Let k=3, 59 . From (2) and(3) we have

J,(@)=0

where

7

we prove that for k=359
(1) contain no prime solutlons 1 is not a prime.

Example 2. Let k# 3’59.

From (2) and (3) we have
J,(0)#0 (2)

We prove that for k#3, 59
(1) contain infinitely many prlme solutions

The New Prime theorem (418)

PajP756+k_j(j:15”'ak_l)
Chun-Xuan Jiang
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Jiangchunxuan@vip.sohu.com

Abstract
jP756 +k_]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
/ 756 / | — LIS —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

2
where “= II_’I F , X (P) is the number of solutions of congruence
ﬁ[jq“uk—j}zo (modP),qg=1,---,P—1 o
it XP)SP=2 4en from (2) and (3) we have
J,(@)#0 "
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
P such that each of jp756 + k=J is a prime.

it XP)=P=1 o fom (2)and (3) we have

JZ (0)) = 0 (5>
We prove that (1) contain no prime solutions [1,2]
i D (@)£0 .
then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP"™ +k = j = prime]| ~ Q)0 .
(756)" ¢" (w) log" N )

P) =TI(P-1)

Example 1. Let k=3,5,7,13,19,29,37,43,127,379,757 . From (2) and(3) we have

J2(@)=0 D
k=3,5,7,13,19,29,37,43,127,379,757

we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2, Let K #3:5.7:13,19,29,37,43,127,379,757
From (2) and (3) we have
J,(@) %0 ()
We prove that for K 7 3:3:7:13,19,29,37,43,127,379,757

(1) contain infinitely many prime solutions

where

The New Prime theorem (419)

P, jP™ +k—j(j=1-,k-1)
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Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract
jP758 +k _]

Using Jiang function we prove that
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let K bea given odd prime.

PajP758+k—j(j:15"'ak_l)'

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =P-1- (P o

w=I1P

where P, X (P) is the number of solutions of congruence
k-1
[ jg™ +k-j]=0 (modP),qg=1,--,P-1
j=1 (3)
i XP)SP=2 o from (2) and (3) we have
J,(@) %0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 758 .
P such that each of /P + k=7 is a prime.

it XP)=P=1 o fom (2) and (3) we have
J,(@)=0

(5
We prove that (1) contain no prime solutions [1,2]
J, (@) #0 .
If then we have asymptotic formula [1,2]
L™ N
7[,((N,2)=HPSN:jP758+k—j=prime}‘~ z(kf? P P
(758)" ¢" (w) log" N 6
w)=I11(P-1
where ) P ( ) .
Example 1. Let k=3 From (2) and(3) we have
J,(w)=0 (7
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k> 3.
From (2) and (3) we have
J,(w)#0 (2)

We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (420)

P, jP"™ +k—j(j=1,k=1)
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Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract

- 15720 .
Using Jiang function we prove that i +k_]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let K bea given odd prime.

PajP760+k—j(j:15"'ak_l)'

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =P-1- (P o

o=I11P

where P, X (P) is the number of solutions of congruence
k-1
Hl[jq"’o +k-j]=0 (modP),q=1,---,P-1
/= (3
i XP)SP=2 o from (2) and (3) we have
J,(@) %0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 760 .
P such thateach of /P + k=7 is a prime.
it XP)=P=1 o fom (2) and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(760)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP"™ +k = j = prime]| ~

¢(@) =11(P~1)
k=3,5,11,41,191,761

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have
D
we prove that for k= 3,5,11,41,191,761’

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let ke # 35,11,41,191,761'

From (2) and (3) we have

J, (@) #0 .

We prove that for k # 3,5,11,41,191,761’

(1) contain infinitely many prime solutions

The New Prime theorem (421)
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PajP762 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP o4k — J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
/ 762 / | — DY J—
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j]=0 (modP),q=1,---,P-1
/= (3)
it XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

P such that each of jp762 + k=J is a prime.
if XP)=P=1 o fom (2)and (3) we have
JZ (0)) = 0 ( 5 )
We prove that (1) contain no prime solutions [1,2]

If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 sk k
(762)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP"® +k = j = prime}| ~

#(@) =11(P~1)

Example 1. Let k=37 . From (2) and(3) we have
J,(w)=0 (7)

we prove that for k=37 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7 .
From (2) and (3) we have

J,(0)#0 ()

We prove that for k#3,7 ,
(1) contain infinitely many prime solutions

where

The New Prime theorem (422)
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PajP764 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
P,jP"*" +k—j(j=1,-,k-1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- y(P)]

(2)
o=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,--,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 764 .
P such thateach of /P + k=7 is a prime.

i XP)=P=1 o from (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(764)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP"™ +k = j = prime]| ~

¢(@) =11(P~1)
k=3,5,383

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

7

we prove that for k=3,5,383 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,383 .
From (2) and (3) we have

J,(@)#0 .

We prove that for k#3,5,383 ,
(1) contain infinitely many prime solutions

173



Academia Arena 2016;8(1s) http://www.sciencepub.net/academia

The New Prime theorem (423)

PajP766 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j P766 + k _ ]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
PajP766+k_j(j:15”'ak_l) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
o=I1P
where L4 (P) is the number of solutions of congruence
k-1
nl[qu +k-j]=0 (modP),q=1,--,P-1
/= (3)
i XPISP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 766 .
P such thateach of /P + k=] is a prime.

£ XP)=P=1 o fom (2)and (3) we have
J,(@)=0

(5
We prove that (1) contain no prime solutions [1,2]
J,(®)#0 .
If then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ +k - j = prime}| ~ Q)0 -
(766)" ¢" (w) log" N )
w)=I11(P-1
where @) P ( ) .
Example 1. Let k=3 From (2) and(3) we have
J,(w)=0 @b
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k> 3.
From (2) and (3) we have
J, (@) #0 .

We prove that for k>3 ,
(1) contain infinitely many prime solutions
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The New Prime theorem (424)

PajP768 +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP768 +k _]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let X bea given odd prime.
PajP768+k_j(j:15”'ak_l) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =TI[P—1- 7(P) o

w=I1P

where P, X (P)
k-1
M| jg" +k=j]=0 (mod P),g =1,--,P-1

J=1
i X(P)sP-2
J (@) #0

is the number of solutions of congruence

(3
then from (2) and (3) we have
(4)
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 768 .
P such that each of /P + k=7
£ XP)=P=1 o fom (2)and (3) we have
J,(@)=0
We prove that (1) contain no prime solutions [1,2]

i (@) %0

is a prime.

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(768)" ¢" (w) log" N )

7 (N,2)= HP <N P 4 f—j= prime}‘ ~

P) =TI(P-1)
k=3,5,7,13,17,97,193,257,769

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

7
k=3,5"7,13,17,97,193,257,769
we prove that for ,

(1) contain no prime solutions. 1 is not a prime.
Example 2, Lt K #3:3,7:13,17,97,193,257,769
From (2) and (3) we have

J, (@) #0 .

We prove that for K #3:3,7:13,17,97,193,257,769.

(1) contain infinitely many prime solutions
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The New Prime theorem (425)

PajP770 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P,jP" +k—j(j=1,-,k-1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k=j]=0 (modP),q=1,---,P-1
/= (3)
i XP)SP=2 4 from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 770 .
P such thateach of /P + k=] is a prime.

£ XP)=P=1 o fom (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(770)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP™ +k=j = prime}| ~

#(@) =11(P~1)
k=3,11,23,71

where

Example 1. Let . From (2) and(3) we have

J2(@) =0 )

k=3,11,23,71

we prove that for ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,11,23,71 .
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k#3,11,23,71 )
(1) contain infinitely many prime solutions
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The New Prime theorem (426)

PajP772 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract
JjP "k - J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
P,jP772+k—j(j:17"'ak_l) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jo(@)=TI[P=1- £(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j]=0 (modP),q=1,---,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 772 .
P such thateach of /P + k=7 is a prime.

it XP)=P=1 o from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 gk k
(772)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP +k=j = prime]| ~

#(@) =11(P~1)
k=3,5773

where

Example 1. Let
J,(@)=0

. From (2) and(3) we have

7
we prove that for k = 3,5,773 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,773 .
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k#3,5,773 ,
(1) contain infinitely many prime solutions
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The New Prime theorem (427)

PajP774 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5774 .
Using Jiang function we prove that JjP +k_]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
/ 774 / | — LIS —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,---,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 774 .
P such thateach of /P + k=7 is a prime.

i XP)=P=1 o fom (2)and (3) we have

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 4k k
(774" ¢" (@) log" N (6

7 (N.2)=[{P<N: jP" +k = j = prime}| ~

H) =TI(P-1)

Example 1. Let k=3,7.19 . From (2) and(3) we have

J2(@)=0 D
we prove that for k=3,7.19 ,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7.19 .
From (2) and (3) we have

J,(0)#0 ()
k+#3,7,19

where

We prove that for
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(1) contain infinitely many prime solutions

The New Prime theorem (428)

PajP776 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

- 776 .
Using Jiang function we prove that JPTAk—]
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let X bea given odd prime.
- 776 .
Pa]P +k—](]:15"'ak_l)' (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2
where “= II_’I F , X (P) is the number of solutions of congruence
Iifli[qu +k-j]=0 (modP),q=1,--,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 i

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 776 .
P such thateach of /P + k=7 is a prime.

i XP)=P=1 o from (2)and (3) we have
J,(@)=0

We prove that (1) contain no prime solutions [1,2]

i (@) %0

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(776)" ' ¢* (@) log* N 6

7 (N.2)=[{P<N: jP" +k = j = prime]| ~

#(@) =11(P~1)
k=3,5,389

where

Example 1. Let . From (2) and(3) we have

Jz(a)):() (7)

we prove that for k=3,5,389 ,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,5,389 .

From (2) and (3) we have

J,(@)#0 (8)

179



Academia Arena 2016;8(1s) http://www.sciencepub.net/academia

We prove that for k# 3’5’389,
(1) contain infinitely many prime solutions

The New Prime theorem (429)

PajP778 +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP778 +k _]

Using Jiang function we prove that
solutions.

Theorem. Let K bea given odd prime.
P,jP" +k—j(j=1,-,k-1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
Jo(@)=TI[P=1- 2(P)]

where
k-1

H[qu +k—j]50 (mod P),qg =1,---,P—1

J=l
i X(P)sP-2
J,(@)#0

o=I1F =y (p)

is the number of solutions of congruence

then from (2) and (3) we have

contain infinitely many prime solutions and no prime

(D

(2

(3

4

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes

. 778 .
P such that each of /P +k_J

it XP)=P=1 o from (2) and (3) we have

is a prime.

J,(@)=0
We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N

7, (N,2)={P<N: jP™ +k—j= prime}|~
k( ) H ] ] p }‘ (778)k—1¢k(a)) logk N

where o) = II’I(P b .

Example 1. Let k=3 From (2) and(3) we have
J,(@)=0

we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k> 3.
From (2) and (3) we have

J,(0)#0
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We prove that for k>3 ,
(1) contain infinitely many prime solutions

The New Prime theorem (430)

PajP780 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP780 + k _ ]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
- 15780 i(7i=1-- f—
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

2
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,--,P-1
7= (3
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 780 .
P such thateach of /P + k=] is a prime.
it XP)=P=1 o fom (2) and (3) we have
We prove that (1) contain no prime solutions [1,2]
i (@) %0 .
then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P< N jP™ +k - j = prime}| ~ (0)er -

(780)" ¢" (w) log" N )

w)=I1(P-1

where ) P ( ) .
Example 1. Let k=3,5,7,11,13,31,53,61,79,131,157 . From (2) and(3) we have

k=3,571113,31,53,61,79,131,157
we prove that for ,

(1) contain no prime solutions. 1 is not a prime.

Example 2, Let K #3:3.7:11,13,31,53,61,79,131,157
From (2) and (3) we have
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J,(@)#0 (8)
We prove that for k#3,5,7,11,13,31,53,61,79,131,157

(1) contain infinitely many prime solutions

The New Prime theorem (431)

PajP782 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP782 +k_]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
/ 782 / | — LIS —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k-j]=0 (modP),q=1,---,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
(@) #0 @)

We prove that (1) contain infinitely many prime solutions that is for any k' there are infinitely many primes
. 782 .
P such that each of /P + k—J

it XP)=P=1 o fom (2)and (3) we have

is a prime.

JZ (0)) = 0 (5)
We prove that (1) contain no prime solutions [1,2]
i (@) %0 .
then we have asymptotic formula [1,2]
k-1

7 (N.2)=[{P<N: jP"™ +k = j = prime}| ~ Slwae N

(782)" ¢" (w) log" N )

w)=11(P-1
where ) P ( ) .
Example 1. Let k=3,47 . From (2) and(3) we have
Jo(@) =0 )
k=3,47

we prove that for
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,47 .
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From (2) and (3) we have

J,(0)#0 ()

We prove that for k#3,47 ,
(1) contain infinitely many prime solutions

The New Prime theorem (432)

PajP784 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
ip784 (7 = ces —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
H][qu +k-j]=0 (modP),q=1,--,P-1
7= (3
it XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 784 .
P such thateach of /P + k=7 is a prime.
it XP)=P=1 o fom (2)and (3) we have
We prove that (1) contain no prime solutions [1,2]
J, (@) #0 .
If then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP™ +k = j = prime}| ~ (D)o .

(784)" ¢" (w) log" N )

w)=I11(P-1

where ) P ( ) .
Example 1. Let k=3,5,17,29,113,197 . From (2) and(3) we have
J2(@)=0 D

we prove that for k=3,517,29,1 13,197’

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,17,29,113,197 '
From (2) and (3) we have
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J,(0)#0 ()
We prove that for k # 3,5,17,29,113,197’

(1) contain infinitely many prime solutions

The New Prime theorem (433)

PajP786 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP786 +k_]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
- 15786 i(7i=1-- f—
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,---,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
(@) #0 @)

We prove that (1) contain infinitely many prime solutions that is for any k' there are infinitely many primes
. 786 .
P such that each of /P + k—J

it XP)=P=1 o fom (2)and (3) we have

is a prime.

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(786)" ¢" (w) log" N 6)

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

#@) =T1(P-D)
Example 1. Let k=3,7,263,787 From (2) and(3) we have

Jy(@)=0 .
we prove that for k=3,7,263,787 ’

(1) contain no prime solutions. 1 is not a prime.

k#3,7,263,787

where

Example 2. Let
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From (2) and (3) we have

J,(0)#0 ()

We prove that for k+3,7,263,787 ’

(1) contain infinitely many prime solutions

The New Prime theorem (434)

PajP788 +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
- 788 i(7i=1- k—
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j|=0 (modP),q=1,--,P-1
7= (3
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 788 .
P such that each of /P + k=7 is a prime.
i# XP)=P=1 o fom (2) and (3) we have
We prove that (1) contain no prime solutions [1,2]
J,(®)#0 .
If then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP™ + k= j = prime}| ~ 2 ;

(788)" ¢" (w) log" N )

w)=I11(P-1
where ) P ( ) .
. k=35
xample 1. Let . From (2) and(3) we have

J2(@)=0 D

we prove that for k=35 ,
(1) contain no prime solutions. 1 is not a prime.
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Example 2. Let k#3,5 .
From (2) and (3) we have

J,(0)#0 ()

We prove that for k#3,5 ,
(1) contain infinitely many prime solutions

The New Prime theorem (435)

PajP790 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
PajP790+k_j(j:15”'ak_l) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k-j]=0 (modP),q=1,---,P-1
7= (3
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 790 .
P such thateach of /P + k=7 is a prime.
it XP)=P=1 o fom (2)and (3) we have
We prove that (1) contain no prime solutions [1,2]
J, (@) #0 .
If then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP™ +k= j = prime}| ~ (@) .

(790)" ¢" (w) log" N )

w)=I11(P-1

where ) P ( ) .
Example 1. Let k=31 1. From (2) and(3) we have
J2(@)=0 D

k=311

we prove that for
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k#3,11 .
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k=311 ,
(1) contain infinitely many prime solutions

The New Prime theorem (436)

PajP792 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
j P792 + k_ ]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let X bea given odd prime.
P,jP” +k—j(j=1,-,k-1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
nl[qu +k-j]=0 (modP),q=1,---,P-1
7= (3
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @
We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 792 .
P such thateach of /P + k=7 is a prime.
£ XP)=P=1 o fom (2)and (3) we have
We prove that (1) contain no prime solutions [1,2]
J,(®)#0 .
If then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP” +k = j = prime]| ~ (D)o .

(792)" ¢" (w) log" N )

w)=I11(P-1

where ) P ( ) .
Example 1. Let k=3,5,7,13,19,37,67,73,199,397 . From (2) and(3) we have
J,(w)=0 @
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k=3,5,7,13,19,37,67,73,199,397
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Let k7 3:5:7:13,19,37,67,73,199,397
From (2) and (3) we have
J,(0)#0 ()
We prove that for K #3:3.7:13,19,37,67,73,199,397

(1) contain infinitely many prime solutions

The New Prime theorem (437)

PajP794 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@yvip.sohu.com

Abstract
JjP k- J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
/ 794 / | — LIS —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where 4 (P) is the number of solutions of congruence
k-1
H][qu +k-j]=0 (modP),q=1,---,P-1
/= (3)
it XPISP=2 4o from (2) and (3) we have
(@) #0 @)

We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
. 794 .
P such that each of /P + k—J

it XP)=P=1 o fom (2)and (3) we have

is a prime.

JZ (0)) = 0 (5>
We prove that (1) contain no prime solutions [1,2]
i (@) %0 .
then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ +k = j = prime}| ~ (O)0 .
(794)" ¢" (w) log" N )

where o) = II’I(P b .

Example 1. Let k=3 From (2) and(3) we have
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J,(w)=0 (7)
we prove that for k= 3,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let k> 3.
From (2) and (3) we have
J,(0)#0 (2)

We prove that for k=3,
(1) contain infinitely many prime solutions

The New Prime theorem (438)

PajP796 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP796 + k _j

Using Jiang function we prove that

contain infinitely many prime solutions and no prime
solutions.

Theorem. Let X bea given odd prime.
PajP7% +k—](] :15"'5k_1)

(D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=II[P-1- y(P

(@) =[P-1- (P o

o=I1P

where P, X (P) is the number of solutions of congruence
k-1
[ jg™ +k-j]=0 (modP),g=1,,P-1
Jj=1 (3
it XP)SP=2 4on from (2) and (3) we have
J,(@)#0 @

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 796 .
P such thateach of /P + k= is a prime.
it XP)=P=1 o from (2) and (3) we have

We prove that (1) contain no prime solutions [1,2]
J, (@) #0 .
If then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ +k=j = prime}| ~ (@) .
(796)" ¢" (w) log" N )

¢(@) =11(P~1)
k=3,5797

where

Example 1. Let . From (2) and(3) we have
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J,(w)=0 (7)

we prove that for k=35, 797’
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,5,791 .
From (2) and (3) we have
J,(0)#0 ()

We prove that for k#3,5,791 )
(1) contain infinitely many prime solutions

The New Prime theorem (439)

PajP798 +k—](] :la"'ak_l)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
jP798 + k _j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
- 798 i(7i=1- k—
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- y(P)]

(2)
w=I1P
where 4 (P) is the number of solutions of congruence
k-1
H][qu +k=j|=0 (modP),q=1,--,P-1
/= (3)
i XP)SP=2 4o from (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any k there are infinitely many primes
. 798 .
P such thateach of /P + k—j

i XP)=P=1 o fom (2)and (3) we have

is a prime.

We prove that (1) contain no prime solutions [1,2]
i (@) %0 .
then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ + k= j = prime}| ~ (@) !
(798)" ¢" (w) log" N )

| @) =TI(P-1)

wher
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Example 1. Let k=3,7,43 . From (2) and(3) we have
J,(w)=0 (7)

we prove that for k=3,7,43 ,
(1) contain no prime solutions. 1 is not a prime.

Example 2. Let k#3,7,43 .
From (2) and (3) we have
J,(0)#0 ()

We prove that for k#3,7,43 )
(1) contain infinitely many prime solutions

The New Prime theorem (440)

PajP800 +k—](] :15"'5k_1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JjP 800 4k — J

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let K bea given odd prime.
/ 800 / | — LIS —
Pa]P +k—](]_15 ak 1) (1)
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- y(P)]

(2)
w=I1P
where L4 (P) is the number of solutions of congruence
k-1
n][qu +k=j]=0 (mod P),q=1,--,P-1
7= (3)
i XPISP=2 4o fom (2) and (3) we have
J,(@)#0 @)

We prove that (1) contain infinitely many prime solutions that is for any Kk there are infinitely many primes
. 800 .
P such thateach of /P + k=7 is a prime.

if XP)=P=1 o fom (2)and (3) we have

We prove that (1) contain no prime solutions [1,2]
If Jy(@)#0 then we have asymptotic formula [1,2]

J,(w)o"™ N
k-1 1k k
(800)" ¢" (w) log" N 6

7 (N.2)=[{P<N: jP" + k= j = prime}| ~
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#(@) =11(P~1)
k=3,511,17,41,101,401

where

Example 1. Let . From (2) and(3) we have

Jo(@) =0 )

k=3,511,17,41,101,401
we prove that for ,
(1) contain no prime solutions. 1 is not a prime.
Example 2, Lot K #3:5:11,17,41,101,401
From (2) and (3) we have

J,(0)#0 (2)

We prove that for k#3,5,11,17,41,101,401 )

(1) contain infinitely many prime solutions

Jn+1 (0))

Remark. The prime number theory is basically to count the Jiang function and Jiang prime k -tuple

o()) =2 @0 _ 1;1(1——“ & (P)j(l—%)k

k
singular series ¢ (@) [1,2], which can count the number of prime

numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple singular series

R T4 Ci R P SN
G(H)—I;I(l - j(l )

is false [3-17], which cannot count the number of prime numbers[3].
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1/log N

problems. The probability of of being

prime is false. Assuming that the events “P s prime”,
«P+2 s prime” and “ P+4 is prime” are

independent, we conclude that P, P+2 P+4
are simultaneously prime with probability about

1/log’ N N/log’ N

. There are about primes less

than NV . Letting N —© ye obtain the prime
conjecture, which is false. The tool of additive prime
number theory is basically the Hardy-Littlewood prime
tuples conjecture, but cannot prove and count any
prime problems[6].

Mathematicians have tried in vain to discover
some order in the sequence of prime numbers but we
have every reason to believe that there are some
mysteries which the human mind will never penetrate.

Leonhard Euler(1707-1783)

It will be another million years, at least, before
we understand the primes.

Paul Erdos(1913-1996)

Of course, the primes are a deterministic set of
integers, not a random one, so the predictions given by
random models are not rigorous (Terence Tao,
Structure and randomness in the prime numbers,
preprint). Erdos and Tur d n(1936) contributed to
probabilistic number theory, where the primes are
treated as if they were random, which generates
Szemer é di’s theorem (1975) and Green-Tao
theorem(2004). But they cannot actually prove and
count any simplest prime examples: twin primes and
Goldbach’s conjecture. They don’t know what prime
theory means, only conjectures.
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The Formula of the Particle Radii

In 1996 we found the formula of the particle

radii[ 1-3]
13
r=1.55[m(Gev)] in, 1
L =107" m -

where 1 jn cm and " (Gev) is the mass
of the particles.

From (1) we have that the proton and neutron
radii are 1.5jn.

Pohl et al measure the proton diameter 3 jn[4].

We have the formula of the nuclear radii

r=1204)" o

-13
where 1 fm = 10 em and A4 is its mass
number.
It is shows that (1) and (2) have the same form.

The particle radii 7" < 5 jn and the nuclear radii
r<7 fm.
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