Volume 3, Issue 1

Original research papers

Radiation Effects

SUBLETHAL X-RAY IRRADIATION INDUCES GENETIC INSTABILITY IN HUMAN ENDOMETRIAL MESENCHYMAL STEM CELLS AT THE KARYOTYPE LEVEL

Tatiana Grinchuk, Mariia Shilina, Zoya Kovaleva, Nikolay Nikolsky

Pages: 59-63

DOI: 10.21175/RadJ.2018.01.011

Received: 17 MAR 2017, Received revised: 1 JUN 2017, Accepted: 5 JUL 2017, Published online: 2 APR 2018

We aimed to study the karyotype structure of human adult stem cells after X-ray irradiation. Cultured endometrial mesenchymal stem cells (eMSC) isolated from desquamated endometrium of menstrual blood of the healthy woman were the object of this research. The eMSC at the 9th passage were irradiated with the sublethal X-ray dose (5Gy). Irradiated cells were cultivated under standard conditions and, at the 13th passage, they underwent to the karyotyping assay with the G-banding technique. The cytogenetic analysis revealed that the progeny of irradiated cells exhibited genetic instability. Most of analyzed cells had chromosomal abnormalities. Karyotypic changes were manifested mostly as aneuploidy and near-centromeric and other breaks. Within a particular karyotype, various chromosomes may be involved in breaks. Chromosome 1, 4 and X were not involved in chromosomal rearrangements randomly. About 80% of the control not irradiated eMSC metaphase plates had the standard karyotype at the same 13th passage. Deviations from the normal karyotype were random. Chromosomal breaks were not observed. Our findings show that sublethal X-ray irradiation of eMSC resulted in multiple disorders of the genetic apparatus at the karyotype level. The cells that survived irradiation entered replicative senescence and avoided immortalization or transformation.
  1. Y. Kodama et al., “Stable chromosome aberrations in atomic bomb survivors: Results from 25 years of investigation.” Radiat. Res., vol. 156, no. 4, pp. 337 – 346, Jun. 2001.
    DOI: 10.1667/0033-7587(2001)156[0337:SCAIAB]2.0.CO;2
  2. M. Nakano, Y. Kodama et al., “Detection of stable chromosome aberrations by FISH in A-bomb survivors: Comparison with previous solid Giemsa staining data on the same 230 individuals,” Int. J. Radiat. Biol., vol. 77, no. 9, pp. 971 – 977, Sep. 2001.
    DOI: 10.1080/09553000110050065
    PMid: 11576457
  3. L. Stoilov, M. Georgieva, V. Manova, L. Liu, K. Gecheff, “Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage,” Mutagenesis, vol. 28, no. 2, pp. 153 – 160, Mar. 2013.
    DOI: 10.1093/mutage/ges065
    PMid: 23221036
  4. K. Ohtaki et al., “Human fetuses do not register chromosome damage inflicted by radiation exposure in lymphoid precursor cells except for a small but significant effect at low doses,” Radiat. Res., vol. 161, no. 4, no. 373 – 379, Apr. 2004.
    DOI: 10.1667/3147
  5. B. Ponnaiya et al.,“The evolution of chromosomal instability in Chinese hamster cells: a changing picture?” Int. J. Radiat. Biol., vol. 74, no. 6, pp. 765 – 770, Dec. 1998.
    DOI: 10.1080/095530098141041
    PMid: 9881722
  6. K. Suzuki, R. Takahara, S. Kodama, M. Watanabe, “In situ detection of chromosome bridge formation and delayed reproductive death in normal human embryonic cells surviving X irradiation,” Radiat. Res., vol. 150, no. 4, pp. 375 – 381, Oct. 1998.
    DOI: 10.2307/3579655
    PMid: 9768850
  7. S. Salomaa, K. Holmberg, C. Lindholm, R. Mustonen, M. Tekkel, T. Veidebaum, B. Lambert, “Chromosomal instability in in vitro radiation exposed subjects,” Int. J. Radiat. Biol., vol. 74, no. 6, pp. 771 – 779, 1998.
    DOI: 10.1080/095530098141050
    PMid: 9881723
  8. И. К. Хвостунов и др., “Анализ хромосомных аберраций в клетках млекопитающих при воздействии различных видов ионизирующего излучения,” Радиация и риск, т. 22, но. 4, стр. 43 – 59, 2013. (I. K. Khvostunov et al., “Analysis of chromosome aberrations in mammalian cells under the action of various types of ionizing radiation,” Radiation and Risk, vol. 22, no. 4, pp. 43 – 59, 2013.)
    Retrieved from: http://radiation-and-risk.com/images/pdf/rr_13_4_8.pdf;
    Retrieved on: Jan. 26, 2018
  9. Н. Л. Шмакова, Е. А. Насонова, Е. А. Красавин, Л. А. Мельникова, Т. А. Фадеева, “Индукция хромосомных аберраций и микроядер в лимфоцитах периферической крови человека при действии малых доз облучения,” Радиационная биология. Радиоэкология, т. 46, но. 4, стр. 480 – 487, 2006. (N. L. Shmakova, E. A. Nasonova, E. A. Krasavin, L. A. Melnikova, T. A. Fadeeva, “The induction of chromosome aberrations and micronuclei in human peripheral blood lymphocytes at low doses of radiation,” Radi. Radioecology, vol. 48, no. 4, pp. 480 – 487, 2006.)
  10. Ю. Н. Шишмарев и др., “Клинические аспекты последствий аварии на Чернобыльской АЭС,” Радиобиология, т. 32, но. 3, стр. 323 – 332, 1992. (Yu. N. Shishmarev et al., “Clinical Aspects of the Consequences of the Chernobyl Accident,” Radiobiology, vol. 32, no. 3, pp. 323 – 332, 1992.)
  11. S. Knehr, H. Zitzelsberger, H. Braselmann, U. Nahrstedt, M. Bauchinger, “Chromosome analysis by fluorescence in situ hybridisation: further indications for a non-DNA-proportional involvement of single chromosomes in radiation-induced structural aberrations,” Int. J. Radiat. Biol., vol. 70, no. 4, pp. 385 – 392, Oct. 1996.
    DOI: 10.1080/095530096144851
    PMid: 8862449
  12. J. J. W. A. Boei, S. Vermeulen, A. T. Natarajan, “Different involvement of chromosomes 1 and 4 in the formation of chromosomal aberrations in human lymphocytes after X-irradiation,” Int. J. Radiat. Biol., vol. 72, no. 2, pp. 139 – 145, Aug. 1997.
    DOI: 10.1080/095530097143356
    PMid: 9269306
  13. G. Stephan, S. Pressl, “Chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridisation after in vivo irradiation, and in radiation workers, 11 years after an accidental radiation exposure,” Int. J. Radiat. Biol., vol. 71, no. 3, pp. 293 – 299, Mar. 1997.
    DOI: 10.1080/095530097144175
    PMid: 9134019
  14. А. Н. Богомазова, “Изучение стабильных и нестабильных хромосомных аберраций у лиц, пострадавших в результате аварии на ЧАЭС, в отдаленный пострадиационный период,” Дисс. канд. биол. наук, Центральный научно-исследовательский рентгенорадиологический институт, Санкт-Петербург, Россия, 2000. (A. N. Bogomazova, “The study of stable and unstable chromosomal aberrations in persons affected by the Chernobyl accident in the remote post-radiation period,” Cand. Sc. dissertation, Central Research Institute of Radiology, St-Petersburg, Russia, 2000.)
  15. V. I. Zemelko et al.,“Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines,” Tsitologija, vol. 53, no. 12, pp. 919 – 929, 2011.
    DOI: 10.1134/S1990519X12010129
    PMid: 22359950
  16. ISCN 1995 An International System for Human Cytogenetic Nomenclature, Recommendations of the ISCN, ISCN, Basel, Switzerland, 1995.
  17. С. Е. Мамаева, Атлас хромосом постоянных клеточных линий человека и животных, Москва, Россия: Научный Мир, 2002. (S. E. Mamaeva, Atlas chromosomes permanent cell lines of human and animals, Moscow, Russia: Sci. World, 2002.)
  18. М. А. Шилина, “Физиологическая и генетическая характеристика эндометриальных мезенхимных стволовых клеток человека в культуре,” дисс. канд. биол. наук., Институт цитологии Российской академии наук, Санкт-Петербург, Россия, 2017. (M.A. Shilina, “Physiological and genetic characteristic of human endometrial mesenchymal stem cells in culture,” Cand. Sc. Dissertation, Institute of Cytology of the Russian Academy of Sciences, St-Petersburg, Russia, 2017.)
    Retrieved form: http://docplayer.ru/71738775-Shilina-mariya-aleksandrovna-fiziologicheskaya-i-geneticheskaya-harakteristika-endometrialnyh-mezenhimnyh-stvolovyh-kletok-cheloveka-v-kulture.html;
    Retrieved on: Jan. 25, 2018