Anisotropic Behavior in Plasticity and Ductile Fracture of an Aluminum Alloy

Article Preview

Abstract:

Anisotropic mechanical behavior is investigated for an aluminum alloy of 6K21-IH T4 both in plastic deformation and ductile fracture. Anisotropic plastic deformation is characterized by uniaxial tensile tests of dog-bone specimens, while anisotropy in ductile fracture is illustrated with specimens with a central hole, notched specimens and shear specimens. All these specimens are cut off at every 15º from the rolling direction. The r-values and uniaxial tensile yield stresses are measured from the tensile tests of dog-bone specimens. Then the anisotropic plasticity is modeled by a newly proposed J2-J3 criterion under non-associate flow rule (non-AFR). The testing processes of specimens for ductile fracture analysis are simulated to extract the maximum plastic strain at fracture strokes as well as the evolution of the stress triaxiality and the Lode parameter in different testing directions. The measured fracture behavior is described by a shear-controlled ductile fracture criterion proposed by Lou et al. (2014. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int. J. Plasticity 54, 56-80) for different loading directions. It is demonstrated that the anisotropic plastic deformation is described by the J2-J3 criterion with high accuracy in various loading conditions including shear, uniaxial tension and plane strain tension. Moreover, the anisotropy in ductile fracture is not negligible and cannot be modeled by isotropic ductile fracture criteria. Thus, an anisotropic model must be proposed to accurately illustrate the directionality in ductile fracture.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

163-168

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond. Swe. A 193 (1948) 281-297.

Google Scholar

[2] F. Barlat, K. Lian, Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions, Int. J. Plast. 5 (1989) 51-66.

DOI: 10.1016/0749-6419(89)90019-3

Google Scholar

[3] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets. Part I: theory, Int. J. Plast. 19 (2003) 1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[4] D. Banabic, H. Aretz, D.S. Comsa, L. Paraianu, An improved analytical description of orthotropy in metallic sheets, Int. J. Plast. 21 (2005) 493-512.

DOI: 10.1016/j.ijplas.2004.04.003

Google Scholar

[5] O. Cazacu, F. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20 (2004) 2027-(2045).

DOI: 10.1016/j.ijplas.2003.11.021

Google Scholar

[6] O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast. 22 (2006) 1171-1194.

DOI: 10.1016/j.ijplas.2005.06.001

Google Scholar

[7] Y.S. Lou, H. Huh, J.W. Yoon, Consideration of strength differential effect in sheet metals with symmetric yield functions, Int. J. Mech. Sci. 66 (2013) 214-223.

DOI: 10.1016/j.ijmecsci.2012.11.010

Google Scholar

[8] J.W. Yoon, Y.S. Lou, J. Yoon, M.V. Glazoff, Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast. 56 (2014) 184-202.

DOI: 10.1016/j.ijplas.2013.11.008

Google Scholar

[9] L. Xve, Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading, Int. J. Solids Struct. 44 (2007) 5163-5181.

DOI: 10.1016/j.ijsolstr.2006.12.026

Google Scholar

[10] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast. 24 (2008) 1071-1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[11] Y.S. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int. J. Solids Struct. 49 (2012) 3605-3615.

DOI: 10.1016/j.ijsolstr.2012.02.016

Google Scholar

[12] Y.S. Lou, H. Huh, Extension of a shear controlled ductile fracture model considering the stress triaxiality and the Lode parameter, Int. J. Solids Struct. 50 (2013) 447-455.

DOI: 10.1016/j.ijsolstr.2012.10.007

Google Scholar

[13] Y.S. Lou, J.W. Yoon, H. Huh, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, Int. J. Plast. 54 (2014) 56-80.

DOI: 10.1016/j.ijplas.2013.08.006

Google Scholar

[14] M. Fourmeau, T. Børvik, A. Benallal, O.S. Hopperstad, Anisotropic failure modes of high-strength aluminium alloy under various stress states, Int. J. Plast. 48 (2013) 34-53.

DOI: 10.1016/j.ijplas.2013.02.004

Google Scholar

[15] M. Luo, M. Dunand, D. Mohr, Experimental and modeling of anisotropic aluminum extrusions under multi-axial loading – Part II: ductile fracture, Int. J. Plast. 32/33 (2012) 36-38.

DOI: 10.1016/j.ijplas.2011.11.001

Google Scholar

[16] Y.S. Lou, H. Huh, Prediction of ductile fracture for advanced high strength steel with a new criterion: experiments and simulation, J. Mater. Process. Technol. 213 (2013) 1284-1302.

DOI: 10.1016/j.jmatprotec.2013.03.001

Google Scholar