Deformation Behaviour of a Commercial Pure Titanium Alloy during Hot Compression Testing

Article Preview

Abstract:

The flow curve behavior and microstructure evolution of commercially pure titanium (CP-Ti) through uniaxial hot compression was investigated at 850 °C and a strain rate of 0.1/s. Electron back scattered diffraction (EBSD) was employed to characterize the microstructure and crystallographic texture development for different thermomechanical conditions. The stress-strain curves of CP-Ti alloy under hot compression displayed a typical flow behavior of metals undergoing dynamic recrystallization (DRX), which resulted in grain refinement. The critical strain for the onset of DRX was 0.13 using the double differentiation analysis technique. It was also revealed that the texture was markably altered during hot deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

281-286

Citation:

Online since:

November 2013

Export:

Price:

[1] G. Lutjering, J.C. Williams, Titanium (Second Edition), Springer-Verlag, Berlin, 2007.

Google Scholar

[2] S.L. Semiatin, V. Seetharaman, I. Weiss, The thermomechanical processing of alpha/beta titanium alloys, JOM 49 (1997) 33-68.

DOI: 10.1007/bf02914711

Google Scholar

[3] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Second Edition), Elsevier, Oxford, 2004.

DOI: 10.1016/b978-008044164-1/50003-7

Google Scholar

[4] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review, Mater. Sci. Eng. A 238 (1997) 219-274.

DOI: 10.1016/s0921-5093(97)00424-3

Google Scholar

[5] H. Beladi, P. Cizek, P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 Pct Fe model alloy: Microstructure and texture evolution, Metal. Mater. Trans. A 40 (2009) 1175-1189.

DOI: 10.1007/s11661-009-9799-z

Google Scholar

[6] X.J. Zhu, M.J. Tan, W. Zhou, Enhanced superplasticity in commercially pure titanium alloy, Scr. Mater. 52 (2005) 651-655.

DOI: 10.1016/j.scriptamat.2004.11.017

Google Scholar

[7] Z. Zeng, Y. Zhang, S. Jonsson, Deformation behaviour of commercially pure titanium during simple hot compression, Mater. Des. 30 (2009) 3105-3111.

DOI: 10.1016/j.matdes.2008.12.002

Google Scholar

[8] S.H. Zahiri, C.H.J. Davies, P.D. Hodgson, A mechanical approach to quantify dynamic recrystallization in polycrystalline metals, Scr. Mater. 52 (2005) 299-304.

DOI: 10.1016/j.scriptamat.2004.10.011

Google Scholar

[9] J.J. Jonas, X. Quelennec, L. Jiang, É. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009) 2748-2756.

DOI: 10.1016/j.actamat.2009.02.033

Google Scholar

[10] N. Stanford, U. Carlson, M.R. Barnett, Deformation twinning and the Hall-Petch relation in commercial purity Ti, Metal. Mater. Trans. A 39 (2008) 934-944.

DOI: 10.1007/s11661-007-9442-9

Google Scholar

[11] Z. Zeng, S. Jonsson, H.J. Roven, The effects of deformation conditions on microstructure and texture of commercially pure Ti, Acta Mater. 57 (2009) 5822-5833.

DOI: 10.1016/j.actamat.2009.08.016

Google Scholar

[12] Y.B. Chun, S.K. Hwang, Static recrystallization of warm-rolled pure Ti influenced by microstructural inhomogeneity, Acta Mater. 56 (2008) 369-379.

DOI: 10.1016/j.actamat.2007.09.040

Google Scholar

[13] N. Bozzolo, N. Dewobroto, H.R. Wenk, F. Wagner, Microstructure and microtexture of highly cold-rolled commercially pure titanium, J. Mater. Sci. 42 (2007) 2405-2416.

DOI: 10.1007/s10853-006-1302-2

Google Scholar

[14] U.F. Kocks, C.N. Tomé, H.-R. Wenk, Texture and anisotropy preferred orientations in polycrystals and their effect on materials properties, Cambridge University Press, Cambridge, 1998.

Google Scholar

[15] C.Y.M. Doner, H. Conrad, Effects of interstitial content on the texture of swaged and of recrystallized titanium wire, J. Less-Common Met. 33 (1973) 229-238.

DOI: 10.1016/0022-5088(73)90042-8

Google Scholar