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Abstract

In this paper a quantitative discussion on a theory describing the relationship between the continuity and

momentum equation in two dimensional flow together with the momentum equation in vectorial
form:pd% =-Vp+ pg + £V ?*q, on expanding V*(V.q) in cylindrical polar coordinates, the end result

proved to be Euler equation. [Academia Arena, 2009;1(1):62-72]. ISSN 1553-992X.
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1.0 Introduction:

A more detailed view of the fluxes across the parcel can be obtained within a reasonable space of text of we
restrict our attention to two dimensions. We can then write the equations for the component and look closely at the
change in these components.

We consider planar view of a parcel unit depth. Assume p is constant across the parcel, so we can write
for the mass of the parcel, Sy = pov = pAXAY L . In the two-dimensional flow, each component of velocity can
vary in both X and Yy directions. We can approximate those velocity changes across our incremental parcel by a
Taylor expansion. In this case we will consider the base values of qualities such as pressure and velocity to be the
value of the center of the parcel and expand around these values. Note that value of the corner, x = Yy = z=0,
could also be assured as base values. Since the parcel is infinitesimal with respect to mean flow scales. The
magnitudes of these values are uniform across the parcel in the limitov — 0. We are writing the incremental

change at the point, we need not be zero. Again we look at the total change in the density and the scope of the parcel

as it instantaneously occupies the point (x, Y ). We can derive the continuity equation in a slightly different manner,
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by considering a specific infinitesimal parcel in a Largrangian sense. The derivation will illustrate the close
connection between Largrangian and Eulerian perspectives and we will send up with the familiar Eulerian
expression. Starting with the Langrangian perspectives we consider a very small parcel such thatov — 0, with no
sinks or sources. We then follow the particular parcel that experiences volume and density changes with respects to
five only field varcash will vary infinitesimal across the small dimensions of the parcel. Then the statement for the

constant mass of fluids parcel, then the statement, for the constant mass of this parcel pJV is completely expressed

in the five derivatives, D(( 0oV )/0t)= 0. However, when the parcel moves through the fluid, to volume must
distorts and changes due to the changing forces in the thus field. The derivative which separated into density and
volume changes by using the chain rule for differentiation. In the end, the derivative can be converted to the
Eulerian expression.
2.0 Mathematical Analysis

The differences between the various derivatives can be explained in a more formal manner as follows:

Let consider a fluid particle moving with a load velocity;

g=lv+jv+kw 1

and let the change of the property b =b(X, Yy ,z,t) of the particle be investigated. The change in b with

time and position may be expressed as

db= (a—bJét + (a—bjax + [a—bjay + (ibjaz 2
ot OX oy oz

The rate of change of s in time b At equation become

v—b:a—b+U§+Va—b+Wa—b} 3
vVt ot OX oy 0z
Vb b
_=—4
ot

z-ob 4

With (3) we can direct operation of Ob in new coordinates.
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viTa e Yty

5
WP gL, Ly, P
Vi ot "or rod " rsin 606

Which the law of conservation of mass has already been presented in a form applicable to a control volume

may be rewritten as:

@ = .[ %av +J'aq -nds

6
Application of the divergence
(2) theorem to the surface integral
Ipq-nds=jA-(pq)dv- 7
Apply 6 into
op
—=A dv=0 8
j{ at (pq)}
op
Hence, —+ A =0 9
ence p (pq)

The equation (9.0) is known as the equation f continuity. It is the differential form of the law of
conservation of mass written in form of the flow field.
Equation (9.0) is now rewritten in detail in the three most continuity used coordinate systems.

In Cartesian coordinates

o, a(pu)  a(pw) , a(pw) _
ot ox oy oz

10

In cylindrical coordinates

p , d a(rpar)  10(pad) , (paz) _
ot r or r o6 0z

11

In spherical coordinates

64



Academia Arena, 2009;1(1), ISSN 1553-992X, http://www.sciencepub.net, aarenaj@gmail.com

: |
o, 1a(r'pg) 1 o(padsing) 1 a(pad) _,

12
ot r® or rsind 00 sind 00

In some particular cases equation of continuity assumes simpler form given in Cartesian coordinates.

A-(pq) =0
or : 13
A-q=0

Now, for momentum, Newton’s second law of motion states that the rate of change of momentum of a

thermodynamics system equals the sum total of the forces acting on the system.
D
— | padv = [ gpdv + [Tds 14
Dr \ Vv S

When g is a general body force per unit mass,

and T is the system boundary for x-component Equation 14 becomes
D
—I pxdv = j gxpadv + anxds 15
Dt \ \ S

The Reynolds transport theorem may now be applied to the left-hand side of this equation

udu  vou Wau}
+ dv 16

D du

—j pudv:jp{—+ +

Dt L Lot ou oy oz
The stress term Tu inside the surface integral is now written in terms of its components to yield

JTnndS = I[Txxi + Ty +szk]- nds = I{%+%+a@—ﬁ}dv 17

v
where the divergence theorem has been used again

By subtraction of equation 16 and 17 into equation 15 yields

ou udu Vvou wou oT, 0T, 0T,
I pl—+ + + -0, |- + + =0 18
ot au ot ot ou oy 0z

v

Becomes
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aJuaJvaJaﬁthaT+5TaT
ataxayatg*axayaz 19

Similarly for the y- and Z- Components

o w v aul, d, N, d,
aayal*"x Ty a 20
au LUV vou | wdu or, oI, T,

=P, + + + 21
Aa ay ot X oy o

e . Vg term vanishes for incompressible flows. Hence the thermodynamic presume may be define for an
incompressible fluid as the average normal stress:

T, +Tyy +T,

p: 3 22

It is customary to separate out the pressure terms from the total stress

Tij+-pdj+1] 23
And 7; =0pZij equation 23 is written in tensor form as
T=p+ 7 24

p 0 O
[0 p O

0 0 p

Equation 23 is used to modify the momentum equation by subtraction 8 from 20.

0 or,,
M gM M M _8_p+pgy+ Do 2 +8TZX 25
ot OX oy ot OX OX oy 0z
0 0
pa—u+U@+V@+W@ ——a_p+pgy+ Doy TVXJF(%ZX 26
ot OX oy ot OX OX oy 0z
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0 or, 0
p@+U@+V%+W@ =—@+pgy+ Ta  Z e Ola 27
ot OX oy ot oy OX oy 0z
This may be put in symbolic compact form.
Aq
—=-V +V.r 28
P AL 09

The expression for the stress and the rate of strain component in several coordinate system are now written down.

In Cartesian coordinates of g=iu + jv + kw

1(ou ov 1({ov ow 1(8u 6Wj
Ey =S|l AT o ey =5l T 2 1w =5l o T a0 )
Yo2ley ox) Y 2lez oy ) Y 2\oz  ox

ou ov oV ow ou ow
}‘“xy:/u_-i__’}\’xy::u__'__’}\’xy:,u —t—
oy oX oz oy 0z 0OX

Ay =0l —, Ay, =0U—, A, =0U—, 29
OX

In cylindrical coordinates 0 =€,(, + €40, +€,0,

1 oqr o (q”’ B ogr 0 qV
g KB S -

_E[%J} _— %ﬁ}

‘075189 or o o
ol 1) s 1)
2 0% r o8 oz r o9
oqr g9 qr 0qz
= = -t z = A
fr T o (% 09 rj ™
oqr oqs  qr 0qz
=2u—, =2 22T, =2u— 30
fr =M T ”(% 09 rj iy

In spherical coordinates g =€,q, + €,0, + €,d,
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{5 )
ERp = ; _ Rsing aque (@RH RO = ”{ RSTnH G/R[(?RH
o= %{ RS?na o+ Sig : %9(3?;00}} " ’{ﬁaq%w 3 %Rﬁslnﬁﬂ

ERR=%, Ton =24 8qR
oR R’

E@@:G@q—mﬂ} 0p=2 [16qR+qu

RJR R ROR R

Egp(,,:(;aq_m@m}

: oqe +ﬁq6€ot0 a1
RSing dp R R

TP =24 ——
( RSing dp R R

Equation 29-31 may be used to eliminate the stress components from the differential momentum equation 25-27

Becomes

LA @+y 82v+62v+82v
p ng 6)(2 ayZ 822

oV o (v v v
:ng + 2 + 2 + 2
ow \o¢ of @

oz
oW oW ow  ow op o’'w  o*w  o*w
Pl tU—+V—+W—|=p,, —+ U >t >t 32
ot OX oy 0z ow OX oy 0z

Equ. 32 constitute a system of three nonlinear second order partial differential equation. The proper boundary
conditions for the velocity on a rigid boundary are: q, =0, =0
Where ¢, is the minimal component of the velocity relative to the solid boundaries and g; is its tangential component.

These conditions are also termed the non-peneuration (g, = 0) and no-slip (g, = 0) viscous boundary conditions.

Equation 3.2 becomes

pg—?=—vp+p9 — 1VX(Vxq)=-Vp + pg — uV?q 33
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If V7Zisthe Laplacian operator applied to the velocity vector in Cartesian coordinates. By expanding V x (V X q)

in cylindrical polar coordinates and using (13) we obtain

oqr oqr oqr ogqr  q°é
[{q ar L g0 L g q_q]

_I_
ot Rl or rof ¢ oz r
op o(10 10%q, p aq@
. rq, )| +— - 34
Po =5 {ar( arj(q )} (2 022 r? o0

+0;

oq0  6q0 890 9o qrqé
p(q 99 , 49299 | qzq_qu
ot or ro6 oz T

op o(10 1 0°6y, o°y, 2 &q6
= ——— 4y —| ——(rqb) |+ — ~+ = — 35
Po " o0 ﬂ{ar (r ar( a )j

r’ oz’ oz r? o6
p(aqz Lar o9z 440 o9z ‘q 8qz)

ot or rog ' oz
2
=Py~ 6p+ﬂ a( %j+iza qzz+aqzz 36
oy ror\ or 00 0z

By repeating the for spherical coordinate, we obtaqin,

2
=Py~ _12 @+,u Li(R 6q0j+ 21_ 0 5 [Slnea(wj
RSin“6 ¢ R oR R R“Sing 06 00

I o°qe 2 oqr  2Cosé oqe
+'u a2 20:in2 + 2¢0; + 20:in2
RSin“@ R“Sin“d R°Sind dp R<°Sin“@ Op

37

By substituting £ =0 in the navier-stokes equating which is called momentum equation (3.2) - (3.7) we obtain an
equation

Dq
—Hp _V 38
Pop =P VP

This is called the Euler equation
3.0 Discussion

Solutions of the momentum equation result in velocity vectors  and pressure p which satisfy both the

momentum equation and the continuity equation. Given such a combination, [{ . p 1, we can check whether it
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constitutes a solution by substitution into the equations. How to find such a solution is another matter and any
general step leading toward this goal is useful. For two dimensional flows it is possible to eliminate the continuity
equation from the system of equations by using only functions which satisfy the continuity equation. This
elimination is a formal step toward a solution and functions which affect this elimination and the stream functions.
And if the flow is defined as two dimensional when its description in Cartesian coordinates shows no
z-component of the velocity and no dependence on the z-coordinate. Such a flow can be described in the z=0
plane, show a flow pattern identical to that inthe z =0 plane. The Z =0 plane is therefore called representative

plane.

m(r, &)

Figure 1.0

The figure 1.0 shows a representative plane for two-dimensional flow, with four streamlines denoted by the
letters A, B, C, D. the whole pattern may be shifted

In the z-direction parallel to itself. Thus the streamlines also represent stream sheets, i.e barriers which are
not crossed by the flow. The Mass flux entering at the left, between, say, streamlines A and B must therefore come
out at the right side without change. Because the distance between the two streamlines accommaodating this mass

flux seems in the drawing to increase, the mass flux seems per unit Cross section p..(, must decrease from left to
right. There is therefore some relation between the convergence and divergence of stream lines and the vector p.q .

Furthermore, because stream sheets are not crossed by the flow, each sheet represents a certain mass flux per unit
depth of stream sheet taking place below it i. flowing between it and some particular stream sheet representing zero

flux.
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This mass flux is called the stream function and it is denoted by @
09 =(0y)up)
= (= ax)(wp)

From which follows

OX -0
0= yp="0

oy OX
Using planne polar coordinate in the representative plane and letting.
MB=pA+de

de =(rda(g, )
dg=(dr)(-qgp)
From which follows

_10¢ — 0
W13 P= "o
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