Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 29, 2013

The mutual influence of proteins from Varroa destructor extracts and from honeybee haemolymph on their proteolytic activity — in vitro study

  • Regina Frączek EMAIL logo , Krystyna Żółtowska , Zbigniew Lipiński and Małgorzata Dmitryjuk
From the journal Acta Parasitologica

Abstract

The influence of extracts from Varroa destructor, a parasitic mite of the honeybee Apis mellifera, on the proteinase activity of worker bee haemolymph was analysed in vitro, along with the influence of bee haemolymph on the proteolytic activity of V. destructor extract. The study was conducted in three different environments: pH 7.5 (high activity of bee enzymes and very low activity of parasite enzymes), pH 5 (moderate activity of enzymes from both sources) and pH 3.5 (limited activity of bee proteinases and high activity of mite proteinases). Based on electrophoretic studies, the inhibition of the activity of bee haemolymph proteinases by V. destructor extracts was observed at each pH. The study at pH 7.5 with commercial inhibitors of the 4 main classes of proteinases (pepstatin A, ethylenediaminetetraacetic acid (EDTA), E-64 (trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane), soybean trypsin inhibitor and Kunitz inhibitor) suggested that parasite extracts mainly inhibited serine proteinases and, to a lower degree, cysteine and aspartyl proteinases. At pH 3.5 and pH 5, a decrease of approximately 40% in parasite proteinase activity was also observed in the presence of bee haemolymph. The result points to the presence of aspartyl proteinase inhibitors in bee haemolymph, which may be an important defence element for bees during food intake by a mite. It was demonstrated that trypsin and trypsin inhibitors are active in the excretion/secretion products of V. destructor, the proteinases of which may assist the parasite in food suckling by preventing haemolymph coagulation, among other things.

[1] Alim M.A., Tsuji N., Miyoshi T., Islam M.K., Hugang X., Hatta T., Fujisaki K. 2008. H1Lgm2, a member of asparaginyl endopeptidases/legumains in the mitgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. Journal of Insect Physiology, 54, 573–585. DOI: 10.1016/j.jinsphys.2007.12.006. http://dx.doi.org/10.1016/j.jinsphys.2007.12.00610.1016/j.jinsphys.2007.12.006Search in Google Scholar PubMed

[2] Anderson D.L., Trueman J.W.H. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology, 24, 165–189. DOI: 10.1023/A:1006456720416. http://dx.doi.org/10.1023/A:100645672041610.1023/A:1006456720416Search in Google Scholar

[3] Bania J., Polanowski A. 1999. Bioinsekticides and insect defense mechanisms. Postępy Biochemii, 45, 143–149 [in Polish]. Search in Google Scholar

[4] Bania J., Stachowik D., Polanowski A. 1999. Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. European Journal of Biochemistry, 262, 680–687. DOI: 10.1046/j.1432-1327.1999.00406.x. http://dx.doi.org/10.1046/j.1432-1327.1999.00406.x10.1046/j.1432-1327.1999.00406.xSearch in Google Scholar PubMed

[5] Cerenius L., Kawabata S., Lee B.L., Nonaka M., Söberhäll K. 2010. Proteolytic cascades and their involvement in invertebrate immunity. Trends in Biochemical Sciences, 35, 575–583.DOI: 10.1016/j.tibs.2010.04.006. http://dx.doi.org/10.1016/j.tibs.2010.04.00610.1016/j.tibs.2010.04.006Search in Google Scholar PubMed

[6] Chan Q.W.T., Howes CH.G., Foster L.J. 2006. Quantitative composition of caste differences in honeybee hemolymph. Molecular and Cellular Proteomics, 5, 2252–2262.DOI: 10.1074/mcp.M600197-MCP200. http://dx.doi.org/10.1074/mcp.M600197-MCP20010.1074/mcp.M600197-MCP200Search in Google Scholar PubMed

[7] Cicero J.M., Sammataro D. 2010. The salivary glands of adult female Varroa destructor (Acari, Varroidae), an ectoparasite of the honey bee, Apis mellifera (Hymenoptera, Apidae). International Journal of Acarology, 36, 377–386. DOI: 10.1080/0164795100475796. http://dx.doi.org/10.1080/01647951003757961Search in Google Scholar

[8] Cierpicki T., Bania J., Otlewski J. 2000. NMR solution structure of Apis mellifera chymotrypsin/cathepsin G inhibitor-1 (AMCI-1), Structural similarity with Ascaris protease inhibitor. Protein Science, 9, 976–984. DOI: 10.1110/ps.9.5.976. http://dx.doi.org/10.1110/ps.9.5.97610.1110/ps.9.5.976Search in Google Scholar PubMed PubMed Central

[9] Felicioli A., Donadio E., Balestreri E., Montagnoli G., Felicioli R., Podesta A. 2004. Expression profile of water-soluble proteinases during ontogenesis of Megachile rotundata, an electrophoretic investigation. Apidologie, 35, 595–604. DOI: 10.1051/apido:2004064. http://dx.doi.org/10.1051/apido:200406410.1051/apido:2004064Search in Google Scholar

[10] Frączek R., Żółtowska K., Lipiński Z. 2009. The activity of nineteen hydrolases in extracts from Varroa destructor and hemolymph of Apis mellifera carnica. Journal of Apicultural Science, 53, 42–51. Search in Google Scholar

[11] Frączek R., Żółtowska K., Lipiński Z., Dmitryjuk M. 2012. Proteolytic activity In the extracts and In the excretory/secretory products from Varroa destructor parasitic mite of honeybee. International Journal of Acarology, 38, 101–109. DOI: 10.1080/01647954.2011.610357. http://dx.doi.org/10.1080/01647954.2011.61035710.1080/01647954.2011.610357Search in Google Scholar

[12] Genersch E. 2010. Honey bee pathology, current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 87, 87–97. DOI: 10.1007/s00253-010-2573-8. http://dx.doi.org/10.1007/s00253-010-2573-810.1007/s00253-010-2573-8Search in Google Scholar PubMed

[13] Grzywnowicz K., Ciołek A., Tabor A., Jaszek M. 2009. Profiles of the body-surface proteolytic system of honey bee queens, workers and drones. Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidologie, 40, 4–19. DOI: 10.1051/apido:2008057. 10.1051/apido:2008057Search in Google Scholar

[14] Küster F.W., Thiel A. 1993. Rechentafeln für die chemische Analytik. Walter de Gruyter, Berlin — NY. ISBN — 311012131X. Search in Google Scholar

[15] Liao M., Zhou J., Gong H., Boldbaatar D., Shirafuji R., Battur B., Nishikawa Y., Fujisaki K. 2009. Hemlin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphsalis longicormis. Journal of Insect Physiology, 55, 165–174. DOI: 10.1016/j.jinsphys.2008.11.004. http://dx.doi.org/10.1016/j.jinsphys.2008.11.00410.1016/j.jinsphys.2008.11.004Search in Google Scholar

[16] Lowry O.H., Rosenbrough N.J., Farr A.R., Randall K.J. 1951. Protein measurement with the Folin phenol-reagent. Journal of Biological Chemistry, 193, 265–275. Search in Google Scholar

[17] Maritz-Olivier C., Stutzer C., Jongejan F., Neitz A.W.H., Gaspar A.R.D. 2007. Tick anti-haemostatic’s, targets for future vaccines and therapeutics. Trends Parasitology, 23, 397–407. http://dx.doi.org/10.1016/j.pt.2007.07.00510.1016/j.pt.2007.07.005Search in Google Scholar

[18] Mendiola J., Alonso M., Marquetti M.C., Finlay C. 1996. Boophilus microplus, multiple proteolytic activities in the midgut. Experimental Parasitology, 82, 27–33. http://dx.doi.org/10.1006/expr.1996.000410.1006/expr.1996.0004Search in Google Scholar

[19] Muta T., Iwanaga S. 1998. The role of hemolymph coagulation in innate immunity. Current Opinion in Immunology, 8, 41–47. http://dx.doi.org/10.1016/S0952-7915(96)80103-810.1016/S0952-7915(96)80103-8Search in Google Scholar

[20] Richards E.H., Jones B., Bowman A. 2011. Salivary secretions from the honeybee mite Varroa destructor, effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138, 602–608. DOI: 10.107/S0031182011000072. http://dx.doi.org/10.1017/S003118201100007210.1017/S0031182011000072Search in Google Scholar PubMed

[21] Rosenkranz P., Aumeier P., Ziegelmann B. 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119. DOI: 10.1016/j.jip.2009.07.016. http://dx.doi.org/10.1016/j.jip.2009.07.01610.1016/j.jip.2009.07.016Search in Google Scholar PubMed

[22] Strachecka A., Grzywnowicz K. 2008. Activity of protease inhibitors on the body surface of the honeybee. Medycyna Weterynaryjna, 64, 1256–1259 [in Polish]. Search in Google Scholar

[23] Tewarson N.C., Jany K.D. 1982. Determination of proteolysis activity in Varroa jacobsoni an ectoparasitic hemophagous mite of honey bees (Apis sp.). Apidologie, 13, 383–389. http://dx.doi.org/10.1051/apido:1982040510.1051/apido:19820405Search in Google Scholar

[24] Uriel J., Berges J. 1968. Characterization of natural inhibitors of trypsin and chymotrypsin by electrophoresis In acrylamideagarose gels. Nature, 218, 578–580. DOI: 10.1038/218578b0. http://dx.doi.org/10.1038/218578b010.1038/218578b0Search in Google Scholar PubMed

[25] Vilcinskas A. 2010. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence, 1, 206–214. DOI: 10.4161/viru.1.3.12072. http://dx.doi.org/10.4161/viru.1.3.1207210.4161/viru.1.3.12072Search in Google Scholar PubMed

[26] Willadsen P., Riding G.A. 1980. On the biological role of a proteolytic-enzyme inhibitor from the ectoparasitic tick Boophilus microplus. Biochemical Journal, 189, 295–303. Search in Google Scholar

[27] Zou Z., Lopez D.L., Kanost M.R., Evans J.D., Jiang H. 2006. Comparative analysis of serine protease-related genes in the honey bee genome, possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 15, 603–614. DOI: 10.1111/j.1365-2583.2006.00684.x. http://dx.doi.org/10.1111/j.1365-2583.2006.00684.x10.1111/j.1365-2583.2006.00684.xSearch in Google Scholar PubMed PubMed Central

Published Online: 2013-8-29
Published in Print: 2013-9-1

© 2013 W. Stefański Institute of Parasitology, PAS

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11686-013-0144-8/html
Scroll to top button