Revealing the Strain-Hardening Mechanisms of Advanced High-Mn Steels by Multi-Scale Microstructure Characterization

Article Preview

Abstract:

We have investigated the strain-hardening mechanisms across the relevant scales in a Fe-22Mn-0.6C (wt.%) twinning induced plasticity steel by multi-scale microstructure characterization. The approach makes use of electron microscopy techniques such as electron channeling contrast imaging (ECCI) to characterize microstructure features at the micro/nanoscale, and atomic-scale investigations of partitioning behavior across interfaces and solid solution/clustering effects by atom probe tomography (APT). The contribution of most relevant microstructure features to strain hardening is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

755-760

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties, Current Opinion Solid State Mater. Sci. 15 (2011) 141-168.

DOI: 10.1016/j.cossms.2011.04.002

Google Scholar

[2] D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Revealing the strain hardening behavior of twinning induced plasticity steels through a dislocation density- and twin evolution-based constitutive model: theory, simulations, experiments Acta Mater. 61 (2013).

DOI: 10.1016/j.actamat.2012.09.064

Google Scholar

[3] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt. % Mn–0. 6 wt. % C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59 (2011) 6449-6462.

DOI: 10.1016/j.actamat.2011.07.009

Google Scholar

[4] I. Gutierrez-Urrutia, D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel Acta Mater. 60 (2012) 5791-5802.

DOI: 10.1016/j.actamat.2012.07.018

Google Scholar

[5] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int. 43 (2003) 438-446.

DOI: 10.2355/isijinternational.43.438

Google Scholar

[6] G. Frommeyer, U. Brüx, Microstructure and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Res. Int. 77 (2006) 627-633.

DOI: 10.1002/srin.200606440

Google Scholar

[7] I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in Twinning-Induced Plasticity steels, Scripta Mater. 66 (2012) 992-996.

DOI: 10.1016/j.scriptamat.2012.01.037

Google Scholar

[8] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt. % Mn–0. 6 wt. % C TWIP steel, Mater. Sci. Eng. A 527 (2010) 3552-3560.

DOI: 10.1016/j.msea.2010.02.041

Google Scholar

[9] R.K.W. Marceau, P. Choi, D. Raabe, Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography, Ultramicroscopy (in press).

DOI: 10.1016/j.ultramic.2013.01.010

Google Scholar

[10] R.K.W. Marceau, I. Gutierrez-Urrutia, M. Herbig, K.L. Moore, S. Lozano-Perez, D. Raabe, Multi-scale correlative microscopy investigation of bith structure and chemistry of deformation twin bundles in Fe-Mn-C steel, Microsc. Microanal. (in press).

DOI: 10.1017/s1431927613013494

Google Scholar

[11] Z.X. Wu, Y.W. Zhang, D.J. Srolovitz, Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals, Acta Mater. 57 (2009) 4508–4518.

DOI: 10.1016/j.actamat.2009.06.015

Google Scholar

[12] M. Chassagne, M. Legros, D. Rodney, Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni, Acta Mater. 59 (2011) 1456–1463.

DOI: 10.1016/j.actamat.2010.11.007

Google Scholar

[13] G.B. Olson, M. Cohen, A perspective on martensitic nucleation, Ann. Rev. Mater. Sci. 11 (1981) 1-30.

Google Scholar

[14] I. Gutierrez-Urrutia, D. Raabe, Microbanding mechanism in a Fe-22Mn-0. 6C (wt. %) high-Mn twinning induced plasticity steel, Scripta Mater. 69 (2013) 53-56.

DOI: 10.1016/j.scriptamat.2013.03.010

Google Scholar

[15] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scripta Mater. 61 (2009).

DOI: 10.1016/j.scriptamat.2009.06.018

Google Scholar

[16] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of electron channeling with EBSD: towards the quantitative characterization of deformation structures in the SEM, JOM (in press).

DOI: 10.1007/s11837-013-0678-0

Google Scholar

[17] J.G. Sevillano, An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel, Scripta Mater. 60 (2009) 336-339.

DOI: 10.1016/j.scriptamat.2008.10.035

Google Scholar

[18] D. Kuhlmann-Wilsdorf, The LES Theory of Solid Plasticity, in: F. R. N. Nabarro, M. S. Duesbery (Eds. ), Dislocations in Solids. Volume 11, (2002).

Google Scholar

[19] J.W. Christian, S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995) 1-157.

Google Scholar

[20] S. Curtze, V.T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta Mater. 58 (2010) 5129-5141.

DOI: 10.1016/j.actamat.2010.05.049

Google Scholar

[21] H. Idrissi, K. Renard, D. Schryvers, P. J. Jacques, On the relationship between the twin internal structure and the work-hardening rate of TWIP steels, Scripta Mater. 63 (2010) 961-964.

DOI: 10.1016/j.scriptamat.2010.07.016

Google Scholar

[22] J. -E. Jin, Y. -K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Mater. 60 (2012) 1680-1688.

DOI: 10.1016/j.actamat.2011.12.004

Google Scholar

[23] S. -J. Lee, J. Kim, S. N. Kane, B.C. De Cooman, On the origin of dynamic strain aging in twinning-induced plasticity steels, Acta Mater. 59 (2011) 6809-6819.

DOI: 10.1016/j.actamat.2011.07.040

Google Scholar

[24] L. Bracke, L. Kestens, J. Penning, Direct observation of the twinning mechanism in an austenitic Fe–Mn–C steel, Scripta Mater. 61 (2009) 220-222.

DOI: 10.1016/j.scriptamat.2009.03.045

Google Scholar

[25] H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P. J. Jacques, On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater. 58 (2010) 2464-2476.

DOI: 10.1016/j.actamat.2009.12.032

Google Scholar

[26] H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman, S. K. Kim, Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure, Acta Mater. 59 (2011).

DOI: 10.1016/j.actamat.2011.08.031

Google Scholar