Algebraic Structures of Soft subsets and Partitions of a soft set

¹Singh, D., ² Onyeozili, I.A.

 ¹(Former Professor, Indian Institute of Technology, Bombay)
 Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria. Email: ¹<u>mathdss@yahoo.com</u>
 ²Department of Mathematics, University of Abuja., Abuja, Nigeria. Email: ²ijeozili@gmail.com (corresponding author)

Abstract: This research paper describes certain monoids, semirings and lattices of subsets and partitions of a soft set.

2010 AMS Classification: 20M32, 03E20, 03E02, 03E99 [Singh, D., Onyeozili, I.A. Algebraic Structures of Soft subsets and Partitions of a soft set. Academ Arena 2015;7(12):39-44]. (ISSN 1553-992X). http://www.sciencepub.net/academia. 5. doi:10.7537/marsaaj071215.05.

Keywords: soft set, soft subset, partition, semigroup, monoid, semiring lattice

1. Introduction

Certain algebraic structures consisting of subsets and partitions of a set have been developed which are shown to be useful in applications in the areas of computer arithmetic, sequential machines, formal languages and syntactic analysis (see [5, 13], for details).In the recent years, following the formulation of soft set theory in [7], various operations on soft sets and their properties have been studied (see [2, 3, 6, 9, 10], for example). In the sequel, a number of underlying algebraic structures associated with these operations got developed (see [3, 4,8, and 12] for example). Recently, monoids of multiset partitions have been studied in [11]. In this paper, certain monoids, semirings and lattices of soft subsets and partitions of a soft set are described.

2. Preliminaries

In this section, some basic notions relevant to this paper are presented.

Definition 2.1 [9]

Let U be an initial universe set and E a set of parameters or attributes with respect to U. Let P(U) denote the power set of U and $A \subseteq E$. A pair (F, A) is called a **soft set** over U, where F is a mapping given by $F: A \rightarrow P(U)$.

In other words, a soft set (F, A) over U is a parameterized family of subsets of U. For $e \in A$, F(e) may be considered as the set of eelements or e-approximate elements of the soft set (F,A). Thus (F,A) is defined as

$$(F, A) = \{F(e) \in P(U) : e \in E, F(e) = \emptyset \text{ if } e \notin A\}$$

Characteristically, F is a *set-valued* function of a set. **Definition 2.2** [6]

Let (F, A) and (G, B) be two soft sets over a common universe U, we say that

(a) (F,A) is a **soft subset** of (G,B), denoted $(F,A) \subseteq (G,B)$, if (i) $A \subseteq B$, and (ii) $\forall e \in A, F(e) \subseteq G(e)$. (b) (F,A) is **soft equal** to (G,B), denoted (F,A)= (G,B), if $(F,A) \subseteq (G,B)$ and $(G,B) \subseteq (F,A)$

Definitions 2.3 [2]

Let *U* be a universe, *E* a set of parameters and A $\subseteq E$.

a) (*F*, *A*) is called a **relative null soft set** with respect to *A*, denoted $\tilde{\Phi}_A$, if $E(a) = \phi$, $\forall e \in A$.

b)
$$(F, A)$$
 is called a **relative whole soft set** or

A-universal with respect to A, denoted U_A , if F(e) = U, $\forall e \in A$.

c) The relative whole soft set with respect to E, \tilde{U}

denoted U_E , is called the **absolute soft set** over U. d) The relative null soft set with respect to E, $\tilde{\Phi}$

denoted $\tilde{\Phi}_E$, is called the **null soft set** over U.

e) The unique soft set (F.A) is called the **empty** soft set over *U*, denoted $\tilde{\Phi}_{\phi}$, with empty parameter set.

Remark 2.1:
$$\tilde{\Phi}_{\phi} \cong \tilde{\Phi}_{A} \cong \tilde{\Phi}_{E} \cong (F, A) \cong \tilde{U}_{A} \cong \tilde{U}_{E}$$

Definitions 2.4 [6,9]

Let (F,A) and (G,B) be two soft sets over a common universe U.

(i) The **union** of (F,A) and (G,B), denoted $(F,A) \cup (G,B)$, is a soft set (H,C) where $C = A \cup B$ and $\forall e \in C$

$$H(e) = \begin{cases} F(e), & e \in A - B \\ G(e), & e \in B - A \\ F(e) \cup G(e), & e \in A \cap B. \end{cases}$$

extended intersection of (*F*,*A*) and (*G*,*B*), denoted $(F, A) \cap (G, B)$, is a soft set (*H*,*C*) where $C = A \cup B_{\text{and}} \forall e \in C$,

$$H(e) = \begin{cases} F(e), \text{ if } e \in A - B \\ G(e), \text{ if } e \in B - A \\ F(e) \cap G(e), \text{ if } e \in A \cap B. \end{cases}$$

(ii) The **restricted intersection** of (F,A) and

(G,B), denoted $(F,A)^{\bigcap_{R}}(G,B)$, is a soft set (H,C)where $C = A \cap B$ and $\forall e \in C, H(e) = F(e) \cap G(e)$. If $A \cap B = \phi$ then $(F,A)^{\bigcap_{R}}(G,B) = \tilde{\Phi}_{\phi}$.

(iii) The **restricted union** of (F,A) and (G,B), denoted $(F,A) \stackrel{\bigcup_R}{\subseteq} (G,B)$, is a soft set (H,C)where $C = A \cap B$ and $\forall e \in C$, $H(e) = F(e) \cup G(e)$. If $A \cap B = \phi$ then $(F,A) \stackrel{\bigcup_R}{\subseteq} (G,B) = \tilde{\Phi}_{\phi}$.

In the following Propositions, some results, abstracted from [2,3,6,9,10], which will be useful for later discussion, are presented.

Propositions 2.1

The

Let (F, A), (G, B) and (H, C) be soft sets over a common universe.

1. Idempotent properties

(i)
$$(F,A) \tilde{\cup} (F,A) = (F,A) = (F,A) \cup_R (F,A)$$

(ii)
$$(F,A) \tilde{\frown} (F,A) = (F,A) = (F,A) \cap_R (F,A)$$

(i)
$$(F,A) \cup \Phi = (F,A) = (F,A) \cup_R \Phi$$

(ii)
$$(F,A) \cap \tilde{U} = (F,A) = (F,A) \cap_R \tilde{U}$$

3. Commutative Properties

(i)
$$(F,A) \cup (G,B) = (G,B) \cup (F,A)$$

(ii)
$$(F,A) \cup_R (G,B) = (G,B) \cup_R (F,A)$$

(iii)
$$(F,A) \cap (G,B) = (G,B) \cap (F,A)$$

(iv)
$$(F, A) \cap_R (G, B) = (G, B) \cap_R (F, A)$$

4. Associative Properties

(i)
$$(F,A) \tilde{\cup} ((G,B) \tilde{\cup} (H,C)) = ((F,A) \tilde{\cup} (G,B)) \tilde{\cup} (H,C)$$

(ii)
$$(F,A) \cup_{R} \left((G,B) \cup_{R} (H,C) \right) = \left((F,A) \cup_{R} (G,B) \right) \cup_{R} (H,C)$$

(iii)
$$(F,A) \,\tilde{\cap} \, ((G,B) \,\tilde{\cap} \, (H,C)) = ((F,A) \,\tilde{\cap} \, (G,B)) \,\tilde{\cap} \, (H,C)$$

$$(F,A) \cap_{\mathbb{R}} ((G,B) \cap_{\mathbb{R}} (H,C)) = ((F,A) \cap_{\mathbb{R}} (G,B)) \cap_{\mathbb{R}} (H,C)$$

(iv)
$$Distributive properties$$

$$(i)(F,A) \tilde{\cup} ((G,B) \cap_R (H,C)) = ((F,A) \tilde{\cup} (G,B)) \cap_R ((F,A) \tilde{\cup} (H,C))$$

$$(ii)(F,A) \cap_R ((G,B) \tilde{\cup} (H,C)) = ((F,A) \cap_R (G,B)) \tilde{\cup} ((F,A) \cap_R (H,C))$$

$$(iii)(F,A) \cup_R ((G,B) \tilde{\cap} (H,C)) = ((F,A) \cup_R (G,B)) \tilde{\cap} ((F,A) \cup_R (H,C))$$

$$(iv)(F,A) \tilde{\cap} ((G,B) \cup_R (H,C)) = ((F,A) \cup_R (G,B)) \cup_R ((F,A) \tilde{\cap} (H,C))$$

$$(v)(F,A) \cup_R ((G,B) \cap_R (H,C)) = ((F,A) \cap_R (G,B)) \cup_R ((F,A) \cap_R (H,C))$$

$$(vi)(F,A) \tilde{\cap} ((G,B) \tilde{\cap} (H,C)) \neq ((F,A) \tilde{\cap} (G,B)) \tilde{\cap} ((F,A) \tilde{\cap} (H,C))$$

$$(vii)(F,A) \tilde{\cap} ((G,B) \tilde{\cap} (H,C)) \neq ((F,A) \tilde{\cap} (G,B)) \tilde{\cap} ((F,A) \tilde{\cap} (H,C))$$

$$(vii)(F,A) \tilde{\cap} ((G,B) \tilde{\cap} (H,C)) = ((F,A) \cup_R (G,B)) \tilde{\cup} ((F,A) \tilde{\cap} (H,C))$$

$$(vii)(F,A) \cup_R ((G,B) \tilde{\cap} (H,C)) = ((F,A) \cup_R (G,B)) \tilde{\cup} ((F,A) \cup_R (H,C))$$

$$(x)(F,A) \cup_R ((G,B) \tilde{\cap} (H,C)) = ((F,A) \cap_R (G,B)) \tilde{\cap} ((F,A) \cup_R (H,C))$$

$$(x)(F,A) \cap_R ((G,B) \tilde{\cap} (H,C)) = ((F,A) \cap_R (G,B)) \tilde{\cap} ((F,A) \cap_R (H,C))$$

 $(\mathrm{xi})(F,A)\,\tilde{\cup}\,\big((G,B)\cup_R(H,C)\big) \neq \big((F,A)\,\tilde{\cup}\,(G,B)\big)\cup_R\big((F,A)\,\tilde{\cup}\,(H,C)\big)$ $(\mathrm{xii})(F,A)\,\tilde{\cap}\,\big((G,B)\cap_R(H,C)\big) \neq \big((F,A)\,\tilde{\cap}\,(G,B)\big)\cap_R\big((F,A)\,\tilde{\cap}\,(H,C)\big).$

6. Absorption Properties

$$(F,A) \tilde{\cup} ((F,A) \cap_R (G,B)) = (F,A)$$

ii.
$$(F,A) \cap_R ((F,A) \cup (G,B)) = (F,A)$$

iii.
$$(F,A) \cup_R ((F,A) \cap (G,B)) = (F,A)$$

iv.
$$(F,A) \tilde{\cap} ((F,A) \cup_R (G,B)) = (F,A).$$

(i)
$$(F,A) \cup_R ((F,A) \cap_R (G,B)) \tilde{\subset} (F,A)$$

(ii)
$$(F,A) \cap_R ((F,A) \cup_R (G,B)) \tilde{\subset} (F,A)$$

(iii)
$$(F,A) \tilde{\cup} ((F,A) \tilde{\cap} (G,B)) \tilde{\supset} (F,A)$$

(iv)
$$(F,A) \tilde{\cap} ((F,A) \tilde{\cup} (G,B)) \tilde{\supset} (F,A).$$

Definition 2.5

Let (F,A) and (G,B) be two soft sets over a common universe U. (F,A), and (G,B) are said to be **disjoint** if A and B are disjoint or $(F,A) \cap (G,B) = \Phi_{C}$ where $C = A \cap B$.

Definition 2.6

A collection P of non-empty pair wise disjoint soft subsets of a soft set (F, A) whose union

is (F,A), is called a **partition** of (F,A). In other

words, a collection $\tilde{P} = \{(F_i, A_i), i \in I\}$ is called a partition of (F,A) if

(i)
$$(F, A) = \bigcup_{i \in I} (F_i, A_i)$$
, and
(ii) $A_i \cap A_i = \emptyset$ for $i \neq j$.

The elements of \tilde{P} are called the *blocks* or *cells* of \tilde{P} .

3. Algebraic Structures Associated with Soft Sets

In this section, algebraic structures associated with collections of soft subsets and that of partitions of a soft set are developed.

Let us recall the following definitions of algebraic structures associated with sets.

An algebraic structure (S, *) consisting of a nonempty set S with an associative binary operation * is called a **semigroup**. If there exists an element e in (S, *) such that e*x = x*e = x for all $x \in S$, then S is called a **monoid** with e as the identity element. If for every element $x \in S$, x*x = x, then S is called **idempotent**. An algebraic structure (R, +,.) consisting of a non-empty set R together with two binary operations, usually called addition (+) and multiplication (.), is called a **semiring** if the following conditions are satisfied:

(i) $(\mathbf{R}, +)$ is a commutative monoid,

(ii) (R, .) is a monoid, and

(iii) Multiplication distributes over addition from both sides i.e.,

a(b + c) = ab + ac and (b + c)a = ba + ca.

A **lattice** (L, V, Λ) is a non-empty set L with two binary operations V and Λ such that

(i) (L, V) is a commutative, idempotent semigroup,

(ii) (L , Λ) is a commutative, idempotent semigroup, and

(iii) Absorption properties hold.

If a lattice has identity elements with respect to both the operations, then it is called **bounded**.

If distributive properties hold in a lattice, then it is called a **distributive lattice**.

3.1 Commutative, Idempotent Monoids and Semirings of Soft Subsets of a Soft Set

Let U be an initial universe, A a parameter set with respect to U, and (F, A) a soft set over U.

Let SS(F, A) denote the collection of all soft subsets of a soft set (F, A).

It is immediate to see from Proposition 2.1:(1), (3) and (4) that (SS(F, A), *) are commutative,

idempotent semigroups for $* \in \{\tilde{\cup}, \tilde{\cup}_R, \tilde{\cap}, \tilde{\cap}_R\}$. A. Monoids

1. (SS(F,A), $* \in \{\tilde{\cup}, \tilde{\cap}\}$) are commutative, idempotent monoids with $\tilde{\Phi}_{\emptyset}$ as the identity element.

2. (SS(F,A), \bigcup_R) is a commutative, idempotent monoid with $\tilde{\Phi}_A$ as the identity element.

3. $(SS(F,A), \bigcap_R)$ is a commutative, idempotent monoid with(F,A) as the identity element. **B. Semirings**

1. (SS(F,A), $\tilde{\bigcup}$, \bigcup_R) is a commutative, idempotent semiring with identity element $\tilde{\Phi}_{\emptyset}$.

2. (SS(F,A), \bigcap_R , $\widetilde{\cup}$) is a commutative, idempotent semiring with identity element (F,A).

3. (SS(F,A), \bigcup_{R} , $\widetilde{\bigcirc}$) is a commutative, idempotent semiring with identity element $\tilde{\Phi}_{A}$.

4. (SS(F,A), $\tilde{\cap}$, \bigcup_R) is a commutative, idempotent semiring with identity element $\tilde{\Phi}_{\emptyset}$.

5. (SS(F,A), \bigcup_{R} , \bigcap_{R}) is a commutative, idempotent semiring with identity element $\tilde{\Phi}_{A}$.

6. (SS(F,A), \bigcap_R , \bigcup_R) is a commutative, idempotent semiring with identity element (F,A).

7. (SS(F,A), $\tilde{\frown}$, \bigcap_R) is a commutative, $\tilde{\varPhi}$

idempotent semiring with identity element $\, \tilde{\Phi}_{\, \, \wp} \, . \,$

8. (SS(F,A), $\tilde{\cup}$, \bigcap_R) is a s, idempotent semiring with identity element $\tilde{\Phi}_{\emptyset}$.

[Proofs of the results stated above in (A) and (B) follow from definitions and properties of the respective operations given in section 2]. **Remark 3.1**

1.
$$(SS(F,A), \tilde{\cap}, \tilde{\cup}) \text{ and } (SS(F,A), \tilde{\cup}, \tilde{\cap})$$

are not semirings since \cap and \cup do not distribute over each other(see Proposition 2.1: 5(vii and viii))

2.
$$(SS(F,A), \stackrel{\bigcup_R}{,}, \stackrel{\widetilde{\cup}}{)}$$
 and $(SS(F,A), \stackrel{\bigcap_R}{,}, \stackrel{\widetilde{\cap}}{)}$ are not semirings since $\stackrel{\widetilde{\cap}}{\cap}$ and $\stackrel{\widetilde{\cup}}{\cup}$ do not

()) are not semirings since () and \bigcirc do not

distribute over \bigcap_R and \bigcup_R , respectively (see Proposition 2.1: 5(xi and xii)).

3.2 Bounded, Distributive Lattices of Soft Subsets of a Soft Set

Let SS(F, A) be as defined in 3.1 above.

Proposition 3.1

(i)
$$(SS(F,A), \tilde{\frown}, \bigcup_R)$$
 and $(SS(F,A), \bigcup_R, \tilde{\frown})$, and

(ii) (SS(F,A),
$$\bigcap_R$$
, $\tilde{\cup}$) and (SS(F,A), $\tilde{\cup}$,

are bounded, distributive lattices. **Proof**

(i) (SS(F,A), $\tilde{\cap}$) and (SS(F,A), \bigcup_R) are commutative, idempotent semi groups with $\tilde{\Phi}_{\emptyset}$ and

 Φ_A as the identity elements, respectively(see 3.1 above). Moreover $\tilde{\frown}$ and \bigcup_R distribute and absorb over each other [see Proposition 2.1:5 (iii, iv) and 6(iii, iv), respectively]. Hence (i) holds.

(ii)Similarly, (SS(F,A), $\tilde{\cup}$) and (SS(F,A),

 \bigcap_{R}) are commutative, idempotent semi groups with $\widetilde{\Phi}_{\emptyset}$ and (F,A) as the identity elements, respectively. Also $\widetilde{\cup}$ and \bigcap_{R} distribute and absorb over each other for the production 215 (i. ii) and (ii. iii)

other [see Proposition 2.1:5 (i, ii) and 6(i, ii), respectively]. Hence (ii) holds. **Remark 3.1**

1. $(SS(F,A), \tilde{\cap}, \tilde{\cup})$ and $(SS(F,A), \tilde{\cup}, \tilde{\cap})$ are not lattices since $\tilde{\cap}$ and $\tilde{\cup}$ do not distribute and absorb over each other[see Proposition 2.1: 5(vii, viii) and 7(iii, iv)].

2. (SS(F,A), \bigcup_R , \bigcap_R) and (SS(F,A), \bigcap_R

, \bigcup_R) are not lattices since \bigcup_R , and \bigcap_R do not absorb over each other [see Proposition 2.1: 7(i, ii)]. **3.3 Commutative, Idempotent Monoids and** Semirings of Partitions of a Soft Set

Let $\tilde{P} = \{(F_i, A_i) \mid i \in I\}$ be a partition of a soft \overline{P} .

set (F, A) and let P_k denote the block of a partition. Let \wp (F, A) denote the collection of all

Let \mathcal{D} (F, A) denote the collection of all partitions of (F, A).

We define a binary operation Π on \mathscr{O} (F, A) as follows:

Given \tilde{P}_1 , $\tilde{P}_2 \in \mathcal{P}(F, A)$, let $\tilde{P}_1 \sqcap \tilde{P}_2$ be the soft set consisting of non-empty restricted intersections

of every block of \tilde{P}_1 with every block of \tilde{P}_2 .

Clearly, the operation \square on $\wp(F, A)$ is both associative and commutative, since the operation \bigcap_R on (F, A) is both associative and commutative

and also every element $\tilde{P}_{k} \in \mathcal{P}(F, A)$ is idempotent with respect to \prod i.e. $\tilde{P}_{k} \prod \tilde{P}_{k} = \tilde{P}_{k}$.

Moreover, the identity element with respect to \square is the partition with the single block.

Thus ($\mathcal{P}(F, A)$, Π) is a commutative ,idempotent monoid.

Similarly, if we define a binary operation \sqcup on $\mathscr{D}(\mathbf{F}, \mathbf{A})$ such that every resulting soft set consists of restricted union of every block of \tilde{P}_1 with every block of \tilde{P}_2 , for all \tilde{P}_1 , $\tilde{P}_2 \in \mathscr{D}(\mathbf{F}, \mathbf{A})$, then $(\mathscr{D}(\mathbf{F}, \mathbf{A}) \sqcup)$ also gives rise to a commutative, idempotent monoid with the partition consisting of singleton blocks as the identity element.

Furthermore the following collections give rise to commutative, idempotent semirings:

1. ($\wp(F, A), \sqcup, \square$) with the partition consisting of the single block as the identity element.

2. ($\wp(F, A)$, \sqcap, \sqcup) with the partition consisting of the singleton blocks as the identity element. **Example 3.1**

Let
$$U = \{u_1, u_2, u_3, u_4\}$$
 and $A = \{a_1, a_2, a_3\}$.
Let (F, A) be a soft set over U given by

(F, A) = { F(a₁) = { u_1, u_2 }, F(a₂) = { u_3 },

F(a₃) = $\{u_3, u_4\}$; Now let A₁={a₁}, A₂={a₂}, A₃={a₃};

 $\begin{array}{ll} (F_1,A_1){=}\{F_1(a_1)\}, & (F_2,A_2){=}\{F_2(a_2)\},\\ (F_3,A_3){=}\{F_3(a_3)\} \text{ , where } F_i \text{ is the restriction of } F \text{ to }\\ A_i \text{ , } i{=}1,2,3. \end{array}$

It is easy to verify that $\{\overline{(F_1, A_1)}, \overline{(F_2, A_2)}\}$

 $\overline{(F_3, A_3)}, \text{ is a partition of (F,A). In other words,} \\ \overline{F(a_1), F(a_2), F(a_3)}$

is a partition of (F,A). Similarly, let $B_1 = \{a_1, a_2\}, B_2 = \{a_3\};$

 $(F_1,B_1) = \{F_1(a_1), F_1(a_2)\}, (F_2,B_2) = \{F_2(a_3)\}$ where F_i is the restriction of F to B_i , i=1,2.

 $\left\{\overline{F(a_1), F(a_2)}, \overline{F(a_3)}\right\}$

Thus the collection $\mathcal{P}(F, A)$ of all partitions of (F, A) can be given as

$$\mathcal{P} (\mathbf{F}, \mathbf{A}) = \begin{cases} \tilde{P}_1, \tilde{P}_2, \tilde{P}_3, \tilde{P}_4, \tilde{P}_5 \end{cases}, \text{ where } \\ \tilde{P}_1 = \{ \overline{F(\mathbf{a}_1)}, \overline{F(\mathbf{a}_2)}, \overline{F(\mathbf{a}_3)} \}, \\ \tilde{P}_2 = \{ \overline{F(\mathbf{a}_1)}, \overline{F(\mathbf{a}_2)}, \overline{F(\mathbf{a}_3)} \}, \\ \tilde{P}_3 = \{ \overline{F(\mathbf{a}_1)}, \overline{F(\mathbf{a}_2)}, \overline{F(\mathbf{a}_3)} \}, \\ \tilde{P}_4 = \{ \overline{F(\mathbf{a}_1)}, \overline{F(\mathbf{a}_2)}, \overline{F(\mathbf{a}_2)} \}, \\ \tilde{P}_5 = \overline{\{F(\mathbf{a}_1), F(\mathbf{a}_3)}, \overline{F(\mathbf{a}_2)} \}, \\ \frac{1}{F(\mathbf{a}_1)}, \frac{1}{F(\mathbf{a}_2)}, \frac{1}{F(\mathbf{a}_3)} \}, \\ \frac{1}{F(\mathbf{a}_1)}, \frac{1}{F(\mathbf{a}_2)}, \frac{1}{F(\mathbf{a}_3)} \}, \\ \frac{1}{F(\mathbf{a}_2)}, \frac{1}{F(\mathbf{a}_2)}, \frac{1}{F(\mathbf{a}_3)} \}, \\ \frac{1}{F(\mathbf{a}_2)}, \frac{1}{F(\mathbf{a}_3)}, \frac{1}{F(\mathbf{a}_3)} \}, \\ \frac{1}{F(\mathbf{a}_3)}, \frac{1}{F(\mathbf{a}_3)} \},$$

 $\left\{\overline{F(a_1), F(a_2)}, F(a_3)\right\} = \tilde{P}_2$, and $\tilde{P}_1 \sqcap \tilde{P}_2 = \tilde{P}_2 \sqcap \tilde{P}_1$. As an illustration, let us consider Example 3.1:

 $\tilde{P}_{1} = \left\{ \overline{\left(F_{1}, A_{1}\right)}, \overline{\left(F_{2}, A_{2}\right)}, \overline{\left(F_{3}, A_{3}\right)} \right\}$ Let $=\left\{\overline{\left(F,A_{1}\right)},\overline{\left(F,A_{2}\right)},\overline{\left(F,A_{3}\right)}\right\}$ and $\tilde{P}_2 = \left\{ \overline{(F_1, B_1)}, \overline{(F_2, B_2)} \right\} = \left\{ \overline{(F, B_1)}, \overline{(F, B_2)} \right\}.$ Then, $\tilde{P}_1 \qquad \square \qquad \tilde{P}_2$ $\{(F,A_1)\cap_R(F,B_1),(F,A_1)\cap_R(F,B_2),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_1),(F,A_2)\cap_R(F,B_2),(F,A_2)$ $(F,A_2) \cap_R (F,B_2), (F,A_3) \cap_R (F,B_1), (F,A_3) \cap_R (F,B_2)$ $= \left\{ \overline{F(a_1)}, \ \overline{F(a_2)}, \ \overline{F(a_3)} \right\}.$ P_2 \tilde{P}_1 Similarly, П = $\left\{\overline{F(a_1)}, \overline{F(a_2)}, \overline{F(a_3)}\right\}$ Also, \tilde{P}_2 \Box \tilde{P}_{γ} $\{(F,B_1)\cap_R(F,B_1),(F,B_1)\cap_R(F,B_2),$ $(F, B_2) \cap_R (F, B_1), (F, B_2) \cap_R (F, B_2)$ $\left\{\overline{F(a_1), F(a_2)}, \overline{F(a_3)}\right\} = \tilde{P}_2$ Similar results hold for all other combinations. Thus (\wp (F, A), \square) is a commutative,

idempotent monoid with $\overline{\{F(a_1), F(a_2), F(a_3)\}}$ as the identity element. Similarly, the other structures described in this paper can be illustrated.

3.4 Bounded, Distributive Lattices of Partitions of a Soft Set

Let \wp (F, A) be as defined in 3.3 above.

We define a binary operation \prod_R on \wp (F, A) as follows:

Given \tilde{P}_1 , $\tilde{P}_2 \in \mathcal{O}(F, A)$, let $\tilde{P}_1 \prod_R \tilde{P}_2$ be the soft set consisting of non-empty restricted intersections of every block of \tilde{P}_1 with every block of \tilde{P}_2 .

Similarly, let the operation $\sqcup_{\rm E}$ on $\wp({\rm F}, {\rm A})$ be defined as: $\tilde{P}_1 \sqcup_{\rm E} \tilde{P}_2$ be the soft set consisting of union of every block of \tilde{P}_1 with every block of \tilde{P}_2 , for all \tilde{P}_1 , $\tilde{P}_2 \in \wp({\rm F}, {\rm A})$.

Proposition 3.2

(i) $(\mathcal{O}(F, A), \bigsqcup_{E}, \prod_{R})$, (ii) $(\mathcal{O}(F, A), \prod_{R}, \bigsqcup_{E})$, (iii) $(\mathcal{O}(F, A), \bigsqcup, \prod)$ and (iv) $(\mathcal{O}(F, A), \prod, \bigsqcup)$ are bounded, distributive lattices. **Proof**

Clearly, the operations \prod_{R} and \bigsqcup_{E} on $\mathscr{P}(F, A)$ are both associative and commutative, since the

=

=

operations \bigcap_R and $\widetilde{\cup}$ on (F, A) are both associative and commutative [see Proposition 2.1:3(i \widetilde{D}

iv) and 4(ii,iv), respectively]. Also every element \tilde{P}_k ∈ \wp (F, A) is idempotent with respect to Π_R and \sqcup_E i.e., $\tilde{P}_k \prod \tilde{P}_k = \tilde{P}_k$, since both \bigcap_R and $\tilde{\cup}$ are idempotent [see Proposition 2.1:s 1(i ii)]. Hence (\wp (F, A), Π_R) and(\wp (F, A), \sqcup_E) are commutative, idempotent semigroups. Also Π_R and \sqcup_E absorb over each other [see Proposition 2.1: 6(i ii)]. Thus (\wp (F, A), Π_R) and (\wp (F, A), \sqcup_E) give rise to lattices. Moreover, the identity elements with respect to Π_R and \sqcup_E are the partition consisting of the single block and the partition consisting of the singleton blocks, respectively. Furthermore Π_R and \sqcup_E distribute over each other [see Proposition 2.1: 5(i, ii)].

Hence (i) and (ii) hold.

Similarly, (iii) and (iv) can be proved.

Concluding Remarks

Since the algebraic structures developed in this paper are relatively new, it seems promising to introduce some other operations which would not only be alternatives to rather extensions of \square (see [11], for some related details).

References

- 1. H. Aktas, and N. Cagman, Soft sets and soft groups, *Information sciences*, 177(13)(2007) 2726-2735.
- 2. M.I. Ali, F. Feng, X.Y. Lui, W.K.Min and M.Shabir, On some new operations in soft set theory, *Computers and mathematics with applications*, 57(9) (2009) 1574-1553.

12/23/2015

- 3. M. I. Ali, Shabir, M. and M. Naz, Algebraic structures of soft sets associated with new operations, *Computers and Mathematics with Applications*, 61(9)(2011) 2647- 2654.
- 4. F. Feng, Y.B. Jun and Z. Xianzhong, Soft semirings, *Computers and Mathematic with applications*, 56(10) (2008)2621-2628
- 5. D.E Knuth, The Art of Computer Programming, Semi-numerical Algorithms, Vol. II, 2nd Edn., Addison-Wesley, 1981.
- 6. P.K. Maji, R. Biswas, and A.R. Roy, Soft set theory, *Computers and Mathematics with applications*, 45(4-5) (2003) 555-562.
- 7. D. Molodtsov, Soft set theory First results, *Computers and Mathematics with applications*, 37(4-5) (1999) 19-31.
- K. Qin and Z. Hong, On soft equality, Journal of Computational and Applied Mathematics, 234(2010) 1347-1355.
- 9. Sezgin, and A.O. Atagun, On operations of soft sets, *Computers and mathematics with applications*, 60, (2011) 1840-1849.
- D. Singh, and I.A. Onyeozili, Some results on Distributive and absorption properties on soft operations, *IOSR Journal of mathematics* (*IOSR-JM*), 4(2) (2012) 18-30.
- 11. D. Singh, A. Alkali, and J.N Singh, Monoids of Partitions of a Multiset, *Journal of Mathematical Sciences and Mathematics Education*, 9(1) (2014)9-16.
- 12. Q.M Sun, Z.L. Zhang, and J. Liu, Soft Sets and Soft Modules, *Rough Sets and Knowledge Technology*, 5009(2008) 403-409.
- 13. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, *Tata McGraw-Hill Edition*, 1997.