Volume 2, Issue 3

Original research papers

Radiochemistry

CHEMICAL SHIFTS OF X-RAY EMISSION SPECTRA AND EFFECTIVE STATES OF YTTERBIUM IN FLUORIDES: EMBEDDED CLUSTER MODELING OF YbF2 AND YbF3 CRYSTALS

V.M. Shakhova, Yu.V. Lomachuk, Yu.A. Demidov, L.V. Skripnikov, N.S. Mosyagin, A.V. Zaitsevskii, A.V. Titov

Pages: 169-174

DOI: 10.21175/RadJ.2017.03.035

Received: 24 MAR 2017, Received revised: 25 MAY 2017, Accepted: 5 JUL 2017, Published online: 23 DEC 2017

The YbF2 and YbF3 crystals were studied within the embedded cluster model. The small core relativistic pseudopotentials for the central Yb atom (42 valence electrons) and embedding potentials for Yb and F atoms were constructed. Chemical shifts of Kα1 and Kα2 lines of X-ray emission spectra (XES) were calculated using non-variation one-center restoration technique and relativistic density functional theory (relDFT) with the hybrid exchange-correlation functional PBE0. It was done in the YbF9Yb12F24 cluster simulating the YbF3 crystal with respect to YbF8Yb12F24 one representing the YbF2 crystal. The resulting estimates are 628 meV for Kα1 and 559 meV for Kα2 and their weighted mean agrees within 10% with the experimental value, 557±27 meV. In turn, the weighted relativistic Hartree−Fock (relHF) calculation is higher on 20%. It indicates that the incorporation of electron correlation effects is essential for reproducing the Kα1, 2 chemical shifts.
  1. K. Siegbahn, “From X-Ray to Electron Spectroscopy,” in Lecture Notes in Physics: Nishina Memorial Lectures, vol. 746,Osaka, Japan: Springer, 2009, ch. 8, pp. 137 – 228.
    DOI: 10.1007/978-4-431-77056-5_8
  2. O. I. Sumbaev, “Shift of K X-ray lines associated with valency change and with isomorphous phase transitions in rare earths,” Phys. Usp., vol. 21, no. 2, pp. 141 – 154, 1978.
    DOI: 10.1070/PU1978v021n02ABEH005519
  3. R. I. Karaziya, A. I. Udris, D. V. Grabauskas, “Use of the Chemical Shifts of Electron Levels in the Study of the Distribution of the Effective Charges of Atoms in Compounds,” J. Struct. Chem., vol. 18, no. 4, pp. 520 – 525, 1977.
    DOI: 10.1007/BF00745283
  4. Y. V. Lomachuk, A. V. Titov, “Method for Evaluating Chemical Shifts of X-ray Emission Lines in Molecules and Solids,” Phys. Rev. A, vol. 88, 062511, 2013.
    DOI: 10.1103/PhysRevA.88.062511
  5. A. V. Titov, Y. V. Lomachuk and L. V. Skripnikov, “Concept of effective states of atoms in compounds to describe properties determined by the densities of valence electrons in atomic cores,” Phys. Rev. A, vol. 90, 052522, Nov. 2014.
    DOI: 10.1103/PhysRevA.90.052522
  6. A. V. Titov, N. S. Mosyagin, A. N. Petrov, T. A. Isaev, D. P. DeMille, “Study of P,T-parity violation effects in polar heavy-atom molecules,” in Progress in Theoretical Chemistry and Physics: Recent Advances in the Theory of Chemical and Physical Systems, vol. 15, J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, G. Delgado-Barrio, Eds., Dordrecht, Netherlands: Springer, 2006, ch, 12, pp. 253–283.
    DOI: 10.1007/1-4020-4528-X_12
  7. P. A. Christiansen, Y. S. Lee and K. S. Pitzer, “Improved ab initio effective core potentials for molecular calculations,” J. Chem. Phys., vol. 71, no. 11, pp. 4445–4450, 1979.
    DOI: 10.1063/1.438197
  8. N. S. Mosyagin, A. V. Zaitsevskii and A. V. Titov, “Shape-consistent relativistic effective potentials of small atomic cores, international review of atomic and molecular physics,” Int. Rev. At. Mol. Phys., vol. 1, no. 1, pp. 63 – 72, 2010.
    Retrieved from: https://pdfs.semanticscholar.org/82f5/65187ec338407439d7cb111e58e53adfc19c.pdf;
    Retrieved on: Aug. 5, 2017
  9. A. V. Titov and N. S. Mosyagin, “Generalized relativistic effective core potential: Theoretical grounds,” Int. J. Quantum Chem., vol. 71, no. 5, pp. 359 – 401, 1999.
    DOI: 10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
  10. N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov, A. V. Titov, “Generalized relativistic effective core potentials for actinides,” Int. J. Quantum Chem., vol. 116, no. 4, pp. 301 – 315, Feb. 2016.
    DOI: 10.1002/qua.24978
  11. A. V. Titov and N. S. Mosyagin, “Generalized relativistic effective core potential method: Theory and calculations,” Russ. J. Phys. Chem., vol. 74, suppl. 2, pp. S376 – S387, 2000.
    Retrieved from: https://arxiv.org/pdf/physics/0008160.pdf;
    Retrieved on: Aug. 5, 2017
  12. L. V. Skripnikov, A. N. Petrov, A. V. Titov, N. S. Mosyagin, “Electron electric dipole moment: Relativistic correlation calculations of the P,T-violation effecting the 33 state of PtH+,” Phys. Rev. A, vol. 80, no. 6, 060501(R), Dec. 2009.
    DOI: 10.1103/PhysRevA.80.060501
  13. L. V. Skripnikov, A. V. Titov, A. N. Petrov, N. S. Mosyagin, O. P. Sushkov, “Enhancement of the electron electric dipole moment in Eu2+,” Phys. Rev. A, vol. 84, no. 2, 022505, Aug. 2011.
    DOI: 10.1103/PhysRevA.84.022505
  14. A. N. Petrov, “Hyperfine and Zeeman interactions of the a(1)[3σ1+] state of PbO,” Phys. Rev. A, vol. 83, no. 2, 024502, Feb. 2011.
    DOI: 10.1103/PhysRevA.83.024502
  15. J. Lee et al., “Optical spectroscopy of tungsten carbide for uncertainty analysis in electron electric dipole moment search,” Phys. Rev. A, vol. 87, no. 2, 022516, Feb. 2013.
    DOI: 10.1103/PhysRevA.87.022516
  16. A. N. Petrov, L. V. Skripnikov, A. V. Titov, R. J. Mawhorter, “Centrifugal correction to hyperfine structure constants in the ground state of lead monofluoride,” Phys. Rev. A, vol. 88, no. 1, 010501(R), Jul. 2013.
    DOI: 10.1103/PhysRevA.88.010501
  17. L. V. Skripnikov, A. V. Titov, “LCAO-based theoretical study of PbTiO3 crystal to search for parity and time reversal violating interaction in solids,” J. Chem. Phys., vol. 145, no. 5, 054115, Aug. 2016.
    DOI: 10.1063/1.4959973
  18. L. V. Skripnikov, “Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search,” J. Chem. Phys., vol. 145, no. 21, 214301, Dec. 2016.
    DOI: 10.1063/1.4968229
    PMid: 28799403
  19. L. V. Skripnikov, A. D. Kudashov, A. N. Petrov, A. V. Titov, “Search for parity- and time-and-parity–violation effects in lead monofluoride (PbF): Ab initio molecular study,” Phys. Rev. A, vol. 90, no. 6, 064501, Dec. 2014.
    DOI: 10.1103/PhysRevA.90.064501
  20. T. Petzel, O. Greis, “The vaporization behavior of ytterbium(III) fluoride and ytterbium(II) fluoride,” J. Less-Common Met., vol. 46, no. 2, pp. 197 – 207, May 1976.
    DOI: 10.1016/0022-5088(76)90210-1
  21. B. V. Bukvetskii, L. S. Garashina, “Crystal-Chemical Investigation of the Orthorhombic Trifluorides of Samarium, Holmium, and Ytterbium,” Sov. J. Coord. Chem., vol. 3, pp. 791 – 795, 1977.
  22. I. V. Abarenkov, M. A. Boyko, “Wave-Function-Based Embedding Potential for Ion-Covalent Crystals,” Int. J. Quantum Chem., vol. 116, no. 3, pp. 211 – 236, Feb. 2016.
    DOI: 10.1002/qua.25041
  23. R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, “Electron affinities of the first-row atoms revisited: systematic basis sets and wave functions,” J. Chem. Phys., vol. 96, no. 9, 6796, May 1992.
    DOI: 10.1063/1.462569
  24. S. G. Semenov, M. E. Bedrina, A. V. Titov, “Quantum-chemical Study of Ytterbium Fluorides and of Complex F2YbF2CeF2,” Russ. J. Gen. Chem., vol. 86, no. 6, pp. 1215 – 1220, Jun. 2016.
    DOI: 10.1134/S1070363216060013
  25. J. S. Binkley, J. A. Pople, W. J. Hehre, “Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements,” J. Am. Chem. Soc., vol. 102, no. 3, pp. 939 – 947, Jan .1980.
    DOI: 10.1021/ja00523a008
  26. J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865 – 3868, 1996.
    DOI: 10.1103/PhysRevLett.77.3865
    PMid: 10062328
  27. C. Adamo, V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., vol. 110, no. 13, pp. 6158 – 6170, Apr. 1999.
    DOI: 10.1063/1.478522
  28. C. van Wuellen, “A quasirelativistic two-component density functional and Hartree−Fock program,” Z. Phys. Chem., vol. 224, no. 3-4, pp. 413 – 426, 2010.
    DOI: 10.1524/zpch.2010.6114
  29. L. V. Skripnikov, A. V. Titov, “Theoretical study of ThF+ in the search for t,p-violation effects: Effective state of a Th atom in ThF+ and ThO compounds,” Phys. Rev. A, vol. 91, no. 4, 042504, Apr. 2015.
    DOI: 10.1103/PhysRevA.91.042504
  30. L. V. Skripnikov, A. N. Petrov and A. V. Titov, “Communication: Theoretical study of ThO for the electron electric dipole moment search,” J. Chem. Phys., vol. 139, no. 22, 221103, Dec. 2013
    DOI: 10.1063/1.4843955
    PMid: 24329049
  31. В. А. Шабуров и др, “Состояния промежуточной валентности иттербия в интерметаллических соединениях,” т. 24, но. 1, стр. 263 – 265, 1982. (V. A. Shaburov et al., “State of the intermediate valence ytterbium in intermetallic compounds,” Phys. Solid State, vol. 24, no. 1, pp. 263–265, 1982.)