A Stress-Based Model for Shear Ductile Fracture

Article Preview

Abstract:

A stress-based model is developed to describe shear ductile fracture of lightweight metals. The proposed function couples the effect of the maximum shear stress and the stress triaxiality on fracture limits of metals during plastic deformation. Effect of the maximum shear stress in the proposed fracture model is correlated with the influence of the Lode parameter on fracture limits. The proposed fracture model is applied to depict the fracture locus of AA2024-T351. The predicted fracture locus is compared with experimental results of the alloy. The comparison demonstrates that the proposed fracture model reasonably characterizes the fracture stress in various loading conditions of compression, shear and tension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

February 2019

Export:

Price:

* - Corresponding Author

[1] Y. Lou, J.W. Yoon, Prediction of ductile fracture for advanced high strength steel with a new criterion: experiments and simulation, J. Mater. Process. Technol. 213 (2013) 1284-1302.

DOI: 10.1016/j.jmatprotec.2013.03.001

Google Scholar

[2] Y. Lou, J.W. Yoon, H. Huh, Q. Chao, J.H. Song, Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio, Int. J. Mech. Sci. 146/167 (2013) 583-601.

DOI: 10.1016/j.ijmecsci.2018.03.025

Google Scholar

[3] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. Fract. 161 (2010) 1-20.

DOI: 10.1007/s10704-009-9422-8

Google Scholar

[4] Y. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int. J. Solids Struct. 49 (2012) 3605-3615.

DOI: 10.1016/j.ijsolstr.2012.02.016

Google Scholar

[5] Y. Lou, J.W. Yoon, H. Huh, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, Int. J. Plasticity 54 (2014) 56-80.

DOI: 10.1016/j.ijplas.2013.08.006

Google Scholar

[6] Y. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, J.W. Yoon, Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals, Int. J. Solids Struct. 112 (2017) 169-184.

DOI: 10.1016/j.ijsolstr.2016.11.034

Google Scholar

[7] Q. Hu, X. Li, X. Han, J. Chen, A new shear and tension based ductile fracture criterion: Modeling and validation, Eur. J. Mech. A Solids 66 (2017) 370-386.

DOI: 10.1016/j.euromechsol.2017.08.005

Google Scholar

[8] L. Mu, Y. Zang, Y. Wang, X.L. Li, P.M.A. Stemler, Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming, Int. J. Mech. Sci. 141 (2018) 408-423.

DOI: 10.1016/j.ijmecsci.2018.04.025

Google Scholar

[9] V.V. Vershinin, Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation, Int. J. Solids Struct. 67/68 (2015) 127-138.

DOI: 10.1016/j.ijsolstr.2015.04.007

Google Scholar

[10] X. Zhuang, T. Wang, X. Zhu, Z. Zhao, Calibration and application of ductile fracture criterion under non-proportional loading condition, Eng. Fract. Mech. 165 (2016) 39-56.

DOI: 10.1016/j.engfracmech.2016.08.021

Google Scholar

[11] L. Mu, Y. Wang, Y. Zang, P.M.A. Stemler, Edge fracture prediction using uncoupled ductile fracture models for DP780 sheet, J. Fail. Anal. Prev. 17 (2017) 321-329.

DOI: 10.1007/s11668-017-0245-z

Google Scholar

[12] S.J. Lim, H. Huh, Fracture loci of DP980 steel sheet for auto-body at intermediate strain rates, Int. J. Auto. Tech.-Kor. 18 (2017) 719-727.

DOI: 10.1007/s12239-017-0071-z

Google Scholar

[13] D. Anderson, C. Butcher, N. Pathak, M.J. Worswick, Failure parameter identification and validation for a dual-phase 780 steel sheet, Int. J. Solids Struct. 124 (2017) 89-107.

DOI: 10.1016/j.ijsolstr.2017.06.018

Google Scholar

[14] C. Cheng, B. Meng, J.Q. Han, M. Wan, X.D. Wu, R. Zhao, A modified Lou-Huh model for characterization of ductile fracture of DP590 sheet, Mater. Des. 118 (2017) 89-98.

DOI: 10.1016/j.matdes.2017.01.030

Google Scholar

[15] T.B. Stoughton, J.W. Yoon, A new approach for failure criterion for sheet metals, Int. J. Plasticity 27 (2011) 440-459.

DOI: 10.1016/j.ijplas.2010.07.004

Google Scholar

[16] D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, Int. J. Solids Struct. 67/68 (2015) 40-55.

DOI: 10.1016/j.ijsolstr.2015.02.024

Google Scholar

[17] Y. Lou, J.W. Yoon, Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion, Int. J. Plasticity 101 (2018) 125-155.

DOI: 10.1016/j.ijplas.2017.10.012

Google Scholar

[18] Y. Lou, H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter, Int. J. Solids Struct. 50 (2013) 447-455.

DOI: 10.1016/j.ijsolstr.2012.10.007

Google Scholar