Effect of Optimisation Parameters in Topology Optimisation

Article Preview

Abstract:

The Bi-directional Evolutionary Structural Optimisation (BESO) method had been used by many authors for the optimisation of structures. This work sets out to investigate the effect of key optimisation parameters utilized in the BESO method, the evolution rate and the filter radius, on the outcome of the optimisation. An understanding of the interaction of these factors in the optimisation process enables a more efficient way to produce optimised components that can fully capitalise on the capabilities of additive manufacturing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

529-534

Citation:

Online since:

December 2016

Export:

Price:

* - Corresponding Author

[1] Y.M. Xie, G.P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49 (1993) 885-896.

DOI: 10.1016/0045-7949(93)90035-c

Google Scholar

[2] O.M. Querin, Evolutionary Structural Optimisation: Stress Based Formulation and Implementation, in Department of Aeronautical Engineering. 1997, University of Sydney.

Google Scholar

[3] O.M. Querin, G.P. Steven, Y.M. Xie, Evolutionary structural optimisation using an additive algorithm, Finite Elem. Anal. Des. 34 (2000) 291-308.

DOI: 10.1016/s0168-874x(99)00044-x

Google Scholar

[4] O.M. Querin, V. Young, G.P. Steven, Y.M. Xie, Computational efficiency and validation of bi-directional evolutionary structural optimisation, Comput. Methods Appl. Mech. Eng. 189 (2000) 559-573.

DOI: 10.1016/s0045-7825(99)00309-6

Google Scholar

[5] O.M. Querin, G.P. Steven, Y.M. Xie, Evolutionary structural optimisation (ESO) using a bidirectional algorithm, Eng. Computation, 15 (1998) 1031-1048.

DOI: 10.1108/02644409810244129

Google Scholar

[6] Stojanov, D., B.G. Falzon, X.H. Wu, W. Yan, Implementing a structural continuity constraint and a halting method for the topology optimization of energy absorbers. Struct. Multidiscipl. Optim. 54 (2016) 429-448.

DOI: 10.1007/s00158-016-1451-0

Google Scholar

[7] X. Huang, Y.M. Xie, M.C. Burry, A New Algorithm for Bi-Directional Evolutionary Structural Optimization, JSME Int. J. C Mechanical Systems, Machine Elements and Manufacturing, 49 (2006) 1091-1099.

DOI: 10.1299/jsmec.49.1091

Google Scholar

[8] O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim. 16(1998) 68-75.

DOI: 10.1007/bf01214002

Google Scholar

[9] X. Huang, Y.M. Xie, Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des. 43(2007) 1039-1049.

DOI: 10.1016/j.finel.2007.06.006

Google Scholar

[10] Z.H. Zuo, Y.M. Xie, X. Huang, An improved bi-directional evolutionary topology optimization method for frequencies, Int. J. Struct. Stability Dynamics 10(2010) 55-75.

DOI: 10.1142/s0219455410003415

Google Scholar

[11] Z. Zuo, Y. Xie, X. Huang, Evolutionary Topology Optimization of Structures with Multiple Displacement and Frequency Constraints, Advances in Structural Engineering 15 (2012) 359-372.

DOI: 10.1260/1369-4332.15.2.359

Google Scholar

[12] SIMULIA, Abaqus Documentation version 6. 11. 2011: SIMULIA (Dassault Systems).

Google Scholar

[13] Q. Li, G.P. Steven, Y.M. Xie, On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization, Struct. Optim. 18 (1999) 67-73.

DOI: 10.1007/bf01210693

Google Scholar

[14] T. Lewiński, M. Zhou, G.I.N. Rozvany, Extended exact solutions for least-weight truss layouts—Part I: Cantilever with a horizontal axis of symmetry, Int. J. Mech. Sci. 36 (1994) 375-398.

DOI: 10.1016/0020-7403(94)90043-4

Google Scholar