Articles | Volume 13, issue 2
https://doi.org/10.5194/acp-13-895-2013
https://doi.org/10.5194/acp-13-895-2013
Research article
 | Highlight paper
 | 
22 Jan 2013
Research article | Highlight paper |  | 22 Jan 2013

Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations

A. Asmi, M. Collaud Coen, J. A. Ogren, E. Andrews, P. Sheridan, A. Jefferson, E. Weingartner, U. Baltensperger, N. Bukowiecki, H. Lihavainen, N. Kivekäs, E. Asmi, P. P. Aalto, M. Kulmala, A. Wiedensohler, W. Birmili, A. Hamed, C. O'Dowd, S. G Jennings, R. Weller, H. Flentje, A. M. Fjaeraa, M. Fiebig, C. L. Myhre, A. G. Hallar, E. Swietlicki, A. Kristensson, and P. Laj

Abstract. We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.

Download
Altmetrics
Final-revised paper
Preprint