Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 30, 2017

A general approach on the modelling of incubation in ferrite transformation using non-isothermal kinetics data for 22MnB5 steel

  • Xiangjun Chen , Bernard Rolfe , Amir Abdollahpoor , Namin Xiao and Dianzhong Li

Abstract

The most challenging part, in modelling tailored hot stamping processes, is the variable cooling transformation that occurs in real industrial processes. In this study, analytical equations are first fitted to both experimental isothermal and continuous cooling transformation data. Then, an optimized fitting method with a weight coefficient is introduced that considers two transformation data to provide a more accurate transformation prediction. Finally, the generalized calculated result of incubation time using Rios's proposed method based on optimized continuous cooling transformation curves is contrasted against one calculated with a modified generalized calculated method. The results show that the consideration of the current temperature and cooling rate increases the accuracy of incubation time predictions as the gradient of cooling rate increases.


*Correspondence address, Dr. Dianzhong Li, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China, Tel.: +862423971973, Fax: +862483970097, E-mail: , Web: http://www.synl.ac.cn/english/part_model.htm

References

[1] R.George, A.Bardelcik, M.J.Worswick: J. Mater. Process. Technol.212 (2012) 2386. 10.1016/j.jmatprotec.2012.06.028Search in Google Scholar

[2] B.Tang, Z.Yuan, G.Cheng, L.Huang, W.Zheng, H.Xie: Mater. Sci. Eng. A.585 (2013) 304. 10.1016/j.msea.2013.07.059Search in Google Scholar

[3] W.Liang, L.Wang, Y.Liu, Y.Wang, Y.Zhang: Procedia Eng.81 (2014) 1731. 10.1016/j.proeng.2014.10.222Search in Google Scholar

[4] E.J.Mittemeijer: J. Mater. Sci.27 (1992) 3977. 10.1007/BF01105093Search in Google Scholar

[5] F.Liu, F.Sommer, C.Bos, E.J.Mittemeijer: Int. Mater. Rev.52 (2007) 193. 10.1179/174328007X160308Search in Google Scholar

[6] E.J.Mittemeijer: Fundamentals of Materials Science, Springer, Berlin (2011). 10.1007/978-3-642-10500-5Search in Google Scholar

[7] M.Avrami: J. Chem. Phys.7 (1939) 1103. 10.1063/1.1750380Search in Google Scholar

[8] E.Hawbolt, B.Chau, J.Brimacombe: Metall. Trans. A14 (1983) 1803. 10.1007/BF02645550Search in Google Scholar

[9] X.Chen, N.Xiao, D.Li, G.Li, G.Sun: Modell. Simul. Mater. Sci. Eng.22 (2014) 065005. 10.1088/0965-0393/22/6/065005Search in Google Scholar

[10] A.Abdollahpoor, X.Chen, M.P.Pereira, N.Xiao, B.F.Rolfe: J. Mater. Process. Technol.228 (2016) 125. 10.1016/j.jmatprotec.2014.11.033Search in Google Scholar

[11] M.Avrami: J. Chem. Phys.8 (1940) 212. 10.1063/1.1750631Search in Google Scholar

[12] M.Avrami: J. Chem. Phys.9 (1941) 177. 10.1063/1.1750872Search in Google Scholar

[13] M.Umemoto, K.Horiuchi, I.Tamura: Trans. Iron Steel Inst. Jpn.23 (1983) 690. 10.2355/isijinternational1966.23.690Search in Google Scholar

[14] P.R.Rios: Acta Mater.53 (2005) 4893. 10.1016/j.actamat.2005.07.005Search in Google Scholar

[15] X.Chen, N.Xiao, M.Cai, D.Li, G.Li, G.Sun, B.F.Rolfe: Metall. Mater. Trans. A47 (2016) 4732. 10.1007/s11661-016-3608-2Search in Google Scholar

[16] J.Trzaska, L.Dobrzański: J. Mater. Process. Technol.192 (2007) 504. 10.1016/j.jmatprotec.2007.04.099Search in Google Scholar

Received: 2016-11-25
Accepted: 2017-03-06
Published Online: 2017-05-30
Published in Print: 2017-06-12

© 2017, Carl Hanser Verlag, München

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.111501/html
Scroll to top button