Skip to main content
Log in

NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This work aims to determine the fundamental similarities and/or differences between OPC and OPC/slag paste hydrates. OPC and 35% slag pastes are investigated using five techniques: 29Si NMR, 27Al NMR, X-ray diffraction (XRD), infrared (IR) and synchrotron near edge X-ray absorption fine structure (NEXAFS) spectroscopy. 29Si NMR provides valuable information related to the formation of the C–S–H gel, the main hydrated phase of the cement paste. 27Al NMR is a useful tool to characterize calcium aluminates and aluminate hydrates such as ettringite and monosulphate hydrate. XRD identifies polycrystalline phases of the hardened cement paste, including ettringite, monosulphate and CaOH2. Vibrational frequencies in IR assist in identifying the silicate, sulphate and carbonate phases of the cement paste. As far as we are aware, Si K-edge NEXAFS has never been applied in cement research and its advantages and disadvantages are discussed. Using these techniques, a comparison between OPC and 35% slag paste hydrates is made, shedding light on differences in the amount and form of hydrated phases present, especially the absence of ettringite in the 35% slag paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mendes A, Sanjayan J, Collins F (2008) Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures. Mater Struct 41:345–350

    Article  Google Scholar 

  2. A Guide to the Use of Slag in Roads (2002) Australasian Slag Association Inc. 19–21

  3. Odler I (1998) Lea’s chemistry of cement and concrete fourth. Elsevier, Oxford, UK

    Google Scholar 

  4. Taylor HFW (1997) Cement chemistry. Redwood Books, Wiltshire

    Book  Google Scholar 

  5. Mendes A, Sanjayan J, Collins F (2009) Long-term progressive deterioration following fire exposure of OPC versus slag blended cement pastes. Mater Struct 42:95–101

    Article  Google Scholar 

  6. Kirkpatrick RJ (1988) MAS NMR spectroscopy of minerals and glasses. In: Ribbe PH (ed) Spectroscopy methods in mineralogy and geology. Mineralogical Society of America, Chelsea, Michigan, pp 341–387

  7. Moore DM, Reynolds RC (1987) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York

    Google Scholar 

  8. Farmer VC (1974) The layer silicates. In Farmer VC (ed) The IR spectra of minerals. Mineralogical Society, London

  9. Griffiths PR, de Hasseth JA (1986) Fourier transform infrared spectroscopy. Wiley and Sons, New York

    Google Scholar 

  10. Gates WP (2006) Handbook of clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) X-ray absorption spectroscopy. Elsevier, Amsterdam, pp 789–864

    Google Scholar 

  11. Bianconi A (1988) XANES spectroscopy. In: Prins R (ed) X-ray absorption: principals, applications, techniques of EXAFS, SEXAFS and XANES. John Wiley and Sons, New York, pp 573–662

  12. Wu Z, Marcelli A, Giulli G, Paris E, Seiftert F (1996) Effects of higher coordination shells in garnets detected by X-ray absorption spectroscopy at the Al k-edge. Phys Rev B 54:2969–2979

    Google Scholar 

  13. AS 3972-1997 (1997) Portland and blended cements. Standards Australia, Sydeny

  14. Li D, Bancroft GM, Kasrai M, Fleet ME, Secco RA, Feng XH, Tan KH, Yang BX (1994) X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs: the structural characterisation of opal. Am Mineral 79:622–632

    Google Scholar 

  15. Li D, Bancroft MG, Fleet ME, Feng XH (1995) Silicon K-edge XANES spectra of silicate minerals. Phys Chem Mineral 22:115–122

    Google Scholar 

  16. Hjorth J, Skibsted J, Jakobsen HJ (1988) 29Si MAS NMR studies of portland cement components and effects of microsilica on the hydration reaction. Cem Concr Res 18:789–798

    Article  Google Scholar 

  17. MacLaren DC, White MA (2003) Cement: its chemistry and properties. J Chem Edu 80:623–635

    Article  Google Scholar 

  18. Alonso C, Fernandez L (2004) Dehydration and rehydration processes of cement paste exposed to high temperature environments. J Mater Sci 39:3015–3024

    Article  Google Scholar 

  19. Lippmaa E, Mägi M, Tarmak M, Wieker W, Grimmer AR (1982) A high resolution 29Si NMR study of the hydration of tricalciumsilicate. Cem Concr Res 12:597–602

    Article  Google Scholar 

  20. Stephan D, Dikoundou SN, Sieber GR (2008) Influenced of combined doping of tricalcium silicate with MgO, Al2O3 and FeO3: synthesis, grindability, X-Ray diffraction and 29Si NMR. Mater Struct 41:1729–1740

    Article  Google Scholar 

  21. Parry-Jones G, Al-Tayyib AJ, Al-Dulaijan SU, Al-Mana AI (1989) 29Si MAS-NMR hydration and compressive strength study in cement paste. Cem Concr Res 19:228–234

    Article  Google Scholar 

  22. Johansson K, Larsson C, Antzutkin ON, Forsling W, Kota HR, Ronin V (1999) Kinetics of the hydration reactions in the cement paste with mechanochemically modified cement 29Si magic-angle-spinning NMR study. Cem Concr Res 29:1575–1581

    Article  Google Scholar 

  23. Sun G, Brough AR, Young JF (1999) 29Si NMR study of the hydration of Ca2SiO5 and b-Ca2SiO4 in the presence of silica fume. J Am Cer Soc 82:3225–3230

    Article  Google Scholar 

  24. Schneider J, Cincotto MA, Panepucci H (2001) 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem Concr Res 31:993–1001

    Article  Google Scholar 

  25. Richardson IG, Brough AR, Brydson R, Groves GW (1993) Location of aluminum in substituted calcium silicate hydrate (C–S–H) gels as determined by 29Si and 27AI NMR and EELS. J Am Cer Soc 76:2285–2288

    Article  Google Scholar 

  26. Wang S-D, Scrivener KL (2003) 29Si and 27Al NMR study of alkali-activated slag. Cem Concr Res 33:769–774

    Article  Google Scholar 

  27. Richardson IG, Groves GW (1997) The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends. J Mater Sci 32:4793–4802

    Article  Google Scholar 

  28. Richardson IG (1999) The nature of C–S–H in hardened cements. Cem Concr Res 29:1131–1147

    Article  Google Scholar 

  29. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158

    Article  Google Scholar 

  30. Skibsted J, Hall C (2008) Characterization of cement minerals, cements and their reaction products at the atomic and nano scale. Cem Concr Res 38:205–225

    Article  Google Scholar 

  31. Sun GK, Young JF, Kirkpatrick RJ (2006) The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res 36:18–29

    Article  Google Scholar 

  32. Brunet F, Charpentier T, Chao CN, Peycelon H, Nonat A (2010) Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes. Cem Concr Res 40:208–219

    Article  Google Scholar 

  33. Beaudoin JJ, Drame H, Raki L, Alizadeh R (2009) Formation and properties of C–S–H–PEG nano structures. Mater Struct 42:1003–1014

    Article  Google Scholar 

  34. Castellote M, Fernandez L, Andrade C, Alonso C (2009) Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct 42:515–525

    Article  Google Scholar 

  35. Skibsted J, Henderson E, Jakobsen HJ (1993) Characterization of calcium aluminate phases in cements by 27Al MAS NMR spectroscopy. Inorg Chem 32:1013–1027

    Article  Google Scholar 

  36. Hanna RA, Barrie PJ, Cheeseman CR, Hills CD, Buchler PM, Perry R (1995) Solid state 29Si and 27Al NMR and FTIR study of cement pastes containing industrial wastes and organics. Cem Concr Res 25:1435–1444

    Article  Google Scholar 

  37. Andersen MD, Jakobsen HJ, Skibsted J (2003) Incorporation of aluminium in the calcium silicate hydrate (C–S–H) of hydrated Portland cements a high filed 27Al and 29Si MAS NMR investigation. Inorg Chem 42:2280–2287

    Article  Google Scholar 

  38. Murgier S, Zanni H, Gouvenot D (2004) Blast furnace slag cement: a 29Si and 27Al NMR study. CR Chim 7:389–394

    Article  Google Scholar 

  39. Andersen MD, Jakobsen HJ, Skibsted J (2006) A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 36:3–17

    Article  Google Scholar 

  40. Roncero J, Valls S, Gettu R (2002) Study of the influence of superplasticizers on the hydration of cement paste using nuclear magnetic resonance and X-ray diffraction techniques. Cem Concr Res 32:103–108

    Article  Google Scholar 

  41. Breval E (1976) C3A hydration. Cem Concr Res 6:129–138

    Article  Google Scholar 

  42. Ghosh SN (2002) Infrared spectroscopy in cement chemistry. In: Ghosh SN (ed) Advances in cement technology. Tech Books International, New Delhi, pp 709–734

    Google Scholar 

  43. Bensted J, Prakash S (1968) Investigation of the calcium sulphate-water system by infrared spectroscopy. Nature 219:60–61

    Article  Google Scholar 

  44. Bensted J, Varma SP (1971) Studies of ettringite and its derivatives. Cem Technol 3:73–77

    Google Scholar 

  45. Bensted J, Varma SP (1973) Studies of ettringite and its derivatives, part 4: the low-sulphate form of calcium sulphoaluminate (monosulphate). Cem Technol 4:112–115

    Google Scholar 

  46. Bensted J, Varma SP (1974) Some applications of infrared and Raman spectroscopy in cement chemistry part 3—hydration of portland cement and its constituents. Cem Technol 5:440–450

    Google Scholar 

  47. Ramlochan T, Zacarias P, Thomas MDA, Hooton RD (2003) The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature part i: expansive behaviour. Cem Concr Res 33:807–814

    Article  Google Scholar 

  48. Bertron A, Duchesne J, Escadeillas G (2007) Degradation of cement pastes by organic acids. Mater Struct 40:341–354

    Article  Google Scholar 

  49. Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z (2007) Properties and hydration of blended cements with steelmaking slag. Cem Concr Res 37:815–822

    Article  Google Scholar 

  50. Christensen AN, Scarlett NVY, Madsen IC, Jensen TR, Hanson JC (2003) Real time study of cement and clinker phases hydration. Dalton Trans 1529–1536

  51. Barnett SJ, Macphee DE, Lachowski EE, Crammond NJ (2002) XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite. Cem Concr Res 32:719–730

    Article  Google Scholar 

  52. Gastaldi D, Canonico F, Boccaleri E (2009) Ettringite and calcium sulfoaluminate cement: investigation of water content by near-infrared spectroscopy. J Mater Sci 44:5788–5794

    Article  Google Scholar 

  53. Gao XF, Lo Y, Tam CM, Chung CY (1999) Analysis of the infrared spectrum and microstructure of hardened cement paste. Cem Concr Res 29:805–812

    Article  Google Scholar 

  54. Mollah MYA, Yu W, Schennach R, Cocke DL (2000) A Fourier transform infrared spectroscopy investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem Concr Res 30:267–273

    Article  Google Scholar 

  55. Mollah MYA, Kesmez M, Cocke DL (2004) An X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic (V) in Portland cement type V. Sci Total Environ 325:255–262

    Article  Google Scholar 

  56. Adler HH, Kerr PF (1963) Infrared spectra, symmetry and structure relations of some carbonate minerals. Am Mineral 48:839–853

    Google Scholar 

  57. White WB (1971) Infrared characterisation of water and hydroxyl ion in the basic magnesium carbonate minerals. Am Mineral 56:43–56

    Google Scholar 

  58. Teleb SM, Nassr DE-S, Nour EM (2004) Synthesis and infrared spectra of alkaline earth metal carbonates by the reaction of metal salts with urea at high temperature. Bull Mater Sci 27:483–485

    Article  Google Scholar 

  59. Hall C, Barnes P, Billimore AD, Jupe AC, Turrillas X (1996) Thermal decomposition of ettringite Ca6[Al(OH)6]2(SO4)3·26H2O. J Chem Soc Faraday Trans 92:2125–2129

    Article  Google Scholar 

  60. Nosov VN, Frolova NG, Kamyshov VF (1976) IR Spectra of calcium sulphate semihydrate. Zhurnal Prikladnoi Spekroskopii 24:713–715 Translated from Russian March 1976

    Google Scholar 

  61. Adler HH, Kerr PF (1965) Variations in infrared spectra, molecular symmetry and site symmetry of sulphate minerals. Am Mineral 50:132–147

    Google Scholar 

  62. Piasta J, Sawicz Z, Rudzinski L (1984) Changes in the structure of hardened cement paste due to high temperature. Mater Struct 17:291–296

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Australian Research Council Discovery Grant No. DP0558463 for this research project. Part of this research was undertaken on beamline 14ID-01 at the Australian Synchrotron, Victoria Australia. The views expressed are those of the authors and not necessarily those of the owner or operator of the Australian Synchrotron. J Cashion, B Cowie and R Hocking all kindly provided assistance. Finally, the authors would like to gratefully acknowledge Dr Jenny Pringle from Monash School of Chemistry for assistance with all NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, A., Gates, W.P., Sanjayan, J.G. et al. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Mater Struct 44, 1773–1791 (2011). https://doi.org/10.1617/s11527-011-9737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9737-6

Keywords

Navigation