Skip to main content
Log in

Molecular Design of Inorganic-Binding Polypeptides

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Controlled binding and assembly of peptides onto inorganic substrates is at the core of bionanotechnology and biological-materials engineering. Peptides offer several unique advantages for developing future inorganic materials and systems. First, engineered polypeptides can molecularly recognize inorganic surfaces that are distinguishable by shape, crystallography, mineralogy, and chemistry. Second, polypeptides are capable of self-assembly on specific material surfaces leading to addressable molecular architectures. Finally, genetically engineered peptides offer multiple strategies for their functional modification. In this article, we summarize the details and mechanisms involved in combinatorial-polypeptide sequence selection and inorganic-material recognition and affinity, and outline experimental and theoretical approaches and concepts that will help advance this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.P. Smith, Science 228, 1315 (1985).

    Google Scholar 

  2. K.D. Wittrup, Curr. Opin. Biotechnol. 12, 395 (2001).

    Google Scholar 

  3. P. Amstutz, P. Forrer, C. Zahnd, A. Plückthun, Curr. Opin. Biotechnol. 12 400 (2001).

    Google Scholar 

  4. S. Brown, Nat. Biotechnol. 15, 269 (1997).

    Google Scholar 

  5. M. Schembri, K. Kjaergaard, P. Klemm, FEMS Microbiol. Lett. 170, 363 (1999).

    Google Scholar 

  6. S. Brown, M. Sarikaya, E. Johnson, J. Mol. Biol. 299, 725 (2000).

    Google Scholar 

  7. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Nature 405, 665 (2000).

    Google Scholar 

  8. R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Nat. Mater. 1, 169 (2002).

    Google Scholar 

  9. C.M. Li, G.D. Botsaris, D.L. Kaplan, Cryst. Growth Des. 2, 387 (2002).

    Google Scholar 

  10. M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Nat. Mater. 2, 577 (2003).

    Google Scholar 

  11. C.K. Thai, H.X. Dai, M.S.R. Sastry, M. Sarikaya, D.T. Schwartz, F. Baneyx, Biotechnol. Bioeng. 87, 129 (2004).

    Google Scholar 

  12. M. Umetsu, M. Mizuta, K. Tsumoto, K. Ohara, S. Takami, S. Watanabe, H. Kumagai, I. Adschiri, T. Adv. Mater. 17, 2571 (2005).

    Google Scholar 

  13. K.I. Sano, H. Sasaki, K. Shiba, Langmuir 21, 3090 (2005).

    Google Scholar 

  14. O.U.S. Seker, B. Wilson, S. Dincer, I.W. Kim, E.E. Oren, J.S. Evans, C. Tamerler, M. Sarikaya, Langmuir 23, 7895 (2007).

    Google Scholar 

  15. M. Sarikaya, C. Tamerler, D.T. Schwartz, F. Baneyx, Ann. Rev. Mat. Res. 34, 373 (2004).

    Google Scholar 

  16. C. Tamerler, E.E. Oren, M. Duman, E. Venkatasubramanian, M. Sarikaya Langmuir 22 (18), 7712 (2006).

    Google Scholar 

  17. L. Kulp III, M. Sarikaya, J.S. Evans, J. Mater. Chem. 14, 2325 (2004).

    Google Scholar 

  18. E.E. Oren, C. Tamerler, M. Sarikaya, Nano Lett. 5, 415 (2005).

    Google Scholar 

  19. J.L. Kulp III, K. Shiba, J.S. Evans, Langmuir 21, 11907 (2005).

    Google Scholar 

  20. M. Gungormus, H. Fong, I.W. Kim, J.S. Evans, C. Tamerler, M. Sarikaya, Biomacromolecules 9, 966 (2008).

    Google Scholar 

  21. J.S. Evans, Curr. Opin. Colloid Interface Sci. 8, 48 (2003).

    Google Scholar 

  22. S. Collino, J.S. Evans, Biomacromolecules 8, 1686 (2007).

    Google Scholar 

  23. I.W. Kim, S. Collino, D.E. Morse, J.S. Evans, Cryst. Growth Des. 6, 1078 (2006).

    Google Scholar 

  24. S. Collino, I.W. Kim, J.S. Evans, Cryst. Growth Des. 6, 839 (2006).

    Google Scholar 

  25. D.J. Wales, M.A. Miller, T.R. Walsh, Nature 394, 758 (1998).

    Google Scholar 

  26. D.J. Wales, “Energy Landscapes,” Cambridge University Press (Cambridge) (2003).

  27. N. Foloppe and A.D. Mackerell, J. Comput. Chem., 21, 86 (2000).

    Google Scholar 

  28. J. Wang, P. Cieplak and P.A. Kollman, J. Comput. Chem., 21, 1049 (2000).

    Google Scholar 

  29. A.V. Bandura and J.D. Kubicki, J. Phys. Chem. B., 107, 11072 (2003).

    Google Scholar 

  30. T.S. Mahadevan and S.H. Garofalini, J. Phys. Chem. C, 112, 1507 (2008).

    Google Scholar 

  31. C.L. Freeman, J.H. Harding, D.J. Cooke, J.A. Elliott, J.S. Lardge, D.M. Duffy, J. Phys. Chem. C 111, 11943 (2007).

    Google Scholar 

  32. S.D. Tomasio, T.R. Walsh, Mol. Phys. 105, 221 (2007).

    Google Scholar 

  33. M. Bachmann and W. Janke, Phys. Rev. Lett., 95, 058102 (2006).

    Google Scholar 

  34. M.J. Biggs and M. Mijajlovic, J. Phys. Chem. C, 111, 15839 (2007).

    Google Scholar 

  35. V. Carravetta and S. Monti, J. Phys. Chem. B, 110, 6160 (2006).

    Google Scholar 

  36. P. Schrevandijk, L.M. Ghiringhelli, L. Delle Site, N.F.A. van der Vegt, J. Phys. Chem. C 111, 2631 (2007).

    Google Scholar 

  37. E.E. Oren, C. Tamerler, D. Sahin, M. Hnilova, U.O.S. Seker, M. Sarikaya, R. Samudrala, Bioinformatics 23, 2816 (2007).

    Google Scholar 

  38. T.K. Attwood, Science 27, 471 (2000).

    Google Scholar 

  39. S.B. Needleman, C.D. Wunsch, J. Mol. Biol. 48, 443 (1970).

    Google Scholar 

  40. T.F. Smith, M.S. Waterman, J. Mol. Biol. 147 195 (1981).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.S., Samudrala, R., Walsh, T.R. et al. Molecular Design of Inorganic-Binding Polypeptides. MRS Bulletin 33, 514–518 (2008). https://doi.org/10.1557/mrs2008.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.103

Navigation