Numerical Modeling to Determine Test Conditions of Shear Blanking Test for a Hybrid Material

Article Preview

Abstract:

A dedicated blanking test (DBT) was designed to measure the bonding shear strength of a metallic hybrid sample. To identify the required design parameters of the rig, a macro numerical model was developed using Abaqus Finite element (FE) package. Copper clad aluminum hybrid samples fabricated by an axi symmetric forward spiral composite extrusion (AFSCE) process were analyzed using the developed numerical model. The effect of the design parameters including sample thickness, blanking clearance and the die and punch fillet radii were determined to ensure a pure shear blanking along the interface. The numerical results showed that the sample thickness, clearance and fillet radii have a significant effect on the measured bond shear strength and the location of the failure. The required rig was designed and composite copper clad aluminum bonding shear strength was experimentally determined based on the numerical findings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-129

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] M. F. Ashby and Y. J. M. Bréchet, Designing hybrid materials, Acta Materialia, vol. 51, pp.5801-5821, (2003).

DOI: 10.1016/s1359-6454(03)00441-5

Google Scholar

[2] M. F. Ashby, Materials Selection in Mechanical Design, 3rd edn, Butterworth-Heinemann, Italy, (2004).

Google Scholar

[3] R. K. Guduru, K. A. Darling, R. Kishore, R. O. Scattergood, C. C. Koch, and K. L. Murty, Evaluation of mechanical properties using shear–punch testing, Materials Science and Engineering: A, vol. 395, pp.307-314, (2005).

DOI: 10.1016/j.msea.2004.12.048

Google Scholar

[4] G. E. Lucas, J. W. Sheckherd, G. R. Odette, and S. Panchanadeeswaran, Shear punch tests for mechanical property measurements in TEM disc-sized specimens, Journal of Nuclear Materials, vol. 122, pp.429-434, (1984).

DOI: 10.1016/0022-3115(84)90635-4

Google Scholar

[5] M. B. Toloczko, M. L. Hamilton, and G. E. Lucas, Ductility correlations between shear punch and uniaxial tensile test data, Journal of Nuclear Materials, vol. 283–287, Part 2, pp.987-991, (2000).

DOI: 10.1016/s0022-3115(00)00198-7

Google Scholar

[6] H. D. Manesh and A. K. Taheri, Bond strength and formability of an aluminum-clad steel sheet, Journal of Alloys and Compounds, vol. 361, pp.138-143, (2003).

DOI: 10.1016/s0925-8388(03)00392-x

Google Scholar

[7] S. A. Hosseini, M. Hosseini, and H. Danesh Manesh, Bond strength evaluation of roll bonded bi-layer copper alloy strips in different rolling conditions, Materials & Design, vol. 32, pp.76-81, (2011).

DOI: 10.1016/j.matdes.2010.06.032

Google Scholar

[8] M. Eizadjou, H. Danesh Manesh, and K. Janghorban, Investigation of roll bonding between aluminum alloy strips, Materials & Design, vol. 29, pp.909-913, (2008).

DOI: 10.1016/j.matdes.2007.03.020

Google Scholar

[9] M. Zebardast and A. K. Taheri, The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process, Journal of Materials Processing Technology, vol. 211, pp.1034-1043, (2011).

DOI: 10.1016/j.jmatprotec.2011.01.004

Google Scholar

[10] ASTM, Standard Test Method for Shear Testing of Calcium Phosphate Coatings and Metallic Coatings, in F1044-05, USA: Conshohocken, PA, (2010).

Google Scholar

[11] T. Sapanathan, S. Khoddam, and S. H. Zahiri, Spiral Extrusion of Aluminum/Copper Composite for Future Manufacturing of Hybrid Rods: A Study of Bond Strength and Interfacial Characteristics, Journal of Alloys and Compounds, vol. 571, pp.85-92, (2013).

DOI: 10.1016/j.jallcom.2013.03.210

Google Scholar

[12] A. K. Noor and W. Scott Burton, Stress and free vibration analyses of multilayered composite plates, Composite Structures, vol. 11, pp.183-204, (1989).

DOI: 10.1016/0263-8223(89)90058-5

Google Scholar

[13] T. K. Varadan and K. Bhaskar, Analysis of Plates: Theory and Problems, Narosa Publishing House, Delhi, 1999, pp.153-163.

Google Scholar