The New Prime theorem (32)

$$
x^{3}+2 y^{3}
$$

Chun-Xuan Jiang

P.O. Box 3924, Beijing 100854, P. R. China
jiangchunxuan@vip.sohu.com
Abstract: Using Jiang function we prove $x^{3}+2 y^{3}$ (D. R. Heath-Brown, prime represented by $x^{3}+2 y^{3}$, Acta Math., 186(2001)1-84).
[Chun-Xuan Jiang. The New Prime theorem (32) $x^{3}+2 y^{3}$. Academ Arena 2015;7(1s): 57-58]. (ISSN 1553-992X). http://www.sciencepub.net/academia. 32

Keywords: prime; theorem; function; number; new
Theorem 1. We define prime equation

$$
\begin{equation*}
P_{3}=P_{1}^{3}+2 P_{2}^{3} \tag{1}
\end{equation*}
$$

There are infinitely many primes P_{1} and P_{2} such that P_{3} is a prime.
Proof. We have Jiang function [1,2]

$$
\begin{equation*}
J_{2}(\omega)=\prod_{P}\left[P^{2}-3 P-\chi(P)\right] \tag{2}
\end{equation*}
$$

We have

$$
\begin{equation*}
2^{\frac{P-1}{3}} \equiv 1 \quad(\bmod P) \tag{3}
\end{equation*}
$$

If (3) has a solution then $\chi(P)=2 P-1$. If (3) has no solution then $\chi(P)=-P+2 . \chi(P)=1$ otherwise.

We have

$$
\begin{equation*}
J_{3}(\omega) \neq 0 \tag{4}
\end{equation*}
$$

We prove that there are infinitely many primes P_{1} and P_{2} such that P_{3} is a prime.
We have asymptotic formula [1,2]

$$
\begin{equation*}
\pi_{2}(N, 3)=\mid\left\{P_{1}, P_{2} \leq N: P_{3}=\text { prime }\right\} \left\lvert\, \sim \frac{J_{2}(\omega) \omega}{6 \phi^{3}(\omega)} \frac{N^{2}}{\log ^{3} N}\right. \tag{5}
\end{equation*}
$$

Remark. The prime number theory is basically to count the Jiang function $J_{n+1}(\omega)$ and Jiang prime $k_{\text {-tuple }}$ singular series $\sigma(J)=\frac{J_{2}(\omega) \omega^{k-1}}{\phi^{k}(\omega)}=\prod_{P}\left(1-\frac{1+\chi(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}$ number. The prime distribution is not random. But Hardy prime k-tuple singular series $\sigma(H)=\prod_{P}\left(1-\frac{v(P)}{P}\right)\left(1-\frac{1}{P}\right)^{-k}$ is false [3-8], which cannot count the number of prime numbers.
Szemerdi's theorem does not directly to the primes, because it can not count the number of primes. It is unusable. Cramr's random model can not prove prime problems. It is incorrect. The probability of $1 / \log N$ of being prime is false. Assuming that the events " P is prime", " $P+2$ is prime" and " $P+4$ is prime" are independent, we conclude that $P, P+2, P+4$ are simultaneously prime with probability about $1 / \log ^{3} N$.

There are about $N / \log ^{3} N$ primes less than N ．Letting $N \rightarrow \infty$ we obtain the prime conjecture，which is false．The tool of additive prime number theory is basically the Hardy－Littlewood prime tuple conjecture，but can not prove and count any prime problems［6］．

Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate．Leonhard Euler It will be another million years，at least，before we understand the primes．Paul ErdÖs

Author address in USA：

Chun－Xuan Jiang

Institute for Basic Research Palm Harbor，FL 34682，U．S．A．
Jiangchunxuan＠vip．sohu．com

References

1．Chun－Xuan Jiang，Foundations of Santilli＇s isonumber theory with applications to new cryptograms，Fermat＇s theorem and Goldbach＇s conjecture．Inter．Acad．Press，2002，MR2004c：11001， （http：／／www．i－b－r．org／docs／jiang．pdf）（http：／／www．wbabin．net／math／xuan13．pdf）（http：／／vixra．org／numth／）．
2．Chun－Xuan Jiang，Jiang＇s function $J_{n+1}(\omega)$ in prime distribution．（http：／／www．wbabin．net／math／xuan2．pdf．） （http：／／wbabin．net／xuan．htm\＃chun－xuan．）（http：／／vixra．org／numth／）．
3．Chun－Xuan Jiang，The Hardy－Littlewood prime k－tuple conjectnre is false．（http：／／wbabin．net／xuan．htm\＃ chun－xuan）（http：／／vixra．org／numth／）．
4．G．H．Hardy and J．E．Littlewood，Some problems of＂Partitio Numerorum＂，III：On the expression of a number as a sum of primes．Acta Math．，44（1923）1－70．
5．W．Narkiewicz，The development of prime number theory．From Euclid to Hardy and Littlewood． Springer－Verlag，New York，NY．2000，333－353．这是当代素数理论水平．
6．B．Green and T．Tao，Linear equations in primes．To appear，Ann．Math．
7．D．Goldston，J．Pintz and C．Y．Yildirim，Primes in tuples I．Ann．Math．，170（2009）819－862．
8．T．Tao．Recent progress in additive prime number theory，preprint．2009．http：／／terrytao．files．wordpress． com／2009／08／prime－number－theory 1．pdf．
9．Vinoo Cameron．Prime Number 19，The Vedic Zero And The Fall Of Western Mathematics By Theorem．Nat Sci 2013；11（2）：51－52．（ISSN：1545－0740）． http：／／www．sciencepub．net／nature／ns1102／009 15631ns1102＿51＿52．pdf．
10．Vinoo Cameron，Theo Den otter．PRIME NUMBER COORDINATES AND CALCULUS．Rep Opinion 2012；4（10）：16－17．（ISSN：1553－9873）． http：／／www．sciencepub．net／report／report0410／004 10859report0410＿16 17．pdf．
11．Vinoo Cameron，Theo Den otter．PRIME NUMBER COORDINATES AND CALCULUS．J Am Sci 2012；8（10）：9－10．（ISSN：1545－1003）． $\underline{\mathrm{http}: / / \mathrm{www} . j o f a m e r i c a n s c i e n c e . o r g / j o u r n a l s / a m-s c i / a m 0810 / 002 ~ 10859 b a m 0810 ~ 9 ~ 10 . p d f . ~}$
12．Chun－Xuan Jiang．Automorphic Functions And Fermat＇s Last Theorem（1）．Rep Opinion 2012；4（8）：1－6．（ISSN： 1553－9873）．http：／／www．sciencepub．net／report／report0408／001＿10009report0408＿1＿6．pdf．
13．Chun－Xuan Jiang．Jiang＇s function $J_{n+1}(\boldsymbol{C})$ in prime distribution．Rep Opinion 2012；4（8）：28－34． （ISSN：1553－9873）．http：／／www．sciencepub．net／report／report0408／007＿10015report0408＿28＿34．pdf．
14．Chun－Xuan Jiang．The Hardy－Littlewood prime k－tuple conjecture is false．Rep Opinion 2012；4（8）：35－38． （ISSN：1553－9873）．http：／／www．sciencepub．net／report／report0408／008＿10016report0408＿35＿38．pdf．
15．Chun－Xuan Jiang．A New Universe Model．Academ Arena 2012；4（7）：12－13（ISSN 1553－992X）． http：／／sciencepub．net／academia／aa0407／003＿10067aa0407＿12＿13．pdf．

