The Influence of Texture and Grain Size on Compressive Deformation Behavior of Pure Mg through Equal-Channel Angular Processing

Article Preview

Abstract:

Multi-pass of equal channel angular pressing (ECAP) at a single temperature as low as room temperature from 200 °C were measured using electronic back scatter diffraction (EBSD). The effect of texture and grain size on mechanical properties was investigated to realize the strengthening and large plastic deformation mechanism. A room temperature ECAP with multi-pass procedure is effective to product high strength and large plastic Mg, as a result of submicron grain structure and texture strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

385-390

Citation:

Online since:

December 2010

Export:

Price:

[1] R. Z. Valiev, T. G. Langdon, Prog. Mater. Sci. Vol. 51 (2006), p.881.

Google Scholar

[2] Y. M. Wang, M. W. Chen, F. H. Zhou, E. Ma, Nature Vol. 419 (2002), p.912.

Google Scholar

[3] Z. Budrovic, H. Van Swygenhoven, P. M. Derlet, S. Van Petegem, B. Schmitt, Science Vol. 304 (2004), p.273.

DOI: 10.1126/science.1095071

Google Scholar

[4] D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Appl. Phys. Lett. Vol. 79 (2001), p.613.

Google Scholar

[5] S. Biswas, S. S. Dhinwal, S. Suwas, Acta Mater. Vol. 58 (2010), p.3247.

Google Scholar

[6] Y. H. Zhao, Y. T. Zhu, X. Z. Liao, Z. Horita, T. G. Langdon, Appl. Phys. Lett. Vol. 89 (2006), p.121906.

Google Scholar

[7] Y. Ito, Z. Horita, Mater. Sci. Eng. A Vol. 503 (2009), p.32.

Google Scholar

[8] Y. H. Zhao, J. E. Bingert, X. Z. Liao, B. Z. Cui, K. Han, A. V. Sergueeva, A. K. Mukherjee, R. Z. Valiev, T. G. Langdon, Y. T. T. Zhu, Adv. Mater. Vol. 18 (2006), p.2949.

DOI: 10.1002/adma.200601472

Google Scholar

[9] S. X. Ding, W. T. Lee, C. P. Chang, L. W. Chang, P. W. Kao, Scr. Mater. Vol. 59 (2008), p.1006.

Google Scholar

[10] K. Xia, J. T. Wang, X. Wu, G. Chen, M. Gurvan, Mater. Sci. Eng. A Vol. 410-411 (2005), p.324.

Google Scholar

[11] R. Kaibyshev, O. Sitdikov, Z. Metall. Vol. 85 (1994), p.738.

Google Scholar

[12] A. Yamashita, Z. Horita, T. G. Langdon, Mater. Sci. Eng. A Vol. 300 (2001), p.142.

Google Scholar

[13] W. H. Hartt, R. E. Reedhill, Trans. Metall. Soc. AIME Vol. 242 (1968), p.1127.

Google Scholar

[14] E. W. Kelley, W. F. Hosford, Trans. Metall. Soc. AIME Vol. 242 (1968), p.5.

Google Scholar

[15] Wonsiewi. Bc, W. A. Backofen, Trans. Metall. Soc. AIME Vol. 239 (1967), p.1422.

Google Scholar

[16] R. E. Reedhill, Trans. Metall. Soc. AIME Vol. 218 (1960), p.554.

Google Scholar

[17] C. S. Roberts, New York: John Wiley and Sons; Vol. (1960), p.81.

Google Scholar

[18] M. R. Barnett, Z. Keshavarz, A. G. Beer, D. Atwell, Acta Mater. Vol. 52 (2004), p.5093.

Google Scholar

[19] R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, J. Mater. Res. Vol. 17 (2002), p.5.

Google Scholar

[20] Y. T. Zhu, X. Z. Liao, Nature Mater. Vol. 3 (2004), p.351.

Google Scholar

[21] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. Vol. 51 (2003), p. (2055).

Google Scholar

[22] Y. M. Wang, E. Ma, Mater. Sci. Eng. A Vol. 375 (2004), p.46.

Google Scholar

[23] A. Serra, D. J. Bacon, Acta Metall. Mater. Vol. 43 (1995), p.4465.

Google Scholar