Skip to main content
Log in

Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties

  • Metallic Materials for 3D Printing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The capabilities of metal additive manufacturing (AM) are evolving rapidly thanks to both increasing industry demand and improved scientific understanding of the process. This article provides an overview of AM of the Ti-6Al-4V alloy, which has essentially been used as a yardstick to gauge the capability of each metal AM process developed to date. It begins by summarizing the metal AM processes existing today. This is followed by a discussion of the macro- and microstructural characteristics, defects, and tensile and fatigue properties of AM Ti-6Al-4V by selective laser melting, laser metal deposition (both powder and wire), and selective electron-beam melting compared to non-AM Ti-6Al-4V. The tensile and fatigue properties of as-built AM Ti-6Al-4V (with machined or polished surfaces) can be made comparable, or even superior, to those of Ti-6Al-4V in the most commonly used mill-annealed condition. However, these properties can exhibit a large degree of scatter and are often anisotropic, affected by AM build orientations. Post-AM surface treatments or both the post-AM surface and heat treatments are necessary to ensure the minimum required properties and performance consistency. Future directions to further unlock the potential of AM of Ti-6Al-4V for superior and consistent mechanical properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.F. Isaza, C. Aumund-Kopp, Addit. Manuf. 3, 41 (2014).

    Google Scholar 

  2. K. Ek, “Additive Manufactured Metals,” Master of Science thesis, KTH Royal Institute of Technology (2014).

    Google Scholar 

  3. M. Qian, Int. J. Powder Metall. 46 (5), 29 (2010).

    Google Scholar 

  4. J.E. Barnes, W. Peter, C.A. Blue, Mater. Sci. Forum 618–619, 165 (2009).

    Google Scholar 

  5. S. Tirelli, E. Chiappini, M. Strano, M. Monno, Q. Semeraro, Key Eng. Mater. 651–653, 1204 (2015).

    Google Scholar 

  6. Carpenter Technical Datasheet Titanium Alloy Ti 6Al-4V, http://cartech.ides.com/datasheet.aspx?i=101&E=269 (accessed May 18, 2016).

  7. G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, OH, 1994), p. 517.

    Google Scholar 

  8. G.J. Marshall, W.J. Young II, S.M. Thompson, N. Shamsaei, S.R. Daniewicz, S. Shao, JOM 68, 778 (2016).

    Google Scholar 

  9. J.E. Craig, T. Wakeman, R. Grylls, J. Bullen, in Sensors, Sampling, and Simulation for Process Control, B.G. Thomas, J.A. Yurko, L. Zhang, Eds. (Wiley-TMS, Hoboken, NJ, 2011), pp. 103–110.

    Google Scholar 

  10. H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, JOM 67, 555 (2015).

    Google Scholar 

  11. C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah, J. Alloys Compd. 629, 351 (2015).

    Google Scholar 

  12. E. Brandl, F. Palm, V. Michailov, B. Viehweger, C. Leyens, Mater. Des. 32, 4665 (2011).

    Google Scholar 

  13. M. Yan, M.S. Dargusch, T. Ebel, M. Qian, Acta Mater. 68, 196 (2014).

    Google Scholar 

  14. R. Dabrowski, Arch. Metall. Mater. 56, 703 (2011).

    Google Scholar 

  15. J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyka, in Titanium Alloys—Advances in Properties Control, J. Sieniawski, W. Ziaja, Eds. (InTech, Rijeka, Croatia, 2013).

    Google Scholar 

  16. T. Ahmed, H.J. Rack, Mater. Sci. Eng. A 243, 206 (1998).

    Google Scholar 

  17. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85, 74 (2015).

    Google Scholar 

  18. M.N. Ahsan, A.J. Pinkerton, R.J. Moat, J. Shackleton, Mater. Sci. Eng. A 528, 7648 (2011).

    Google Scholar 

  19. C. de Formanoir, S. Michotte, O. Rigo, L. Germain, S. Godet, Mater. Sci. Eng. A 652, 105 (2016).

    Google Scholar 

  20. P.A. Kobryn, S.L. Semiatin, J. Mater. Process. Technol. 135, 330 (2003).

    Google Scholar 

  21. Q. Yuanhong, T. Hua, L. Jing, H. Weidong, Rare Met. Mater. Eng. 43, 2162 (2014).

    Google Scholar 

  22. F. Martina, P.A. Colegrove, S.W. Williams, J. Meyer, Metall. Mater. Trans. A 46, 6103 (2015).

    Google Scholar 

  23. S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. St. John, M. Qian, Metall. Mater. Trans. A 46, 3824 (2015).

    Google Scholar 

  24. S.L. Lu, M. Qian, H.P. Tang, M. Yan, J. Wang, D.H. St. John, Acta Mater. 104, 303 (2016).

    Google Scholar 

  25. T.B. Massalski, Metall. Mater. Trans. A 33, 2277 (2002).

    Google Scholar 

  26. N. Sridharan, A. Chaudhary, P. Nandwana, S.S. Babu, JOM 68, 772 (2016).

    Google Scholar 

  27. H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Addit. Manuf. 10, 47 (2016).

    Google Scholar 

  28. R. Cunningham, S.P. Narra, T. Ozturk, J. Beuth, A.D. Rollett, JOM 68, 765 (2016).

    Google Scholar 

  29. S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, Mater. Charact. 102, 47 (2015).

    Google Scholar 

  30. M. Svensson, U. Ackelid, Proc. Mater. Process. Med. Devices Conf. 2009, J. Gilbert, Ed. (Minneapolis, MN, 2010), pp. 189–194.

    Google Scholar 

  31. B. Vandenbroucke, J.P. Kruth, Rapid Prototyp. J. 13, 196 (2007).

    Google Scholar 

  32. T. Becker, M. van Rooyen, D. Dimitrov, S. Afr. J. Ind. Eng. 26, 93 (2015).

    Google Scholar 

  33. J.J.Z. Li, W.L. Johnson, W.-K. Rhim, Appl. Phys. Lett. 89, 111913 (2006).

    Google Scholar 

  34. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016).

    Google Scholar 

  35. T. Saito, T. Furuta, US Patent 5,409,518 (1995).

  36. Timetal Datasheet on Ti-6Al-4V, http://www.timet.com/datasheets-and-literature (accessed May 20, 2016).

  37. A.M. Beese, B.E. Carroll, JOM 68, 724 (2016).

    Google Scholar 

  38. L. Bian, S.M. Thompson, N. Shamsaei, JOM 67, 629 (2015).

    Google Scholar 

  39. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41, 3422 (2010).

    Google Scholar 

  40. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, Mater. Charact. 60, 96 (2009).

    Google Scholar 

  41. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker, Mater. Des. 86, 545 (2015).

    Google Scholar 

  42. N. Hrabe, T. Quinn, Mater. Sci. Eng. A 573, 271 (2013).

    Google Scholar 

  43. Arcam AB Ti6A14V Titanium Alloy, http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-Titanium-Alloy.pdf (accessed May 20, 2016).

  44. Q. Huang, X. Liu, X. Yang, R. Zhang, Z. Shen, Q. Feng, Front. Mater. Sci. 9, 373 (2015).

    Google Scholar 

  45. B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, J. Alloys Compd. 541, 177 (2012).

    Google Scholar 

  46. M. Thöne, S. Leuders, A. Riemer, T. Tröster, H.A. Richard, Proc. 23rd Solid Freeform Fabr. Symp. (SFF) (The University of Texas at Austin, Austin, TX, 2012), pp. 492–498, http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-38-Thoene.pdf (accessed May 20, 2016).

    Google Scholar 

  47. T. Vilaro, C. Colin, J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011).

    Google Scholar 

  48. M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616,1 (2014).

    Google Scholar 

  49. X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, L.E. Murr, Mater. Des. 95, 21 (2016).

    Google Scholar 

  50. H.P. Tang, Q.B. Wang, G.Y. Yang, J. Gu, N. Liu, L. Jia, M. Qian, JOM 68, 799 (2016).

    Google Scholar 

  51. H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, M. Qian, Mater. Sci. Eng. A 636, 103 (2015).

    Google Scholar 

  52. S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Metall. Mater. Trans. A 47, 1939 (2016).

    Google Scholar 

  53. Surface roughness produced by different manufacturing process, http://www.meadinfo.org/2009/06/surface-finish-roughness-ra.html (accessed August 15, 2016).

  54. Y.Y. Sun, S. Gulizia, C.H. Oh, D. Fraser, M. Leary, Y.F. Yang, M. Qian, JOM 68, 791 (2016).

    Google Scholar 

  55. S. Palanivel, A.K. Dutt, E.J. Faierson, R.S. Mishra, Mater. Sci. Eng. A 654, 39 (2016).

    Google Scholar 

  56. G. Kasperovich, J. Hausmann, J. Mater. Process. Technol. 220, 202 (2015).

    Google Scholar 

  57. J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, J. Mater. Eng. Perform. 20, 203 (2011).

    Google Scholar 

  58. D. Greitemeier, F. Palm, F. Syassen, T. Melz, Int. J. Fatigue, published online May 3, 2016, http://dx.doi.org/10.1016/j.ijfatigue.2016.05.001.

    Google Scholar 

  59. R. Grylls, Ed., “LENS Process White Paper: Fatigue Testing of LENS Ti-6-4,” http://www.optomec.com/wp-content/uploads/2014/04/LENS_fatique-testing_whitepaper.pdf (accessed May 25, 2016).

    Google Scholar 

  60. M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (ASM International, Materials Park, OH, 2000).

    Google Scholar 

  61. Titanium Ti-6Al-4V (Grade 5), STA, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP642 (accessed August 15, 2016).

  62. H.K. Rafi, T.L. Starr, B.E. Stucker, Int. J. Adv. Manuf. Technol. 69, 1299 (2013).

    Google Scholar 

  63. E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, Phys. Procedia 56, 371 (2014).

    Google Scholar 

  64. B. Baufeld, E. Brandl, O. Van der Biest, J. Mater. Process. Technol. 211 1146 (2011).

    Google Scholar 

  65. P. Li, D.H.Warner, A. Fatemi, N. Phan, Int. J. Fatigue 85,130 (2016).

    Google Scholar 

  66. D. Greitemeier, F. Palm, F. Syassen, T. Melz, Int. J. Fatigue (forthcoming).

  67. P. Åkerfeldt, R. Pederson, M.L. Antti, Int. J. Fatigue 87, 245 (2016).

    Google Scholar 

  68. E.R. Wycisk, C.L. Emmelmann, S. Siddique, F. Walther, Adv. Mater. Res. 816, 134 (2013).

    Google Scholar 

  69. M.-W. Wu, P.-H. Lai, Mater. Sci. Eng. A 658, 429 (2016).

    Google Scholar 

  70. S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Scr. Mater. 122, 72 (2016).

    Google Scholar 

  71. M. Simonelli, Y.Y. Tse, C.Tuck, J. Mater. Res. 29, 2028 (2014).

    Google Scholar 

  72. N. Hrabe, T. Quinn, Mater. Sci. Eng. A 573, 264 (2013).

    Google Scholar 

  73. S. Zherebtsov, G. Salishchev, R. Galeyev, K. Maekawa, Mater. Trans. 46, 2020 (2005).

    Google Scholar 

  74. L. Wagner, J.K. Bigoney, “Fatigue of Titanium Alloys,” in Titanium and Titanium Alloys: Fundamentals and Applications, C. Leyens, M. Peters, Eds. (Wiley, Weinheim, 2003), p. 153.

    Google Scholar 

  75. H.K. Rafi, N.V. Karthik, H.J. Gong, T.L. Starr, B.E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013).

    Google Scholar 

  76. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, K. Wissenbach, Rapid Prototyp. J. 16, 450 (2010).

    Google Scholar 

  77. W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, M. Qian, JOM 67, 668 (2015).

    Google Scholar 

  78. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Des. 108, 308 (2016).

    Google Scholar 

  79. X. Tan, Y. Kok, W.Q. Toh, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Sci. Rep. 6, 26039 (2016).

    Google Scholar 

  80. S.-L. Lu, H.-P. Tang, M. Qian, L.-Y. Zeng, D.H. St. John, J. Cent. South Univ. 22, 2857 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Australian Research Council (ARC) and National Natural Science Foundation of China (NSFC) for their financial support through ARC DP150104719, ARC LP140100607, and NSFC No. 51528401. They also thank S.L. Lu for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Xu, W., Brandt, M. et al. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bulletin 41, 775–784 (2016). https://doi.org/10.1557/mrs.2016.215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.215

Navigation