Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 2, 2013

Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor

  • Aneta Strachecka EMAIL logo , Grzegorz Borsuk , Krzysztof Olszewski , Jerzy Paleolog and Zbigniew Lipiński
From the journal Acta Parasitologica

Abstract

The aim of this work was to determine the activity of proteases and protease inhibitors sampled from the body surface of tau-fluvalinate-sensitive and resistant V. destructor. Proteins were isolated from the tau-fluvalinate-sensitive and resistant mites, while mites untreated with tau-fluvalinate constituted the control. Subsequently, the following methodology was applied: protein concentration assay by the Lowry method — as modified by Schacterle and Pollack; assay of proteolytic activity in relation to various substrates (gelatine, haemoglobin, ovoalbumin, albumin, cytochrome C, casein) by the modified Anson method; identification of proteolytic activity in relation to diagnostic inhibitors of proteolytic enzymes (pepstatin A, PMSF, iodoacetamide, o-phenantrolin), using the Lee and Lin method; identification of acidic, neutral and basic protease activities by means of the modified Anson method; electrophoretic analysis of proteins in a polyacrylamide gel for protease detection with the Laemmli method and for protease inhibitor detection with the Felicioli method. The highest value of protein concentration was found in the tau-fluvalinate-sensitive V. destructor, while the highest activity levels of acidic, neutral and alkaline proteases were observed in the tau-fluvalinate-resistant mites. Aspartic, serine, thiolic and metallic proteases were found in the drug-resistant and drug-sensitive Varroa mites. The control samples were found to contain aspartic and serine proteases. In an acidic and alkaline environment, the results revealed a complete loss of inhibitor activities in the in vitro analyses and electrophoresis. Serine protease inhibitor activities (at pH 7.0) were high, especially in the group of tau-fluvalinate-resistant mites.

[1] Anson M. 1938. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of General Physiology, 22, 79–84. http://dx.doi.org/10.1085/jgp.22.1.7910.1085/jgp.22.1.79Search in Google Scholar

[2] Bania J., Polanowski A. 1999. Bioinsecticides and insect defense mechanisms. Postępy Biochemii, 45, 143–150. Search in Google Scholar

[3] Bode W., Fernandez-Catalan C., Nagase H., Maskos K. 1999. Endoproteinase — protein inhibitor interaction. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 107, 3–10. DOI: 10.1111/j.1699-0463.1999.tb01520.x. http://dx.doi.org/10.1111/j.1699-0463.1999.tb01520.x10.1111/j.1699-0463.1999.tb01520.xSearch in Google Scholar

[4] Colin M., Tchamitchian M., Bonmatin J., Pasquale S. 2001. Presence of chitinase in adult Varroa destructor, an ectoparasitic mite of Apis mellifera. Experimental and Applied Acarology, 25, 947–955. DOI: 10.1023/A:1020657906024. http://dx.doi.org/10.1023/A:102065790602410.1023/A:1020657906024Search in Google Scholar

[5] Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. 2006. Immune pathways and defence mechanisms in honey bee Apis mellifera. Insect Molecular Biology, 15, 645–656. DOI: 10.1111/j.1365-2583.2006.00682.x. http://dx.doi.org/10.1111/j.1365-2583.2006.00682.x10.1111/j.1365-2583.2006.00682.xSearch in Google Scholar

[6] Felicioli R., Garzelli B., Vaccari L., Melfi D., Balestreri E. 1997. Activity staining of protein inhibitors of proteases on gelatincontaining polyacrylamide gel electrophoresis. Analytical Biochemistry, 244, 176–179. DOI: 10.1006/abio.1996.9917. http://dx.doi.org/10.1006/abio.1996.991710.1006/abio.1996.9917Search in Google Scholar

[7] Frączek R., Żółtowska K., Lipiński Z. 2009. The activity of nineteen hydrolases in extracts from Varroa destructor and in hemolymph of Apis mellifera ceranica workers bees. Journal of Apicultural Science, 53, 43–51. Search in Google Scholar

[8] Garedew A., Schmolz E., Lamprecht I. 2004. The energy and nutritional demand of the parasitic life of the mite Varroa destructor. Apidologie, 35, 419–430. DOI: 10.1051/apido:2004032. http://dx.doi.org/10.1051/apido:200403210.1051/apido:2004032Search in Google Scholar

[9] Koch W., Ritter W. 1991. Experimental Examinations Concerning the Problem of Deformed Emerging Bees After Infestation with Varroa jacobsoni. Zentralblatt fur Veterinarmedizin B, 38, 337–344. Search in Google Scholar

[10] Kralj J., Fuchs S. 2006. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie, 37, 577–587. DOI: 10.1051/apido:2006040. http://dx.doi.org/10.1051/apido:200604010.1051/apido:2006040Search in Google Scholar

[11] Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. http://dx.doi.org/10.1038/227680a010.1038/227680a0Search in Google Scholar

[12] Lee T., Lin Y. 1995. Trypsin inhibitor and trypsin — like protease activity in air — or submergence — grown rice (Oryza sativa L.) coleoptiles. Plant Science, 106, 43–54. DOI: 10.1016/0168- 9452(95)04058-3. http://dx.doi.org/10.1016/0168-9452(95)04058-310.1016/0168-9452(95)04058-3Search in Google Scholar

[13] Lima P.R.M., Brochetto-Braga M.R., Chaud-Netto J. 2000. Proteolytic activity of Africanized honeybee (Apis mellifera: hymenoptera, apidae) venom. Journal of Venomous Animals and Toxins, 6, 104–113. DOI: 10.1590/S0104-79302000000100004. http://dx.doi.org/10.1590/S0104-7930200000010000410.1590/S0104-79302000000100004Search in Google Scholar

[14] Malone L.A., Todd J.H., Burgess E., Christeller J.T. 2004. Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie, 35, 655–664. DOI: 10.1051/apido:2004063. http://dx.doi.org/10.1051/apido:200406310.1051/apido:2004063Search in Google Scholar

[15] Mathieu L., Faucon J.P. 2000. Changes in the response time for Varroa jacobsoni exposed to amitraz. Journal of Apicultural Research, 39, 155–158. Search in Google Scholar

[16] Milani N. 1995. The resistance of Varroa jacobsoni Oud. to pyrethroids a laboratory assay. Apidologie, 26, 415–429. DOI:10.1051/apido:19950507. http://dx.doi.org/10.1051/apido:1995050710.1051/apido:19950507Search in Google Scholar

[17] Mira A. 2000. Exuviae eating: a nitrogen meal? Journal of Insect Physiology, 46, 605–610. DOI: 10.1016/S0022-1910(99)00 146-8. http://dx.doi.org/10.1016/S0022-1910(99)00146-810.1016/S0022-1910(99)00146-8Search in Google Scholar

[18] Roberts T., Hutson D. 1999. Tau-fluvalinate. Metabolic Pathways of Agrochemicals. Part Two: Insecticides and Fungicides, 670–677. Search in Google Scholar

[19] Romero-Vera C., Otero-Colina G. 2002. Effect of single and successive infestation of Varroa destructor and Acarapis woodi on the longevity of worker honey bees Apis mellifera. American Bee Journal, 142, 54–57. Search in Google Scholar

[20] Salvy M., Martin C., Bagneres A., Provost E., Roux M., Le Conte Y., Clement J. 2001. Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology, 122, 145–159. http://dx.doi.org/10.1017/S003118200100718110.1017/S0031182001007181Search in Google Scholar

[21] SAS Institute. 2002–2003. SAS/STAT User’s Guide release 9.13, Cary, NC, Statistical Analysis System Institute, license 86636. Search in Google Scholar

[22] Schacterle G., Pollack R. 1973. Simplified method for quantitative assay of small amounts of protein in biological material. Analytical Biochemistry, 51, 654–655. http://dx.doi.org/10.1016/0003-2697(73)90523-X10.1016/0003-2697(73)90523-XSearch in Google Scholar

[23] Schneider P., Drescher W. 1987. The influence of Varroa jacobsoni Oud. on weight; development on weight and hypopharyngeal glands; and longevity of Apis mellifera L. Apidologie, 18, 101–110. http://dx.doi.org/10.1051/apido:1987010810.1051/apido:19870108Search in Google Scholar

[24] Schoofs L., Salzet M. 2002. Trypsin and chymotrypsin inhibitors in insects and gut leeches. Current Pharmaceutical Design, 8, 125–133. DOI: 1381-6128/02S35.00.00. http://dx.doi.org/10.2174/138161202339571810.2174/1381612023395718Search in Google Scholar PubMed

[25] Strachecka A. 2010. Proteazy i inhibitory proteaz na powierzchni ciaŁa pszczoŁy miodnej (Apis mellifera) jako element odporności nieswoistej. Rozprawa doktorska (Proteases and protease inhibitors on the body surface of the honey bee (Apis mellifera) as an element of non-specific resistance). UMCS in Lublin, 24–25. Search in Google Scholar

[26] Strachecka A., Gryzińska M., Krauze M., Grzywnowicz K. 2011. Profile of the Body Surface Proteolytic System in Apis mellifera Queens. Czech Journal of Animal Science, 56, 15–22. Search in Google Scholar

[27] Strachecka A., Paleolog J., Grzywnowicz K. 2008. The surface proteolytic activity in Apis mellifera. Journal of Apicultural Science, 52, 49–56. Search in Google Scholar

[28] Tewarson N., Engles W. 1982. Undigested uptake of non-host proteins by Varroa jacobsoni. Journal of Apicultural Research, 21, 222–225. Search in Google Scholar

[29] Terra W., Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, 109B, 1–62, DOI: 10.1016/0305-0491 (94)90141-4. Search in Google Scholar

[30] Watkins M. 1997. Resistance and its relevance to beekeeping. Bee World, 78, 15–22. Search in Google Scholar

Published Online: 2013-2-2
Published in Print: 2013-3-1

© 2013 W. Stefański Institute of Parasitology, PAS

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11686-013-0109-y/html
Scroll to top button